Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(265)

Unified Diff: chrome/common/metrics/entropy_provider_unittest.cc

Issue 10830318: Use a different algorithm with the low entropy source for field trials. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 8 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: chrome/common/metrics/entropy_provider_unittest.cc
===================================================================
--- chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
+++ chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
@@ -0,0 +1,337 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <cmath>
+#include <limits>
+#include <numeric>
+
+#include "base/basictypes.h"
+#include "base/guid.h"
+#include "base/memory/scoped_ptr.h"
+#include "base/rand_util.h"
+#include "base/string_number_conversions.h"
+#include "chrome/common/metrics/entropy_provider.h"
+#include "testing/gtest/include/gtest/gtest.h"
+
+namespace metrics {
+
+namespace {
+
+// Size of the low entropy source to use for the permuted entropy provider
+// in tests.
+const size_t kMaxLowEntropySize = (1 << 13);
+
+// Field trial names used in unit tests.
+const std::string kTestTrialNames[] = { "TestTrial", "AnotherTestTrial",
+ "NewTabButton" };
+
+// Computes the Chi-Square statistic for |values| assuming they follow a uniform
+// distribution, where each entry has expected value |expected_value|.
+//
+// The Chi-Square statistic is defined as Sum((O-E)^2/E) where O is the observed
+// value and E is the expected value.
+double ComputeChiSquare(const std::vector<int>& values,
+ double expected_value) {
+ double sum = 0;
+ for (size_t i = 0; i < values.size(); ++i) {
+ const double delta = values[i] - expected_value;
+ sum += (delta * delta) / expected_value;
+ }
+ return sum;
+}
+
+// Computes SHA1-based entropy for the given |trial_name| based on
+// |entropy_source|
+double GenerateSHA1Entropy(const std::string& entropy_source,
+ const std::string& trial_name) {
+ SHA1EntropyProvider sha1_provider(entropy_source);
+ return sha1_provider.GetEntropyForTrial(trial_name);
+}
+
+// Generates permutation-based entropy for the given |trial_name| based on
+// |entropy_source| which must be in the range [0, entropy_max).
+double GeneratePermutedEntropy(uint16 entropy_source,
+ size_t entropy_max,
+ const std::string& trial_name) {
+ PermutedEntropyProvider permuted_provider(entropy_source, entropy_max);
+ return permuted_provider.GetEntropyForTrial(trial_name);
+}
+
+// Helper interface for testing used to generate entropy values for a given
+// field trial. Unlike EntropyProvider, which keeps the low/high entropy source
+// value constant and generates entropy for different trial names, instances
+// of TrialEntropyGenerator keep the trial name constant and generate low/high
+// entropy source values internally to produce each output entropy value.
+class TrialEntropyGenerator {
+ public:
+ virtual ~TrialEntropyGenerator() {}
+ virtual double GenerateEntropyValue() const = 0;
+};
+
+// An TrialEntropyGenerator that uses the SHA1EntropyProvider with the high
+// entropy source (random GUID with 128 bits of entropy + 13 additional bits of
+// entropy corresponding to a low entropy source).
+class SHA1EntropyGenerator : public TrialEntropyGenerator {
+ public:
+ explicit SHA1EntropyGenerator(const std::string& trial_name)
+ : trial_name_(trial_name) {
+ }
+
+ ~SHA1EntropyGenerator() {
+ }
+
+ virtual double GenerateEntropyValue() const OVERRIDE {
+ // Use a random GUID + 13 additional bits of entropy to match how the
+ // SHA1EntropyProvider is used in metrics_service.cc.
+ const int low_entropy_source =
+ static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1));
+ const std::string high_entropy_source =
+ base::GenerateGUID() + base::IntToString(low_entropy_source);
+ return GenerateSHA1Entropy(high_entropy_source, trial_name_);
+ }
+
+ private:
+ const std::string& trial_name_;
+
+ DISALLOW_COPY_AND_ASSIGN(SHA1EntropyGenerator);
+};
+
+// An TrialEntropyGenerator that uses the permuted entropy provider algorithm,
+// using 13-bit low entropy source values.
+class PermutedEntropyGenerator : public TrialEntropyGenerator {
+ public:
+ explicit PermutedEntropyGenerator(const std::string& trial_name)
+ : mapping_(kMaxLowEntropySize) {
+ // Note: Given a trial name, the computed mapping will be the same.
+ // As a performance optimization, pre-compute the mapping once per trial
+ // name and index into it for each entropy value.
+ internal::PermuteMappingUsingTrialName(trial_name, &mapping_);
+ }
+
+ ~PermutedEntropyGenerator() {
+ }
+
+ virtual double GenerateEntropyValue() const OVERRIDE {
+ const int low_entropy_source =
+ static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1));
+ return mapping_[low_entropy_source] /
+ static_cast<double>(kMaxLowEntropySize);
+ }
+
+ private:
+ std::vector<uint16> mapping_;
+
+ DISALLOW_COPY_AND_ASSIGN(PermutedEntropyGenerator);
+};
+
+// Tests uniformity of a given |entropy_generator| using the Chi-Square Goodness
+// of Fit Test.
+void PerformEntropyUniformityTest(
+ const std::string& trial_name,
+ const TrialEntropyGenerator& entropy_generator) {
+ // Number of buckets in the simulated field trials.
+ const size_t kBucketCount = 20;
+ // Max number of iterations to perform before giving up and failing.
+ const size_t kMaxIterationCount = 100000;
+ // The number of iterations to perform before each time the statistical
+ // significance of the results is checked.
+ const size_t kCheckIterationCount = 10000;
+ // This is the Chi-Square threshold from the Chi-Square statistic table for
+ // 19 degrees of freedom (based on |kBucketCount|) with a 99.9% confidence
+ // level. See: http://www.medcalc.org/manual/chi-square-table.php
+ const double kChiSquareThreshold = 43.82;
+
+ std::vector<int> distribution(kBucketCount);
+
+ for (size_t i = 1; i <= kMaxIterationCount; ++i) {
+ const double entropy_value = entropy_generator.GenerateEntropyValue();
+ const size_t bucket = static_cast<size_t>(kBucketCount * entropy_value);
+ ASSERT_LT(bucket, kBucketCount);
+ distribution[bucket] += 1;
+
+ // After |kCheckIterationCount| iterations, compute the Chi-Square
+ // statistic of the distribution. If the resulting statistic is greater
+ // than |kChiSquareThreshold|, we can conclude with 99.9% confidence
+ // that the observed samples do not follow a uniform distribution.
+ //
+ // However, since 99.9% would still result in a false negative every
+ // 1000 runs of the test, do not treat it as a failure (else the test
+ // will be flaky). Instead, perform additional iterations to determine
+ // if the distribution will converge, up to |kMaxIterationCount|.
+ if ((i % kCheckIterationCount) == 0) {
+ const double expected_value_per_bucket =
+ static_cast<double>(i) / kBucketCount;
+ const double chi_square =
+ ComputeChiSquare(distribution, expected_value_per_bucket);
+ if (chi_square < kChiSquareThreshold)
+ break;
+
+ // If |i == kMaxIterationCount|, the Chi-Square statistic did not
+ // converge after |kMaxIterationCount|.
+ EXPECT_NE(i, kMaxIterationCount) << "Failed for trial " <<
+ trial_name << " with chi_square = " << chi_square <<
+ " after " << kMaxIterationCount << " iterations.";
+ }
+ }
+}
+
+} // namespace
+
+class EntropyProviderTest : public testing::Test {
+};
+
+TEST_F(EntropyProviderTest, UseOneTimeRandomizationSHA1) {
+ // Simply asserts that two trials using one-time randomization
+ // that have different names, normally generate different results.
+ //
+ // Note that depending on the one-time random initialization, they
+ // _might_ actually give the same result, but we know that given
+ // the particular client_id we use for unit tests they won't.
+ base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id"));
+ scoped_refptr<base::FieldTrial> trials[] = {
+ base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL) };
+
+ for (size_t i = 0; i < arraysize(trials); ++i) {
+ trials[i]->UseOneTimeRandomization();
+
+ for (int j = 0; j < 100; ++j)
+ trials[i]->AppendGroup("", 1);
+ }
+
+ // The trials are most likely to give different results since they have
+ // different names.
+ EXPECT_NE(trials[0]->group(), trials[1]->group());
+ EXPECT_NE(trials[0]->group_name(), trials[1]->group_name());
+}
+
+TEST_F(EntropyProviderTest, UseOneTimeRandomizationPermuted) {
+ // Simply asserts that two trials using one-time randomization
+ // that have different names, normally generate different results.
+ //
+ // Note that depending on the one-time random initialization, they
+ // _might_ actually give the same result, but we know that given
+ // the particular client_id we use for unit tests they won't.
+ base::FieldTrialList field_trial_list(
+ new PermutedEntropyProvider(1234, kMaxLowEntropySize));
+ scoped_refptr<base::FieldTrial> trials[] = {
+ base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL) };
+
+ for (size_t i = 0; i < arraysize(trials); ++i) {
+ trials[i]->UseOneTimeRandomization();
+
+ for (int j = 0; j < 100; ++j)
+ trials[i]->AppendGroup("", 1);
+ }
+
+ // The trials are most likely to give different results since they have
+ // different names.
+ EXPECT_NE(trials[0]->group(), trials[1]->group());
+ EXPECT_NE(trials[0]->group_name(), trials[1]->group_name());
+}
+
+TEST_F(EntropyProviderTest, SHA1Entropy) {
+ const double results[] = { GenerateSHA1Entropy("hi", "1"),
+ GenerateSHA1Entropy("there", "1") };
+
+ EXPECT_NE(results[0], results[1]);
+ for (size_t i = 0; i < arraysize(results); ++i) {
+ EXPECT_LE(0.0, results[i]);
+ EXPECT_GT(1.0, results[i]);
+ }
+
+ EXPECT_EQ(GenerateSHA1Entropy("yo", "1"),
+ GenerateSHA1Entropy("yo", "1"));
+ EXPECT_NE(GenerateSHA1Entropy("yo", "something"),
+ GenerateSHA1Entropy("yo", "else"));
+}
+
+TEST_F(EntropyProviderTest, PermutedEntropy) {
+ const double results[] = {
+ GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"),
+ GeneratePermutedEntropy(4321, kMaxLowEntropySize, "1") };
+
+ EXPECT_NE(results[0], results[1]);
+ for (size_t i = 0; i < arraysize(results); ++i) {
+ EXPECT_LE(0.0, results[i]);
+ EXPECT_GT(1.0, results[i]);
+ }
+
+ EXPECT_EQ(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"),
+ GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"));
+ EXPECT_NE(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "something"),
+ GeneratePermutedEntropy(1234, kMaxLowEntropySize, "else"));
+}
+
+TEST_F(EntropyProviderTest, PermutedEntropyProviderResults) {
+ // Verifies that PermutedEntropyProvider produces expected results. This
+ // ensures that the results are the same between platforms and ensures that
+ // changes to the implementation do not regress this accidentally.
+
+ EXPECT_DOUBLE_EQ(2194 / static_cast<double>(kMaxLowEntropySize),
+ GeneratePermutedEntropy(1234, kMaxLowEntropySize, "XYZ"));
+ EXPECT_DOUBLE_EQ(5676 / static_cast<double>(kMaxLowEntropySize),
+ GeneratePermutedEntropy(1, kMaxLowEntropySize, "Test"));
+ EXPECT_DOUBLE_EQ(1151 / static_cast<double>(kMaxLowEntropySize),
+ GeneratePermutedEntropy(5000, kMaxLowEntropySize, "Foo"));
+}
+
+TEST_F(EntropyProviderTest, SHA1EntropyIsUniform) {
+ for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) {
+ SHA1EntropyGenerator entropy_generator(kTestTrialNames[i]);
+ PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator);
+ }
+}
+
+TEST_F(EntropyProviderTest, PermutedEntropyIsUniform) {
+ for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) {
+ PermutedEntropyGenerator entropy_generator(kTestTrialNames[i]);
+ PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator);
+ }
+}
+
+TEST_F(EntropyProviderTest, SeededRandGeneratorIsUniform) {
+ // Verifies that SeededRandGenerator has a uniform distribution.
+ //
+ // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc.
+
+ const uint32 kTopOfRange = (std::numeric_limits<uint32>::max() / 4ULL) * 3ULL;
+ const uint32 kExpectedAverage = kTopOfRange / 2ULL;
+ const uint32 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2%
+ const int kMinAttempts = 1000;
+ const int kMaxAttempts = 1000000;
+
+ for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) {
+ const uint32 seed = internal::HashName(kTestTrialNames[i]);
+ internal::SeededRandGenerator rand_generator(seed);
+
+ double cumulative_average = 0.0;
+ int count = 0;
+ while (count < kMaxAttempts) {
+ uint32 value = rand_generator(kTopOfRange);
+ cumulative_average = (count * cumulative_average + value) / (count + 1);
+
+ // Don't quit too quickly for things to start converging, or we may have
+ // a false positive.
+ if (count > kMinAttempts &&
+ kExpectedAverage - kAllowedVariance < cumulative_average &&
+ cumulative_average < kExpectedAverage + kAllowedVariance) {
+ break;
+ }
+
+ ++count;
+ }
+
+ ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
+ kExpectedAverage << ", average ended at " << cumulative_average <<
+ ", for trial " << kTestTrialNames[i];
+ }
+}
+
+} // namespace metrics
« no previous file with comments | « chrome/common/metrics/entropy_provider.cc ('k') | chrome/common/metrics/variations/variations_util_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698