Index: third_party/libwebp/utils/huffman.c |
diff --git a/third_party/libwebp/utils/huffman.c b/third_party/libwebp/utils/huffman.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..41529cc9da2739f3f94be023c92da7d78462a4be |
--- /dev/null |
+++ b/third_party/libwebp/utils/huffman.c |
@@ -0,0 +1,238 @@ |
+// Copyright 2012 Google Inc. All Rights Reserved. |
+// |
+// This code is licensed under the same terms as WebM: |
+// Software License Agreement: http://www.webmproject.org/license/software/ |
+// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
+// ----------------------------------------------------------------------------- |
+// |
+// Utilities for building and looking up Huffman trees. |
+// |
+// Author: Urvang Joshi (urvang@google.com) |
+ |
+#include <assert.h> |
+#include <stdlib.h> |
+#include "./huffman.h" |
+#include "../utils/utils.h" |
+#include "../webp/format_constants.h" |
+ |
+#if defined(__cplusplus) || defined(c_plusplus) |
+extern "C" { |
+#endif |
+ |
+#define NON_EXISTENT_SYMBOL (-1) |
+ |
+static void TreeNodeInit(HuffmanTreeNode* const node) { |
+ node->children_ = -1; // means: 'unassigned so far' |
+} |
+ |
+static int NodeIsEmpty(const HuffmanTreeNode* const node) { |
+ return (node->children_ < 0); |
+} |
+ |
+static int IsFull(const HuffmanTree* const tree) { |
+ return (tree->num_nodes_ == tree->max_nodes_); |
+} |
+ |
+static void AssignChildren(HuffmanTree* const tree, |
+ HuffmanTreeNode* const node) { |
+ HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_; |
+ node->children_ = (int)(children - node); |
+ assert(children - node == (int)(children - node)); |
+ tree->num_nodes_ += 2; |
+ TreeNodeInit(children + 0); |
+ TreeNodeInit(children + 1); |
+} |
+ |
+static int TreeInit(HuffmanTree* const tree, int num_leaves) { |
+ assert(tree != NULL); |
+ if (num_leaves == 0) return 0; |
+ // We allocate maximum possible nodes in the tree at once. |
+ // Note that a Huffman tree is a full binary tree; and in a full binary tree |
+ // with L leaves, the total number of nodes N = 2 * L - 1. |
+ tree->max_nodes_ = 2 * num_leaves - 1; |
+ tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_, |
+ sizeof(*tree->root_)); |
+ if (tree->root_ == NULL) return 0; |
+ TreeNodeInit(tree->root_); // Initialize root. |
+ tree->num_nodes_ = 1; |
+ return 1; |
+} |
+ |
+void HuffmanTreeRelease(HuffmanTree* const tree) { |
+ if (tree != NULL) { |
+ free(tree->root_); |
+ tree->root_ = NULL; |
+ tree->max_nodes_ = 0; |
+ tree->num_nodes_ = 0; |
+ } |
+} |
+ |
+int HuffmanCodeLengthsToCodes(const int* const code_lengths, |
+ int code_lengths_size, int* const huff_codes) { |
+ int symbol; |
+ int code_len; |
+ int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
+ int curr_code; |
+ int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
+ int max_code_length = 0; |
+ |
+ assert(code_lengths != NULL); |
+ assert(code_lengths_size > 0); |
+ assert(huff_codes != NULL); |
+ |
+ // Calculate max code length. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > max_code_length) { |
+ max_code_length = code_lengths[symbol]; |
+ } |
+ } |
+ if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0; |
+ |
+ // Calculate code length histogram. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ ++code_length_hist[code_lengths[symbol]]; |
+ } |
+ code_length_hist[0] = 0; |
+ |
+ // Calculate the initial values of 'next_codes' for each code length. |
+ // next_codes[code_len] denotes the code to be assigned to the next symbol |
+ // of code length 'code_len'. |
+ curr_code = 0; |
+ next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist. |
+ for (code_len = 1; code_len <= max_code_length; ++code_len) { |
+ curr_code = (curr_code + code_length_hist[code_len - 1]) << 1; |
+ next_codes[code_len] = curr_code; |
+ } |
+ |
+ // Get symbols. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > 0) { |
+ huff_codes[symbol] = next_codes[code_lengths[symbol]]++; |
+ } else { |
+ huff_codes[symbol] = NON_EXISTENT_SYMBOL; |
+ } |
+ } |
+ return 1; |
+} |
+ |
+static int TreeAddSymbol(HuffmanTree* const tree, |
+ int symbol, int code, int code_length) { |
+ HuffmanTreeNode* node = tree->root_; |
+ const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; |
+ while (code_length-- > 0) { |
+ if (node >= max_node) { |
+ return 0; |
+ } |
+ if (NodeIsEmpty(node)) { |
+ if (IsFull(tree)) return 0; // error: too many symbols. |
+ AssignChildren(tree, node); |
+ } else if (HuffmanTreeNodeIsLeaf(node)) { |
+ return 0; // leaf is already occupied. |
+ } |
+ node += node->children_ + ((code >> code_length) & 1); |
+ } |
+ if (NodeIsEmpty(node)) { |
+ node->children_ = 0; // turn newly created node into a leaf. |
+ } else if (!HuffmanTreeNodeIsLeaf(node)) { |
+ return 0; // trying to assign a symbol to already used code. |
+ } |
+ node->symbol_ = symbol; // Add symbol in this node. |
+ return 1; |
+} |
+ |
+int HuffmanTreeBuildImplicit(HuffmanTree* const tree, |
+ const int* const code_lengths, |
+ int code_lengths_size) { |
+ int symbol; |
+ int num_symbols = 0; |
+ int root_symbol = 0; |
+ |
+ assert(tree != NULL); |
+ assert(code_lengths != NULL); |
+ |
+ // Find out number of symbols and the root symbol. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > 0) { |
+ // Note: code length = 0 indicates non-existent symbol. |
+ ++num_symbols; |
+ root_symbol = symbol; |
+ } |
+ } |
+ |
+ // Initialize the tree. Will fail for num_symbols = 0 |
+ if (!TreeInit(tree, num_symbols)) return 0; |
+ |
+ // Build tree. |
+ if (num_symbols == 1) { // Trivial case. |
+ const int max_symbol = code_lengths_size; |
+ if (root_symbol < 0 || root_symbol >= max_symbol) { |
+ HuffmanTreeRelease(tree); |
+ return 0; |
+ } |
+ return TreeAddSymbol(tree, root_symbol, 0, 0); |
+ } else { // Normal case. |
+ int ok = 0; |
+ |
+ // Get Huffman codes from the code lengths. |
+ int* const codes = |
+ (int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes)); |
+ if (codes == NULL) goto End; |
+ |
+ if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) { |
+ goto End; |
+ } |
+ |
+ // Add symbols one-by-one. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > 0) { |
+ if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) { |
+ goto End; |
+ } |
+ } |
+ } |
+ ok = 1; |
+ End: |
+ free(codes); |
+ ok = ok && IsFull(tree); |
+ if (!ok) HuffmanTreeRelease(tree); |
+ return ok; |
+ } |
+} |
+ |
+int HuffmanTreeBuildExplicit(HuffmanTree* const tree, |
+ const int* const code_lengths, |
+ const int* const codes, |
+ const int* const symbols, int max_symbol, |
+ int num_symbols) { |
+ int ok = 0; |
+ int i; |
+ |
+ assert(tree != NULL); |
+ assert(code_lengths != NULL); |
+ assert(codes != NULL); |
+ assert(symbols != NULL); |
+ |
+ // Initialize the tree. Will fail if num_symbols = 0. |
+ if (!TreeInit(tree, num_symbols)) return 0; |
+ |
+ // Add symbols one-by-one. |
+ for (i = 0; i < num_symbols; ++i) { |
+ if (codes[i] != NON_EXISTENT_SYMBOL) { |
+ if (symbols[i] < 0 || symbols[i] >= max_symbol) { |
+ goto End; |
+ } |
+ if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) { |
+ goto End; |
+ } |
+ } |
+ } |
+ ok = 1; |
+ End: |
+ ok = ok && IsFull(tree); |
+ if (!ok) HuffmanTreeRelease(tree); |
+ return ok; |
+} |
+ |
+#if defined(__cplusplus) || defined(c_plusplus) |
+} // extern "C" |
+#endif |