| Index: chrome/common/metrics/entropy_provider_unittest.cc
|
| ===================================================================
|
| --- chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
|
| +++ chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
|
| @@ -0,0 +1,263 @@
|
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include <limits>
|
| +
|
| +#include "base/basictypes.h"
|
| +#include "base/memory/scoped_ptr.h"
|
| +#include "base/rand_util.h"
|
| +#include "base/string_number_conversions.h"
|
| +#include "chrome/common/metrics/entropy_provider.h"
|
| +#include "testing/gtest/include/gtest/gtest.h"
|
| +
|
| +class EntropyProviderTest : public testing::Test {
|
| + public:
|
| + // Computes SHA1-based entropy for the given |trial_name| based on
|
| + // |entropy_source|
|
| + double GenerateSHA1Entropy(const std::string& entropy_source,
|
| + const std::string& trial_name) {
|
| + scoped_ptr<SHA1EntropyProvider> sha1_provider(
|
| + new SHA1EntropyProvider(entropy_source));
|
| + return sha1_provider->GetEntropyForTrial(trial_name);
|
| + }
|
| +
|
| + // Generates permutation-based entropy for the given |trial_name| based on
|
| + // |entropy_source| which must be in the range [0, entropy_max).
|
| + double GeneratePermutedEntropy(uint16 entropy_source,
|
| + size_t entropy_max,
|
| + const std::string& trial_name) {
|
| + scoped_ptr<PermutedEntropyProvider> permuted_provider(
|
| + new PermutedEntropyProvider(entropy_source, entropy_max));
|
| + return permuted_provider->GetEntropyForTrial(trial_name);
|
| + }
|
| +};
|
| +
|
| +
|
| +TEST_F(EntropyProviderTest, UseOneTimeRandomizationSHA1) {
|
| + // Simply asserts that two trials using one-time randomization
|
| + // that have different names, normally generate different results.
|
| + //
|
| + // Note that depending on the one-time random initialization, they
|
| + // _might_ actually give the same result, but we know that given
|
| + // the particular client_id we use for unit tests they won't.
|
| + base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id"));
|
| + scoped_refptr<base::FieldTrial> trials[] = {
|
| + base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
|
| + base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
|
| + base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
|
| + base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
|
| + };
|
| +
|
| + for (size_t i = 0; i < arraysize(trials); ++i) {
|
| + trials[i]->UseOneTimeRandomization();
|
| +
|
| + for (int j = 0; j < 100; ++j)
|
| + trials[i]->AppendGroup("", 1);
|
| + }
|
| +
|
| + // The trials are most likely to give different results since they have
|
| + // different names.
|
| + ASSERT_NE(trials[0]->group(), trials[1]->group());
|
| + ASSERT_NE(trials[0]->group_name(), trials[1]->group_name());
|
| +}
|
| +
|
| +TEST_F(EntropyProviderTest, UseOneTimeRandomizationPermuted) {
|
| + // Simply asserts that two trials using one-time randomization
|
| + // that have different names, normally generate different results.
|
| + //
|
| + // Note that depending on the one-time random initialization, they
|
| + // _might_ actually give the same result, but we know that given
|
| + // the particular client_id we use for unit tests they won't.
|
| + const size_t kMaxEntropySize = (1 << 13);
|
| + base::FieldTrialList field_trial_list(
|
| + new PermutedEntropyProvider(1234, kMaxEntropySize));
|
| + scoped_refptr<base::FieldTrial> trials[] = {
|
| + base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
|
| + base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
|
| + base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
|
| + base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
|
| + };
|
| +
|
| + for (size_t i = 0; i < arraysize(trials); ++i) {
|
| + trials[i]->UseOneTimeRandomization();
|
| +
|
| + for (int j = 0; j < 100; ++j)
|
| + trials[i]->AppendGroup("", 1);
|
| + }
|
| +
|
| + // The trials are most likely to give different results since they have
|
| + // different names.
|
| + ASSERT_NE(trials[0]->group(), trials[1]->group());
|
| + ASSERT_NE(trials[0]->group_name(), trials[1]->group_name());
|
| +}
|
| +
|
| +TEST_F(EntropyProviderTest, SHA1Entropy) {
|
| + double results[] = {
|
| + GenerateSHA1Entropy("hi", "1"),
|
| + GenerateSHA1Entropy("there", "1"),
|
| + };
|
| + ASSERT_NE(results[0], results[1]);
|
| + for (size_t i = 0; i < arraysize(results); ++i) {
|
| + ASSERT_LE(0.0, results[i]);
|
| + ASSERT_GT(1.0, results[i]);
|
| + }
|
| +
|
| + ASSERT_EQ(GenerateSHA1Entropy("yo", "1"),
|
| + GenerateSHA1Entropy("yo", "1"));
|
| + ASSERT_NE(GenerateSHA1Entropy("yo", "something"),
|
| + GenerateSHA1Entropy("yo", "else"));
|
| +}
|
| +
|
| +TEST_F(EntropyProviderTest, PermutedEntropy) {
|
| + const size_t kMaxEntropySize = (1 << 13);
|
| + double results[] = {
|
| + GeneratePermutedEntropy(1234, kMaxEntropySize, "1"),
|
| + GeneratePermutedEntropy(4321, kMaxEntropySize, "1"),
|
| + };
|
| + ASSERT_NE(results[0], results[1]);
|
| + for (size_t i = 0; i < arraysize(results); ++i) {
|
| + ASSERT_LE(0.0, results[i]);
|
| + ASSERT_GT(1.0, results[i]);
|
| + }
|
| +
|
| + ASSERT_EQ(GeneratePermutedEntropy(1234, kMaxEntropySize, "1"),
|
| + GeneratePermutedEntropy(1234, kMaxEntropySize, "1"));
|
| + ASSERT_NE(GeneratePermutedEntropy(1234, kMaxEntropySize, "something"),
|
| + GeneratePermutedEntropy(1234, kMaxEntropySize, "else"));
|
| +}
|
| +
|
| +TEST_F(EntropyProviderTest, SHA1EntropyIsUniform) {
|
| + // Choose a random start number but go sequentially from there, so
|
| + // that each test tries a different range but we never provide uniformly
|
| + // distributed input data.
|
| + int current_number = base::RandInt(0, std::numeric_limits<int>::max());
|
| +
|
| + // The expected value of a random distribution is the average over all
|
| + // samples as the number of samples approaches infinity. For a uniform
|
| + // distribution from [0.0, 1.0) this would be 0.5.
|
| + //
|
| + // We do kSamplesBetweenChecks at a time and check if the value has converged
|
| + // to a narrow interval around 0.5. A non-uniform distribution would likely
|
| + // converge at something different, or not converge consistently within this
|
| + // range (i.e. the test would start timing out occasionally).
|
| + int kSamplesBetweenChecks = 300;
|
| + int num_samples = 0;
|
| + double total_value = 0.0;
|
| + while (true) {
|
| + for (int i = 0; i < kSamplesBetweenChecks; ++i) {
|
| + total_value += GenerateSHA1Entropy(
|
| + base::IntToString(current_number++), "salt");
|
| + num_samples++;
|
| + }
|
| +
|
| + double average = total_value / num_samples;
|
| + double kExpectedMin = 0.48;
|
| + double kExpectedMax = 0.52;
|
| +
|
| + if (num_samples > 1000 &&
|
| + (average < kExpectedMin || average > kExpectedMax)) {
|
| + // Only printed once we have enough samples that it's very unlikely
|
| + // things haven't converged.
|
| + printf("After %d samples, the average was %f, outside the expected\n"
|
| + "range (%f, %f). We will add more samples and check after every\n"
|
| + "%d samples. If the average does not converge, something\n"
|
| + "is broken. If it does converge, the test will pass.\n",
|
| + num_samples, average,
|
| + kExpectedMin, kExpectedMax, kSamplesBetweenChecks);
|
| + } else {
|
| + // Success.
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +TEST_F(EntropyProviderTest, PermutedEntropyIsUniform) {
|
| + // Choose a random start number but go sequentially from there, so
|
| + // that each test tries a different range but we never provide uniformly
|
| + // distributed input data.
|
| + const size_t kMaxEntropySize = (1 << 13);
|
| + int current_number = base::RandInt(0, kMaxEntropySize - 1);
|
| +
|
| + // The expected value of a random distribution is the average over all
|
| + // samples as the number of samples approaches infinity. For a uniform
|
| + // distribution from [0.0, 1.0) this would be 0.5.
|
| + //
|
| + // We do kSamplesBetweenChecks at a time and check if the value has converged
|
| + // to a narrow interval around 0.5. A non-uniform distribution would likely
|
| + // converge at something different, or not converge consistently within this
|
| + // range (i.e. the test would start timing out occasionally).
|
| + int kSamplesBetweenChecks = 300;
|
| + int num_samples = 0;
|
| + double total_value = 0.0;
|
| + while (true) {
|
| + for (int i = 0; i < kSamplesBetweenChecks; ++i) {
|
| + total_value += GeneratePermutedEntropy(current_number++ % kMaxEntropySize,
|
| + kMaxEntropySize, "salt");
|
| + num_samples++;
|
| + }
|
| +
|
| + double average = total_value / num_samples;
|
| + double kExpectedMin = 0.48;
|
| + double kExpectedMax = 0.52;
|
| +
|
| + if (num_samples > 1000 &&
|
| + (average < kExpectedMin || average > kExpectedMax)) {
|
| + // Only printed once we have enough samples that it's very unlikely
|
| + // things haven't converged.
|
| + printf("After %d samples, the average was %f, outside the expected\n"
|
| + "range (%f, %f). We will add more samples and check after every\n"
|
| + "%d samples. If the average does not converge, something\n"
|
| + "is broken. If it does converge, the test will pass.\n",
|
| + num_samples, average,
|
| + kExpectedMin, kExpectedMax, kSamplesBetweenChecks);
|
| + } else {
|
| + // Success.
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +TEST(RandUtilTest, SeededRandGeneratorIsUniform) {
|
| + // Verifies. that SeededRandGenerator has a uniform distribution.
|
| + //
|
| + // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc.
|
| +
|
| + const uint64 kTopOfRange = (std::numeric_limits<uint64>::max() / 4ULL) * 3ULL;
|
| + const uint64 kExpectedAverage = kTopOfRange / 2ULL;
|
| + const uint64 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2%
|
| + const int kMinAttempts = 1000;
|
| + const int kMaxAttempts = 1000000;
|
| +
|
| + const std::string trial_names[] = {
|
| + "TestTrial",
|
| + "AnotherTestTrial",
|
| + "NewTabButton",
|
| + };
|
| +
|
| + for (size_t i = 0; i < arraysize(trial_names); ++i) {
|
| + const uint32 seed = internal::HashName(trial_names[i]);
|
| + internal::SeededRandGenerator rand_generator(seed);
|
| +
|
| + double cumulative_average = 0.0;
|
| + int count = 0;
|
| + while (count < kMaxAttempts) {
|
| + uint64 value = rand_generator(kTopOfRange);
|
| + cumulative_average = (count * cumulative_average + value) / (count + 1);
|
| +
|
| + // Don't quit too quickly for things to start converging, or we may have
|
| + // a false positive.
|
| + if (count > kMinAttempts &&
|
| + kExpectedAverage - kAllowedVariance < cumulative_average &&
|
| + cumulative_average < kExpectedAverage + kAllowedVariance) {
|
| + break;
|
| + }
|
| +
|
| + ++count;
|
| + }
|
| +
|
| + ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
|
| + kExpectedAverage << ", average ended at " << cumulative_average;
|
| + }
|
| +}
|
| +
|
|
|