Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(661)

Side by Side Diff: celt/mathops.h

Issue 107243004: Updating Opus to release 1.1 (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/opus
Patch Set: Created 7 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « celt/float_cast.h ('k') | celt/mathops.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* Copyright (c) 2002-2008 Jean-Marc Valin 1 /* Copyright (c) 2002-2008 Jean-Marc Valin
2 Copyright (c) 2007-2008 CSIRO 2 Copyright (c) 2007-2008 CSIRO
3 Copyright (c) 2007-2009 Xiph.Org Foundation 3 Copyright (c) 2007-2009 Xiph.Org Foundation
4 Written by Jean-Marc Valin */ 4 Written by Jean-Marc Valin */
5 /** 5 /**
6 @file mathops.h 6 @file mathops.h
7 @brief Various math functions 7 @brief Various math functions
8 */ 8 */
9 /* 9 /*
10 Redistribution and use in source and binary forms, with or without 10 Redistribution and use in source and binary forms, with or without
(...skipping 26 matching lines...) Expand all
37 #include "arch.h" 37 #include "arch.h"
38 #include "entcode.h" 38 #include "entcode.h"
39 #include "os_support.h" 39 #include "os_support.h"
40 40
41 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is impor tant */ 41 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is impor tant */
42 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>> 15) 42 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>> 15)
43 43
44 unsigned isqrt32(opus_uint32 _val); 44 unsigned isqrt32(opus_uint32 _val);
45 45
46 #ifndef OVERRIDE_CELT_MAXABS16 46 #ifndef OVERRIDE_CELT_MAXABS16
47 static inline opus_val32 celt_maxabs16(const opus_val16 *x, int len) 47 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
48 { 48 {
49 int i; 49 int i;
50 opus_val16 maxval = 0; 50 opus_val16 maxval = 0;
51 opus_val16 minval = 0; 51 opus_val16 minval = 0;
52 for (i=0;i<len;i++) 52 for (i=0;i<len;i++)
53 { 53 {
54 maxval = MAX16(maxval, x[i]); 54 maxval = MAX16(maxval, x[i]);
55 minval = MIN16(minval, x[i]); 55 minval = MIN16(minval, x[i]);
56 } 56 }
57 return MAX32(EXTEND32(maxval),-EXTEND32(minval)); 57 return MAX32(EXTEND32(maxval),-EXTEND32(minval));
58 } 58 }
59 #endif 59 #endif
60 60
61 #ifndef OVERRIDE_CELT_MAXABS32 61 #ifndef OVERRIDE_CELT_MAXABS32
62 #ifdef FIXED_POINT 62 #ifdef FIXED_POINT
63 static inline opus_val32 celt_maxabs32(const opus_val32 *x, int len) 63 static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
64 { 64 {
65 int i; 65 int i;
66 opus_val32 maxval = 0; 66 opus_val32 maxval = 0;
67 opus_val32 minval = 0; 67 opus_val32 minval = 0;
68 for (i=0;i<len;i++) 68 for (i=0;i<len;i++)
69 { 69 {
70 maxval = MAX32(maxval, x[i]); 70 maxval = MAX32(maxval, x[i]);
71 minval = MIN32(minval, x[i]); 71 minval = MIN32(minval, x[i]);
72 } 72 }
73 return MAX32(maxval, -minval); 73 return MAX32(maxval, -minval);
(...skipping 14 matching lines...) Expand all
88 #define celt_rcp(x) (1.f/(x)) 88 #define celt_rcp(x) (1.f/(x))
89 #define celt_div(a,b) ((a)/(b)) 89 #define celt_div(a,b) ((a)/(b))
90 #define frac_div32(a,b) ((float)(a)/(b)) 90 #define frac_div32(a,b) ((float)(a)/(b))
91 91
92 #ifdef FLOAT_APPROX 92 #ifdef FLOAT_APPROX
93 93
94 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 an d an offset of 127 94 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 an d an offset of 127
95 denorm, +/- inf and NaN are *not* handled */ 95 denorm, +/- inf and NaN are *not* handled */
96 96
97 /** Base-2 log approximation (log2(x)). */ 97 /** Base-2 log approximation (log2(x)). */
98 static inline float celt_log2(float x) 98 static OPUS_INLINE float celt_log2(float x)
99 { 99 {
100 int integer; 100 int integer;
101 float frac; 101 float frac;
102 union { 102 union {
103 float f; 103 float f;
104 opus_uint32 i; 104 opus_uint32 i;
105 } in; 105 } in;
106 in.f = x; 106 in.f = x;
107 integer = (in.i>>23)-127; 107 integer = (in.i>>23)-127;
108 in.i -= integer<<23; 108 in.i -= integer<<23;
109 frac = in.f - 1.5f; 109 frac = in.f - 1.5f;
110 frac = -0.41445418f + frac*(0.95909232f 110 frac = -0.41445418f + frac*(0.95909232f
111 + frac*(-0.33951290f + frac*0.16541097f)); 111 + frac*(-0.33951290f + frac*0.16541097f));
112 return 1+integer+frac; 112 return 1+integer+frac;
113 } 113 }
114 114
115 /** Base-2 exponential approximation (2^x). */ 115 /** Base-2 exponential approximation (2^x). */
116 static inline float celt_exp2(float x) 116 static OPUS_INLINE float celt_exp2(float x)
117 { 117 {
118 int integer; 118 int integer;
119 float frac; 119 float frac;
120 union { 120 union {
121 float f; 121 float f;
122 opus_uint32 i; 122 opus_uint32 i;
123 } res; 123 } res;
124 integer = floor(x); 124 integer = floor(x);
125 if (integer < -50) 125 if (integer < -50)
126 return 0; 126 return 0;
(...skipping 11 matching lines...) Expand all
138 #endif 138 #endif
139 139
140 #endif 140 #endif
141 141
142 #ifdef FIXED_POINT 142 #ifdef FIXED_POINT
143 143
144 #include "os_support.h" 144 #include "os_support.h"
145 145
146 #ifndef OVERRIDE_CELT_ILOG2 146 #ifndef OVERRIDE_CELT_ILOG2
147 /** Integer log in base2. Undefined for zero and negative numbers */ 147 /** Integer log in base2. Undefined for zero and negative numbers */
148 static inline opus_int16 celt_ilog2(opus_int32 x) 148 static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
149 { 149 {
150 celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); 150 celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
151 return EC_ILOG(x)-1; 151 return EC_ILOG(x)-1;
152 } 152 }
153 #endif 153 #endif
154 154
155 155
156 /** Integer log in base2. Defined for zero, but not for negative numbers */ 156 /** Integer log in base2. Defined for zero, but not for negative numbers */
157 static inline opus_int16 celt_zlog2(opus_val32 x) 157 static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
158 { 158 {
159 return x <= 0 ? 0 : celt_ilog2(x); 159 return x <= 0 ? 0 : celt_ilog2(x);
160 } 160 }
161 161
162 opus_val16 celt_rsqrt_norm(opus_val32 x); 162 opus_val16 celt_rsqrt_norm(opus_val32 x);
163 163
164 opus_val32 celt_sqrt(opus_val32 x); 164 opus_val32 celt_sqrt(opus_val32 x);
165 165
166 opus_val16 celt_cos_norm(opus_val32 x); 166 opus_val16 celt_cos_norm(opus_val32 x);
167 167
168 /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ 168 /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
169 static inline opus_val16 celt_log2(opus_val32 x) 169 static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
170 { 170 {
171 int i; 171 int i;
172 opus_val16 n, frac; 172 opus_val16 n, frac;
173 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, 173 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
174 0.15530808010959576, -0.08556153059057618 */ 174 0.15530808010959576, -0.08556153059057618 */
175 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; 175 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
176 if (x==0) 176 if (x==0)
177 return -32767; 177 return -32767;
178 i = celt_ilog2(x); 178 i = celt_ilog2(x);
179 n = VSHR32(x,i-15)-32768-16384; 179 n = VSHR32(x,i-15)-32768-16384;
180 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); 180 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
181 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); 181 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
182 } 182 }
183 183
184 /* 184 /*
185 K0 = 1 185 K0 = 1
186 K1 = log(2) 186 K1 = log(2)
187 K2 = 3-4*log(2) 187 K2 = 3-4*log(2)
188 K3 = 3*log(2) - 2 188 K3 = 3*log(2) - 2
189 */ 189 */
190 #define D0 16383 190 #define D0 16383
191 #define D1 22804 191 #define D1 22804
192 #define D2 14819 192 #define D2 14819
193 #define D3 10204 193 #define D3 10204
194 194
195 static inline opus_val32 celt_exp2_frac(opus_val16 x) 195 static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
196 { 196 {
197 opus_val16 frac; 197 opus_val16 frac;
198 frac = SHL16(x, 4); 198 frac = SHL16(x, 4);
199 return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); 199 return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
200 } 200 }
201 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ 201 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
202 static inline opus_val32 celt_exp2(opus_val16 x) 202 static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
203 { 203 {
204 int integer; 204 int integer;
205 opus_val16 frac; 205 opus_val16 frac;
206 integer = SHR16(x,10); 206 integer = SHR16(x,10);
207 if (integer>14) 207 if (integer>14)
208 return 0x7f000000; 208 return 0x7f000000;
209 else if (integer < -15) 209 else if (integer < -15)
210 return 0; 210 return 0;
211 frac = celt_exp2_frac(x-SHL16(integer,10)); 211 frac = celt_exp2_frac(x-SHL16(integer,10));
212 return VSHR32(EXTEND32(frac), -integer-2); 212 return VSHR32(EXTEND32(frac), -integer-2);
213 } 213 }
214 214
215 opus_val32 celt_rcp(opus_val32 x); 215 opus_val32 celt_rcp(opus_val32 x);
216 216
217 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) 217 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
218 218
219 opus_val32 frac_div32(opus_val32 a, opus_val32 b); 219 opus_val32 frac_div32(opus_val32 a, opus_val32 b);
220 220
221 #define M1 32767 221 #define M1 32767
222 #define M2 -21 222 #define M2 -21
223 #define M3 -11943 223 #define M3 -11943
224 #define M4 4936 224 #define M4 4936
225 225
226 /* Atan approximation using a 4th order polynomial. Input is in Q15 format 226 /* Atan approximation using a 4th order polynomial. Input is in Q15 format
227 and normalized by pi/4. Output is in Q15 format */ 227 and normalized by pi/4. Output is in Q15 format */
228 static inline opus_val16 celt_atan01(opus_val16 x) 228 static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
229 { 229 {
230 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); 230 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
231 } 231 }
232 232
233 #undef M1 233 #undef M1
234 #undef M2 234 #undef M2
235 #undef M3 235 #undef M3
236 #undef M4 236 #undef M4
237 237
238 /* atan2() approximation valid for positive input values */ 238 /* atan2() approximation valid for positive input values */
239 static inline opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) 239 static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
240 { 240 {
241 if (y < x) 241 if (y < x)
242 { 242 {
243 opus_val32 arg; 243 opus_val32 arg;
244 arg = celt_div(SHL32(EXTEND32(y),15),x); 244 arg = celt_div(SHL32(EXTEND32(y),15),x);
245 if (arg >= 32767) 245 if (arg >= 32767)
246 arg = 32767; 246 arg = 32767;
247 return SHR16(celt_atan01(EXTRACT16(arg)),1); 247 return SHR16(celt_atan01(EXTRACT16(arg)),1);
248 } else { 248 } else {
249 opus_val32 arg; 249 opus_val32 arg;
250 arg = celt_div(SHL32(EXTEND32(x),15),y); 250 arg = celt_div(SHL32(EXTEND32(x),15),y);
251 if (arg >= 32767) 251 if (arg >= 32767)
252 arg = 32767; 252 arg = 32767;
253 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); 253 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
254 } 254 }
255 } 255 }
256 256
257 #endif /* FIXED_POINT */ 257 #endif /* FIXED_POINT */
258 #endif /* MATHOPS_H */ 258 #endif /* MATHOPS_H */
OLDNEW
« no previous file with comments | « celt/float_cast.h ('k') | celt/mathops.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698