| Index: third_party/libwebp/utils/huffman.c
|
| diff --git a/third_party/libwebp/utils/huffman.c b/third_party/libwebp/utils/huffman.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..41529cc9da2739f3f94be023c92da7d78462a4be
|
| --- /dev/null
|
| +++ b/third_party/libwebp/utils/huffman.c
|
| @@ -0,0 +1,238 @@
|
| +// Copyright 2012 Google Inc. All Rights Reserved.
|
| +//
|
| +// This code is licensed under the same terms as WebM:
|
| +// Software License Agreement: http://www.webmproject.org/license/software/
|
| +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Utilities for building and looking up Huffman trees.
|
| +//
|
| +// Author: Urvang Joshi (urvang@google.com)
|
| +
|
| +#include <assert.h>
|
| +#include <stdlib.h>
|
| +#include "./huffman.h"
|
| +#include "../utils/utils.h"
|
| +#include "../webp/format_constants.h"
|
| +
|
| +#if defined(__cplusplus) || defined(c_plusplus)
|
| +extern "C" {
|
| +#endif
|
| +
|
| +#define NON_EXISTENT_SYMBOL (-1)
|
| +
|
| +static void TreeNodeInit(HuffmanTreeNode* const node) {
|
| + node->children_ = -1; // means: 'unassigned so far'
|
| +}
|
| +
|
| +static int NodeIsEmpty(const HuffmanTreeNode* const node) {
|
| + return (node->children_ < 0);
|
| +}
|
| +
|
| +static int IsFull(const HuffmanTree* const tree) {
|
| + return (tree->num_nodes_ == tree->max_nodes_);
|
| +}
|
| +
|
| +static void AssignChildren(HuffmanTree* const tree,
|
| + HuffmanTreeNode* const node) {
|
| + HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
|
| + node->children_ = (int)(children - node);
|
| + assert(children - node == (int)(children - node));
|
| + tree->num_nodes_ += 2;
|
| + TreeNodeInit(children + 0);
|
| + TreeNodeInit(children + 1);
|
| +}
|
| +
|
| +static int TreeInit(HuffmanTree* const tree, int num_leaves) {
|
| + assert(tree != NULL);
|
| + if (num_leaves == 0) return 0;
|
| + // We allocate maximum possible nodes in the tree at once.
|
| + // Note that a Huffman tree is a full binary tree; and in a full binary tree
|
| + // with L leaves, the total number of nodes N = 2 * L - 1.
|
| + tree->max_nodes_ = 2 * num_leaves - 1;
|
| + tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_,
|
| + sizeof(*tree->root_));
|
| + if (tree->root_ == NULL) return 0;
|
| + TreeNodeInit(tree->root_); // Initialize root.
|
| + tree->num_nodes_ = 1;
|
| + return 1;
|
| +}
|
| +
|
| +void HuffmanTreeRelease(HuffmanTree* const tree) {
|
| + if (tree != NULL) {
|
| + free(tree->root_);
|
| + tree->root_ = NULL;
|
| + tree->max_nodes_ = 0;
|
| + tree->num_nodes_ = 0;
|
| + }
|
| +}
|
| +
|
| +int HuffmanCodeLengthsToCodes(const int* const code_lengths,
|
| + int code_lengths_size, int* const huff_codes) {
|
| + int symbol;
|
| + int code_len;
|
| + int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
| + int curr_code;
|
| + int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
| + int max_code_length = 0;
|
| +
|
| + assert(code_lengths != NULL);
|
| + assert(code_lengths_size > 0);
|
| + assert(huff_codes != NULL);
|
| +
|
| + // Calculate max code length.
|
| + for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
| + if (code_lengths[symbol] > max_code_length) {
|
| + max_code_length = code_lengths[symbol];
|
| + }
|
| + }
|
| + if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
|
| +
|
| + // Calculate code length histogram.
|
| + for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
| + ++code_length_hist[code_lengths[symbol]];
|
| + }
|
| + code_length_hist[0] = 0;
|
| +
|
| + // Calculate the initial values of 'next_codes' for each code length.
|
| + // next_codes[code_len] denotes the code to be assigned to the next symbol
|
| + // of code length 'code_len'.
|
| + curr_code = 0;
|
| + next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
|
| + for (code_len = 1; code_len <= max_code_length; ++code_len) {
|
| + curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
|
| + next_codes[code_len] = curr_code;
|
| + }
|
| +
|
| + // Get symbols.
|
| + for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
| + if (code_lengths[symbol] > 0) {
|
| + huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
|
| + } else {
|
| + huff_codes[symbol] = NON_EXISTENT_SYMBOL;
|
| + }
|
| + }
|
| + return 1;
|
| +}
|
| +
|
| +static int TreeAddSymbol(HuffmanTree* const tree,
|
| + int symbol, int code, int code_length) {
|
| + HuffmanTreeNode* node = tree->root_;
|
| + const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
|
| + while (code_length-- > 0) {
|
| + if (node >= max_node) {
|
| + return 0;
|
| + }
|
| + if (NodeIsEmpty(node)) {
|
| + if (IsFull(tree)) return 0; // error: too many symbols.
|
| + AssignChildren(tree, node);
|
| + } else if (HuffmanTreeNodeIsLeaf(node)) {
|
| + return 0; // leaf is already occupied.
|
| + }
|
| + node += node->children_ + ((code >> code_length) & 1);
|
| + }
|
| + if (NodeIsEmpty(node)) {
|
| + node->children_ = 0; // turn newly created node into a leaf.
|
| + } else if (!HuffmanTreeNodeIsLeaf(node)) {
|
| + return 0; // trying to assign a symbol to already used code.
|
| + }
|
| + node->symbol_ = symbol; // Add symbol in this node.
|
| + return 1;
|
| +}
|
| +
|
| +int HuffmanTreeBuildImplicit(HuffmanTree* const tree,
|
| + const int* const code_lengths,
|
| + int code_lengths_size) {
|
| + int symbol;
|
| + int num_symbols = 0;
|
| + int root_symbol = 0;
|
| +
|
| + assert(tree != NULL);
|
| + assert(code_lengths != NULL);
|
| +
|
| + // Find out number of symbols and the root symbol.
|
| + for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
| + if (code_lengths[symbol] > 0) {
|
| + // Note: code length = 0 indicates non-existent symbol.
|
| + ++num_symbols;
|
| + root_symbol = symbol;
|
| + }
|
| + }
|
| +
|
| + // Initialize the tree. Will fail for num_symbols = 0
|
| + if (!TreeInit(tree, num_symbols)) return 0;
|
| +
|
| + // Build tree.
|
| + if (num_symbols == 1) { // Trivial case.
|
| + const int max_symbol = code_lengths_size;
|
| + if (root_symbol < 0 || root_symbol >= max_symbol) {
|
| + HuffmanTreeRelease(tree);
|
| + return 0;
|
| + }
|
| + return TreeAddSymbol(tree, root_symbol, 0, 0);
|
| + } else { // Normal case.
|
| + int ok = 0;
|
| +
|
| + // Get Huffman codes from the code lengths.
|
| + int* const codes =
|
| + (int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes));
|
| + if (codes == NULL) goto End;
|
| +
|
| + if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) {
|
| + goto End;
|
| + }
|
| +
|
| + // Add symbols one-by-one.
|
| + for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
| + if (code_lengths[symbol] > 0) {
|
| + if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) {
|
| + goto End;
|
| + }
|
| + }
|
| + }
|
| + ok = 1;
|
| + End:
|
| + free(codes);
|
| + ok = ok && IsFull(tree);
|
| + if (!ok) HuffmanTreeRelease(tree);
|
| + return ok;
|
| + }
|
| +}
|
| +
|
| +int HuffmanTreeBuildExplicit(HuffmanTree* const tree,
|
| + const int* const code_lengths,
|
| + const int* const codes,
|
| + const int* const symbols, int max_symbol,
|
| + int num_symbols) {
|
| + int ok = 0;
|
| + int i;
|
| +
|
| + assert(tree != NULL);
|
| + assert(code_lengths != NULL);
|
| + assert(codes != NULL);
|
| + assert(symbols != NULL);
|
| +
|
| + // Initialize the tree. Will fail if num_symbols = 0.
|
| + if (!TreeInit(tree, num_symbols)) return 0;
|
| +
|
| + // Add symbols one-by-one.
|
| + for (i = 0; i < num_symbols; ++i) {
|
| + if (codes[i] != NON_EXISTENT_SYMBOL) {
|
| + if (symbols[i] < 0 || symbols[i] >= max_symbol) {
|
| + goto End;
|
| + }
|
| + if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
|
| + goto End;
|
| + }
|
| + }
|
| + }
|
| + ok = 1;
|
| + End:
|
| + ok = ok && IsFull(tree);
|
| + if (!ok) HuffmanTreeRelease(tree);
|
| + return ok;
|
| +}
|
| +
|
| +#if defined(__cplusplus) || defined(c_plusplus)
|
| +} // extern "C"
|
| +#endif
|
|
|