| OLD | NEW |
| (Empty) |
| 1 /* This is JavaScriptCore's variant of the PCRE library. While this library | |
| 2 started out as a copy of PCRE, many of the features of PCRE have been | |
| 3 removed. This library now supports only the regular expression features | |
| 4 required by the JavaScript language specification, and has only the functions | |
| 5 needed by JavaScriptCore and the rest of WebKit. | |
| 6 | |
| 7 Originally written by Philip Hazel | |
| 8 Copyright (c) 1997-2006 University of Cambridge | |
| 9 Copyright (C) 2002, 2004, 2006, 2007 Apple Inc. All rights reserved. | |
| 10 Copyright (C) 2007 Eric Seidel <eric@webkit.org> | |
| 11 | |
| 12 ----------------------------------------------------------------------------- | |
| 13 Redistribution and use in source and binary forms, with or without | |
| 14 modification, are permitted provided that the following conditions are met: | |
| 15 | |
| 16 * Redistributions of source code must retain the above copyright notice, | |
| 17 this list of conditions and the following disclaimer. | |
| 18 | |
| 19 * Redistributions in binary form must reproduce the above copyright | |
| 20 notice, this list of conditions and the following disclaimer in the | |
| 21 documentation and/or other materials provided with the distribution. | |
| 22 | |
| 23 * Neither the name of the University of Cambridge nor the names of its | |
| 24 contributors may be used to endorse or promote products derived from | |
| 25 this software without specific prior written permission. | |
| 26 | |
| 27 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
| 28 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
| 29 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
| 30 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
| 31 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
| 32 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
| 33 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
| 34 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
| 35 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
| 36 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
| 37 POSSIBILITY OF SUCH DAMAGE. | |
| 38 ----------------------------------------------------------------------------- | |
| 39 */ | |
| 40 | |
| 41 /* This module contains the external function jsRegExpExecute(), along with | |
| 42 supporting internal functions that are not used by other modules. */ | |
| 43 | |
| 44 #include "config.h" | |
| 45 | |
| 46 #include "pcre_internal.h" | |
| 47 | |
| 48 #include <string.h> | |
| 49 #include "ASCIICType.h" | |
| 50 | |
| 51 /* Negative values for the firstchar and reqchar variables */ | |
| 52 | |
| 53 #define REQ_UNSET (-2) | |
| 54 #define REQ_NONE (-1) | |
| 55 | |
| 56 /************************************************* | |
| 57 * Code parameters and static tables * | |
| 58 *************************************************/ | |
| 59 | |
| 60 /* Maximum number of items on the nested bracket stacks at compile time. This | |
| 61 applies to the nesting of all kinds of parentheses. It does not limit | |
| 62 un-nested, non-capturing parentheses. This number can be made bigger if | |
| 63 necessary - it is used to dimension one int and one unsigned char vector at | |
| 64 compile time. */ | |
| 65 | |
| 66 #define BRASTACK_SIZE 200 | |
| 67 | |
| 68 namespace dart { namespace jscre { | |
| 69 | |
| 70 /* Table for handling escaped characters in the range '0'-'z'. Positive returns | |
| 71 are simple data values; negative values are for special things like \d and so | |
| 72 on. Zero means further processing is needed (for things like \x), or the escape | |
| 73 is invalid. */ | |
| 74 | |
| 75 static const short escapes[] = { | |
| 76 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */ | |
| 77 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */ | |
| 78 '@', 0, -ESC_B, 0, -ESC_D, 0, 0, 0, /* @ - G */ | |
| 79 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */ | |
| 80 0, 0, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */ | |
| 81 0, 0, 0, '[', '\\', ']', '^', '_', /* X - _ */ | |
| 82 '`', 7, -ESC_b, 0, -ESC_d, 0, '\f', 0, /* ` - g */ | |
| 83 0, 0, 0, 0, 0, 0, '\n', 0, /* h - o */ | |
| 84 0, 0, '\r', -ESC_s, '\t', 0, '\v', -ESC_w, /* p - w */ | |
| 85 0, 0, 0 /* x - z */ | |
| 86 }; | |
| 87 | |
| 88 /* Error code numbers. They are given names so that they can more easily be | |
| 89 tracked. */ | |
| 90 | |
| 91 enum ErrorCode { | |
| 92 ERR0, ERR1, ERR2, ERR3, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9, | |
| 93 ERR10, ERR11, ERR12, ERR13, ERR14, ERR15, ERR16, ERR17 | |
| 94 }; | |
| 95 | |
| 96 /* The texts of compile-time error messages. These are "char *" because they | |
| 97 are passed to the outside world. */ | |
| 98 | |
| 99 static const char* errorText(ErrorCode code) | |
| 100 { | |
| 101 static const char errorTexts[] = | |
| 102 /* 1 */ | |
| 103 "\\ at end of pattern\0" | |
| 104 "\\c at end of pattern\0" | |
| 105 "character value in \\x{...} sequence is too large\0" | |
| 106 "numbers out of order in {} quantifier\0" | |
| 107 /* 5 */ | |
| 108 "number too big in {} quantifier\0" | |
| 109 "missing terminating ] for character class\0" | |
| 110 "internal error: code overflow\0" | |
| 111 "range out of order in character class\0" | |
| 112 "nothing to repeat\0" | |
| 113 /* 10 */ | |
| 114 "unmatched parentheses\0" | |
| 115 "internal error: unexpected repeat\0" | |
| 116 "unrecognized character after (?\0" | |
| 117 "failed to get memory\0" | |
| 118 "missing )\0" | |
| 119 /* 15 */ | |
| 120 "reference to non-existent subpattern\0" | |
| 121 "regular expression too large\0" | |
| 122 "parentheses nested too deeply" | |
| 123 ; | |
| 124 | |
| 125 int i = code; | |
| 126 const char* text = errorTexts; | |
| 127 while (i > 1) | |
| 128 i -= !*text++; | |
| 129 return text; | |
| 130 } | |
| 131 | |
| 132 /* Structure for passing "static" information around between the functions | |
| 133 doing the compiling. */ | |
| 134 | |
| 135 struct CompileData { | |
| 136 CompileData() { | |
| 137 top_backref = 0; | |
| 138 backrefMap = 0; | |
| 139 req_varyopt = 0; | |
| 140 needOuterBracket = false; | |
| 141 numCapturingBrackets = 0; | |
| 142 } | |
| 143 int top_backref; /* Maximum back reference */ | |
| 144 unsigned backrefMap; /* Bitmap of low back refs */ | |
| 145 int req_varyopt; /* "After variable item" flag for reqbyte */ | |
| 146 bool needOuterBracket; | |
| 147 int numCapturingBrackets; | |
| 148 }; | |
| 149 | |
| 150 /* Definitions to allow mutual recursion */ | |
| 151 | |
| 152 static bool compileBracket(int, int*, unsigned char**, const UChar**, const UCha
r*, ErrorCode*, int, int*, int*, CompileData&); | |
| 153 static bool bracketIsAnchored(const unsigned char* code); | |
| 154 static bool bracketNeedsLineStart(const unsigned char* code, unsigned captureMap
, unsigned backrefMap); | |
| 155 static int bracketFindFirstAssertedCharacter(const unsigned char* code, bool ina
ssert); | |
| 156 | |
| 157 /************************************************* | |
| 158 * Handle escapes * | |
| 159 *************************************************/ | |
| 160 | |
| 161 /* This function is called when a \ has been encountered. It either returns a | |
| 162 positive value for a simple escape such as \n, or a negative value which | |
| 163 encodes one of the more complicated things such as \d. When UTF-8 is enabled, | |
| 164 a positive value greater than 255 may be returned. On entry, ptr is pointing at | |
| 165 the \. On exit, it is on the final character of the escape sequence. | |
| 166 | |
| 167 Arguments: | |
| 168 ptrptr points to the pattern position pointer | |
| 169 errorcodeptr points to the errorcode variable | |
| 170 bracount number of previous extracting brackets | |
| 171 options the options bits | |
| 172 isclass true if inside a character class | |
| 173 | |
| 174 Returns: zero or positive => a data character | |
| 175 negative => a special escape sequence | |
| 176 on error, errorptr is set | |
| 177 */ | |
| 178 | |
| 179 static int checkEscape(const UChar** ptrptr, const UChar* patternEnd, ErrorCode*
errorcodeptr, int bracount, bool isclass) | |
| 180 { | |
| 181 const UChar* ptr = *ptrptr + 1; | |
| 182 | |
| 183 /* If backslash is at the end of the pattern, it's an error. */ | |
| 184 if (ptr == patternEnd) { | |
| 185 *errorcodeptr = ERR1; | |
| 186 *ptrptr = ptr; | |
| 187 return 0; | |
| 188 } | |
| 189 | |
| 190 int c = *ptr; | |
| 191 | |
| 192 /* Non-alphamerics are literals. For digits or letters, do an initial lookup
in | |
| 193 a table. A non-zero result is something that can be returned immediately. | |
| 194 Otherwise further processing may be required. */ | |
| 195 | |
| 196 if (c < '0' || c > 'z') { /* Not alphameric */ | |
| 197 } else if (int escapeValue = escapes[c - '0']) { | |
| 198 c = escapeValue; | |
| 199 if (isclass) { | |
| 200 if (-c == ESC_b) | |
| 201 c = '\b'; /* \b is backslash in a class */ | |
| 202 else if (-c == ESC_B) | |
| 203 c = 'B'; /* and \B is a capital B in a class (in browsers event
though ECMAScript 15.10.2.19 says it raises an error) */ | |
| 204 } | |
| 205 /* Escapes that need further processing, or are illegal. */ | |
| 206 | |
| 207 } else { | |
| 208 switch (c) { | |
| 209 case '1': | |
| 210 case '2': | |
| 211 case '3': | |
| 212 case '4': | |
| 213 case '5': | |
| 214 case '6': | |
| 215 case '7': | |
| 216 case '8': | |
| 217 case '9': | |
| 218 /* Escape sequences starting with a non-zero digit are backrefer
ences, | |
| 219 unless there are insufficient brackets, in which case they are
octal | |
| 220 escape sequences. Those sequences end on the first non-octal ch
aracter | |
| 221 or when we overflow 0-255, whichever comes first. */ | |
| 222 | |
| 223 if (!isclass) { | |
| 224 const UChar* oldptr = ptr; | |
| 225 c -= '0'; | |
| 226 while ((ptr + 1 < patternEnd) && isASCIIDigit(ptr[1]) && c <
= bracount) | |
| 227 c = c * 10 + *(++ptr) - '0'; | |
| 228 if (c <= bracount) { | |
| 229 c = -(ESC_REF + c); | |
| 230 break; | |
| 231 } | |
| 232 ptr = oldptr; /* Put the pointer back and fall through
*/ | |
| 233 } | |
| 234 | |
| 235 /* Handle an octal number following \. If the first digit is 8 o
r 9, | |
| 236 this is not octal. */ | |
| 237 | |
| 238 if ((c = *ptr) >= '8') | |
| 239 break; | |
| 240 | |
| 241 /* \0 always starts an octal number, but we may drop through to here
with a | |
| 242 larger first octal digit. */ | |
| 243 | |
| 244 case '0': { | |
| 245 c -= '0'; | |
| 246 int i; | |
| 247 for (i = 1; i <= 2; ++i) { | |
| 248 if (ptr + i >= patternEnd || ptr[i] < '0' || ptr[i] > '7') | |
| 249 break; | |
| 250 int cc = c * 8 + ptr[i] - '0'; | |
| 251 if (cc > 255) | |
| 252 break; | |
| 253 c = cc; | |
| 254 } | |
| 255 ptr += i - 1; | |
| 256 break; | |
| 257 } | |
| 258 | |
| 259 case 'x': { | |
| 260 c = 0; | |
| 261 int i; | |
| 262 for (i = 1; i <= 2; ++i) { | |
| 263 if (ptr + i >= patternEnd || !isASCIIHexDigit(ptr[i])) { | |
| 264 c = 'x'; | |
| 265 i = 1; | |
| 266 break; | |
| 267 } | |
| 268 int cc = ptr[i]; | |
| 269 if (cc >= 'a') | |
| 270 cc -= 32; /* Convert to upper case */ | |
| 271 c = c * 16 + cc - ((cc < 'A') ? '0' : ('A' - 10)); | |
| 272 } | |
| 273 ptr += i - 1; | |
| 274 break; | |
| 275 } | |
| 276 | |
| 277 case 'u': { | |
| 278 c = 0; | |
| 279 int i; | |
| 280 for (i = 1; i <= 4; ++i) { | |
| 281 if (ptr + i >= patternEnd || !isASCIIHexDigit(ptr[i])) { | |
| 282 c = 'u'; | |
| 283 i = 1; | |
| 284 break; | |
| 285 } | |
| 286 int cc = ptr[i]; | |
| 287 if (cc >= 'a') | |
| 288 cc -= 32; /* Convert to upper case */ | |
| 289 c = c * 16 + cc - ((cc < 'A') ? '0' : ('A' - 10)); | |
| 290 } | |
| 291 ptr += i - 1; | |
| 292 break; | |
| 293 } | |
| 294 | |
| 295 case 'c': | |
| 296 if (++ptr == patternEnd) { | |
| 297 *errorcodeptr = ERR2; | |
| 298 return 0; | |
| 299 } | |
| 300 c = *ptr; | |
| 301 | |
| 302 /* A letter is upper-cased; then the 0x40 bit is flipped. This c
oding | |
| 303 is ASCII-specific, but then the whole concept of \cx is ASCII-s
pecific. */ | |
| 304 c = toASCIIUpper(c) ^ 0x40; | |
| 305 break; | |
| 306 } | |
| 307 } | |
| 308 | |
| 309 *ptrptr = ptr; | |
| 310 return c; | |
| 311 } | |
| 312 | |
| 313 /************************************************* | |
| 314 * Check for counted repeat * | |
| 315 *************************************************/ | |
| 316 | |
| 317 /* This function is called when a '{' is encountered in a place where it might | |
| 318 start a quantifier. It looks ahead to see if it really is a quantifier or not. | |
| 319 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} | |
| 320 where the ddds are digits. | |
| 321 | |
| 322 Arguments: | |
| 323 p pointer to the first char after '{' | |
| 324 | |
| 325 Returns: true or false | |
| 326 */ | |
| 327 | |
| 328 static bool isCountedRepeat(const UChar* p, const UChar* patternEnd) | |
| 329 { | |
| 330 if (p >= patternEnd || !isASCIIDigit(*p)) | |
| 331 return false; | |
| 332 p++; | |
| 333 while (p < patternEnd && isASCIIDigit(*p)) | |
| 334 p++; | |
| 335 if (p < patternEnd && *p == '}') | |
| 336 return true; | |
| 337 | |
| 338 if (p >= patternEnd || *p++ != ',') | |
| 339 return false; | |
| 340 if (p < patternEnd && *p == '}') | |
| 341 return true; | |
| 342 | |
| 343 if (p >= patternEnd || !isASCIIDigit(*p)) | |
| 344 return false; | |
| 345 p++; | |
| 346 while (p < patternEnd && isASCIIDigit(*p)) | |
| 347 p++; | |
| 348 | |
| 349 return (p < patternEnd && *p == '}'); | |
| 350 } | |
| 351 | |
| 352 /************************************************* | |
| 353 * Read repeat counts * | |
| 354 *************************************************/ | |
| 355 | |
| 356 /* Read an item of the form {n,m} and return the values. This is called only | |
| 357 after isCountedRepeat() has confirmed that a repeat-count quantifier exists, | |
| 358 so the syntax is guaranteed to be correct, but we need to check the values. | |
| 359 | |
| 360 Arguments: | |
| 361 p pointer to first char after '{' | |
| 362 minp pointer to int for min | |
| 363 maxp pointer to int for max | |
| 364 returned as -1 if no max | |
| 365 errorcodeptr points to error code variable | |
| 366 | |
| 367 Returns: pointer to '}' on success; | |
| 368 current ptr on error, with errorcodeptr set non-zero | |
| 369 */ | |
| 370 | |
| 371 static const UChar* readRepeatCounts(const UChar* p, int* minp, int* maxp, Error
Code* errorcodeptr) | |
| 372 { | |
| 373 int min = 0; | |
| 374 int max = -1; | |
| 375 | |
| 376 /* Read the minimum value and do a paranoid check: a negative value indicate
s | |
| 377 an integer overflow. */ | |
| 378 | |
| 379 while (isASCIIDigit(*p)) | |
| 380 min = min * 10 + *p++ - '0'; | |
| 381 if (min < 0 || min > 65535) { | |
| 382 *errorcodeptr = ERR5; | |
| 383 return p; | |
| 384 } | |
| 385 | |
| 386 /* Read the maximum value if there is one, and again do a paranoid on its si
ze. | |
| 387 Also, max must not be less than min. */ | |
| 388 | |
| 389 if (*p == '}') | |
| 390 max = min; | |
| 391 else { | |
| 392 if (*(++p) != '}') { | |
| 393 max = 0; | |
| 394 while (isASCIIDigit(*p)) | |
| 395 max = max * 10 + *p++ - '0'; | |
| 396 if (max < 0 || max > 65535) { | |
| 397 *errorcodeptr = ERR5; | |
| 398 return p; | |
| 399 } | |
| 400 if (max < min) { | |
| 401 *errorcodeptr = ERR4; | |
| 402 return p; | |
| 403 } | |
| 404 } | |
| 405 } | |
| 406 | |
| 407 /* Fill in the required variables, and pass back the pointer to the terminat
ing | |
| 408 '}'. */ | |
| 409 | |
| 410 *minp = min; | |
| 411 *maxp = max; | |
| 412 return p; | |
| 413 } | |
| 414 | |
| 415 /************************************************* | |
| 416 * Find first significant op code * | |
| 417 *************************************************/ | |
| 418 | |
| 419 /* This is called by several functions that scan a compiled expression looking | |
| 420 for a fixed first character, or an anchoring op code etc. It skips over things | |
| 421 that do not influence this. | |
| 422 | |
| 423 Arguments: | |
| 424 code pointer to the start of the group | |
| 425 Returns: pointer to the first significant opcode | |
| 426 */ | |
| 427 | |
| 428 static const unsigned char* firstSignificantOpcode(const unsigned char* code) | |
| 429 { | |
| 430 while (*code == OP_BRANUMBER) | |
| 431 code += 3; | |
| 432 return code; | |
| 433 } | |
| 434 | |
| 435 static const unsigned char* firstSignificantOpcodeSkippingAssertions(const unsig
ned char* code) | |
| 436 { | |
| 437 while (true) { | |
| 438 switch (*code) { | |
| 439 case OP_ASSERT_NOT: | |
| 440 advanceToEndOfBracket(code); | |
| 441 code += 1 + LINK_SIZE; | |
| 442 break; | |
| 443 case OP_WORD_BOUNDARY: | |
| 444 case OP_NOT_WORD_BOUNDARY: | |
| 445 ++code; | |
| 446 break; | |
| 447 case OP_BRANUMBER: | |
| 448 code += 3; | |
| 449 break; | |
| 450 default: | |
| 451 return code; | |
| 452 } | |
| 453 } | |
| 454 } | |
| 455 | |
| 456 /************************************************* | |
| 457 * Get othercase range * | |
| 458 *************************************************/ | |
| 459 | |
| 460 /* This function is passed the start and end of a class range, in UTF-8 mode | |
| 461 with UCP support. It searches up the characters, looking for internal ranges of | |
| 462 characters in the "other" case. Each call returns the next one, updating the | |
| 463 start address. | |
| 464 | |
| 465 Arguments: | |
| 466 cptr points to starting character value; updated | |
| 467 d end value | |
| 468 ocptr where to put start of othercase range | |
| 469 odptr where to put end of othercase range | |
| 470 | |
| 471 Yield: true when range returned; false when no more | |
| 472 */ | |
| 473 | |
| 474 static bool getOthercaseRange(int* cptr, int d, int* ocptr, int* odptr) | |
| 475 { | |
| 476 int c, othercase = 0; | |
| 477 | |
| 478 for (c = *cptr; c <= d; c++) { | |
| 479 if ((othercase = kjs_pcre_ucp_othercase(c)) >= 0) | |
| 480 break; | |
| 481 } | |
| 482 | |
| 483 if (c > d) | |
| 484 return false; | |
| 485 | |
| 486 *ocptr = othercase; | |
| 487 int next = othercase + 1; | |
| 488 | |
| 489 for (++c; c <= d; c++) { | |
| 490 if (kjs_pcre_ucp_othercase(c) != next) | |
| 491 break; | |
| 492 next++; | |
| 493 } | |
| 494 | |
| 495 *odptr = next - 1; | |
| 496 *cptr = c; | |
| 497 | |
| 498 return true; | |
| 499 } | |
| 500 | |
| 501 /************************************************* | |
| 502 * Convert character value to UTF-8 * | |
| 503 *************************************************/ | |
| 504 | |
| 505 /* This function takes an integer value in the range 0 - 0x7fffffff | |
| 506 and encodes it as a UTF-8 character in 0 to 6 bytes. | |
| 507 | |
| 508 Arguments: | |
| 509 cvalue the character value | |
| 510 buffer pointer to buffer for result - at least 6 bytes long | |
| 511 | |
| 512 Returns: number of characters placed in the buffer | |
| 513 */ | |
| 514 | |
| 515 static int encodeUTF8(int cvalue, unsigned char *buffer) | |
| 516 { | |
| 517 int i; | |
| 518 for (i = 0; i < kjs_pcre_utf8_table1_size; i++) | |
| 519 if (cvalue <= kjs_pcre_utf8_table1[i]) | |
| 520 break; | |
| 521 buffer += i; | |
| 522 for (int j = i; j > 0; j--) { | |
| 523 *buffer-- = 0x80 | (cvalue & 0x3f); | |
| 524 cvalue >>= 6; | |
| 525 } | |
| 526 *buffer = kjs_pcre_utf8_table2[i] | cvalue; | |
| 527 return i + 1; | |
| 528 } | |
| 529 | |
| 530 /************************************************* | |
| 531 * Compile one branch * | |
| 532 *************************************************/ | |
| 533 | |
| 534 /* Scan the pattern, compiling it into the code vector. | |
| 535 | |
| 536 Arguments: | |
| 537 options the option bits | |
| 538 brackets points to number of extracting brackets used | |
| 539 codeptr points to the pointer to the current code point | |
| 540 ptrptr points to the current pattern pointer | |
| 541 errorcodeptr points to error code variable | |
| 542 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) | |
| 543 reqbyteptr set to the last literal character required, else < 0 | |
| 544 cd contains pointers to tables etc. | |
| 545 | |
| 546 Returns: true on success | |
| 547 false, with *errorcodeptr set non-zero on error | |
| 548 */ | |
| 549 | |
| 550 static inline bool safelyCheckNextChar(const UChar* ptr, const UChar* patternEnd
, UChar expected) | |
| 551 { | |
| 552 return ((ptr + 1 < patternEnd) && ptr[1] == expected); | |
| 553 } | |
| 554 | |
| 555 static bool | |
| 556 compileBranch(int options, int* brackets, unsigned char** codeptr, | |
| 557 const UChar** ptrptr, const UChar* patternEnd, ErrorCode* errorco
deptr, int *firstbyteptr, | |
| 558 int* reqbyteptr, CompileData& cd) | |
| 559 { | |
| 560 int repeat_type, op_type; | |
| 561 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ | |
| 562 int bravalue = 0; | |
| 563 int reqvary, tempreqvary; | |
| 564 int c; | |
| 565 unsigned char* code = *codeptr; | |
| 566 unsigned char* tempcode; | |
| 567 bool groupsetfirstbyte = false; | |
| 568 const UChar* ptr = *ptrptr; | |
| 569 unsigned char* previous = NULL; | |
| 570 unsigned char classbits[32]; | |
| 571 | |
| 572 bool class_utf8; | |
| 573 unsigned char* class_utf8data; | |
| 574 unsigned char utf8_char[6]; | |
| 575 | |
| 576 /* Initialize no first byte, no required byte. REQ_UNSET means "no char | |
| 577 matching encountered yet". It gets changed to REQ_NONE if we hit something
that | |
| 578 matches a non-fixed char first char; reqbyte just remains unset if we never | |
| 579 find one. | |
| 580 | |
| 581 When we hit a repeat whose minimum is zero, we may have to adjust these val
ues | |
| 582 to take the zero repeat into account. This is implemented by setting them t
o | |
| 583 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The indivi
dual | |
| 584 item types that can be repeated set these backoff variables appropriately.
*/ | |
| 585 | |
| 586 int firstbyte = REQ_UNSET; | |
| 587 int reqbyte = REQ_UNSET; | |
| 588 int zeroreqbyte = REQ_UNSET; | |
| 589 int zerofirstbyte = REQ_UNSET; | |
| 590 | |
| 591 /* The variable req_caseopt contains either the REQ_IGNORE_CASE value or zer
o, | |
| 592 according to the current setting of the ignores-case flag. REQ_IGNORE_CASE
is a bit | |
| 593 value > 255. It is added into the firstbyte or reqbyte variables to record
the | |
| 594 case status of the value. This is used only for ASCII characters. */ | |
| 595 | |
| 596 int req_caseopt = (options & IgnoreCaseOption) ? REQ_IGNORE_CASE : 0; | |
| 597 | |
| 598 /* Switch on next character until the end of the branch */ | |
| 599 | |
| 600 for (;; ptr++) { | |
| 601 bool negate_class; | |
| 602 bool should_flip_negation; /* If a negative special such as \S is used,
we should negate the whole class to properly support Unicode. */ | |
| 603 int class_charcount; | |
| 604 int class_lastchar; | |
| 605 int skipbytes; | |
| 606 int subreqbyte; | |
| 607 int subfirstbyte; | |
| 608 int mclength; | |
| 609 unsigned char mcbuffer[8]; | |
| 610 | |
| 611 /* Next byte in the pattern */ | |
| 612 | |
| 613 c = ptr < patternEnd ? *ptr : 0; | |
| 614 | |
| 615 /* Fill in length of a previous callout, except when the next thing is | |
| 616 a quantifier. */ | |
| 617 | |
| 618 bool is_quantifier = c == '*' || c == '+' || c == '?' || (c == '{' && is
CountedRepeat(ptr + 1, patternEnd)); | |
| 619 | |
| 620 switch (c) { | |
| 621 /* The branch terminates at end of string, |, or ). */ | |
| 622 | |
| 623 case 0: | |
| 624 if (ptr < patternEnd) | |
| 625 goto NORMAL_CHAR; | |
| 626 // End of string; fall through | |
| 627 case '|': | |
| 628 case ')': | |
| 629 *firstbyteptr = firstbyte; | |
| 630 *reqbyteptr = reqbyte; | |
| 631 *codeptr = code; | |
| 632 *ptrptr = ptr; | |
| 633 return true; | |
| 634 | |
| 635 /* Handle single-character metacharacters. In multiline mode, ^ disa
bles | |
| 636 the setting of any following char as a first character. */ | |
| 637 | |
| 638 case '^': | |
| 639 if (options & MatchAcrossMultipleLinesOption) { | |
| 640 if (firstbyte == REQ_UNSET) | |
| 641 firstbyte = REQ_NONE; | |
| 642 *code++ = OP_BOL; | |
| 643 } else | |
| 644 *code++ = OP_CIRC; | |
| 645 previous = NULL; | |
| 646 break; | |
| 647 | |
| 648 case '$': | |
| 649 previous = NULL; | |
| 650 if (options & MatchAcrossMultipleLinesOption) | |
| 651 *code++ = OP_EOL; | |
| 652 else | |
| 653 *code++ = OP_DOLL; | |
| 654 break; | |
| 655 | |
| 656 /* There can never be a first char if '.' is first, whatever happens
about | |
| 657 repeats. The value of reqbyte doesn't change either. */ | |
| 658 | |
| 659 case '.': | |
| 660 if (firstbyte == REQ_UNSET) | |
| 661 firstbyte = REQ_NONE; | |
| 662 zerofirstbyte = firstbyte; | |
| 663 zeroreqbyte = reqbyte; | |
| 664 previous = code; | |
| 665 *code++ = OP_NOT_NEWLINE; | |
| 666 break; | |
| 667 | |
| 668 /* Character classes. If the included characters are all < 256, we b
uild a | |
| 669 32-byte bitmap of the permitted characters, except in the special c
ase | |
| 670 where there is only one such character. For negated classes, we bui
ld the | |
| 671 map as usual, then invert it at the end. However, we use a differen
t opcode | |
| 672 so that data characters > 255 can be handled correctly. | |
| 673 | |
| 674 If the class contains characters outside the 0-255 range, a differe
nt | |
| 675 opcode is compiled. It may optionally have a bit map for characters
< 256, | |
| 676 but those above are are explicitly listed afterwards. A flag byte t
ells | |
| 677 whether the bitmap is present, and whether this is a negated class
or not. | |
| 678 */ | |
| 679 | |
| 680 case '[': { | |
| 681 previous = code; | |
| 682 should_flip_negation = false; | |
| 683 | |
| 684 /* PCRE supports POSIX class stuff inside a class. Perl gives an
error if | |
| 685 they are encountered at the top level, so we'll do that too. */ | |
| 686 | |
| 687 /* If the first character is '^', set the negation flag and skip
it. */ | |
| 688 | |
| 689 if (ptr + 1 >= patternEnd) { | |
| 690 *errorcodeptr = ERR6; | |
| 691 return false; | |
| 692 } | |
| 693 | |
| 694 if (ptr[1] == '^') { | |
| 695 negate_class = true; | |
| 696 ++ptr; | |
| 697 } else | |
| 698 negate_class = false; | |
| 699 | |
| 700 /* Keep a count of chars with values < 256 so that we can optimi
ze the case | |
| 701 of just a single character (as long as it's < 256). For higher
valued UTF-8 | |
| 702 characters, we don't yet do any optimization. */ | |
| 703 | |
| 704 class_charcount = 0; | |
| 705 class_lastchar = -1; | |
| 706 | |
| 707 class_utf8 = false; /* No chars >= 256 */ | |
| 708 class_utf8data = code + LINK_SIZE + 34; /* For UTF-8 items */ | |
| 709 | |
| 710 /* Initialize the 32-char bit map to all zeros. We have to build
the | |
| 711 map in a temporary bit of store, in case the class contains onl
y 1 | |
| 712 character (< 256), because in that case the compiled code doesn
't use the | |
| 713 bit map. */ | |
| 714 | |
| 715 memset(classbits, 0, 32 * sizeof(unsigned char)); | |
| 716 | |
| 717 /* Process characters until ] is reached. The first pass | |
| 718 through the regex checked the overall syntax, so we don't need
to be very | |
| 719 strict here. At the start of the loop, c contains the first byt
e of the | |
| 720 character. */ | |
| 721 | |
| 722 while ((++ptr < patternEnd) && (c = *ptr) != ']') { | |
| 723 /* Backslash may introduce a single character, or it may int
roduce one | |
| 724 of the specials, which just set a flag. Escaped items are c
hecked for | |
| 725 validity in the pre-compiling pass. The sequence \b is a sp
ecial case. | |
| 726 Inside a class (and only there) it is treated as backspace.
Elsewhere | |
| 727 it marks a word boundary. Other escapes have preset maps re
ady to | |
| 728 or into the one we are building. We assume they have more t
han one | |
| 729 character in them, so set class_charcount bigger than one.
*/ | |
| 730 | |
| 731 if (c == '\\') { | |
| 732 c = checkEscape(&ptr, patternEnd, errorcodeptr, cd.numCa
pturingBrackets, true); | |
| 733 if (c < 0) { | |
| 734 class_charcount += 2; /* Greater than 1 is what
matters */ | |
| 735 switch (-c) { | |
| 736 case ESC_d: | |
| 737 for (c = 0; c < 32; c++) | |
| 738 classbits[c] |= classBitmapForChar(c + c
bit_digit); | |
| 739 continue; | |
| 740 | |
| 741 case ESC_D: | |
| 742 should_flip_negation = true; | |
| 743 for (c = 0; c < 32; c++) | |
| 744 classbits[c] |= ~classBitmapForChar(c +
cbit_digit); | |
| 745 continue; | |
| 746 | |
| 747 case ESC_w: | |
| 748 for (c = 0; c < 32; c++) | |
| 749 classbits[c] |= classBitmapForChar(c + c
bit_word); | |
| 750 continue; | |
| 751 | |
| 752 case ESC_W: | |
| 753 should_flip_negation = true; | |
| 754 for (c = 0; c < 32; c++) | |
| 755 classbits[c] |= ~classBitmapForChar(c +
cbit_word); | |
| 756 continue; | |
| 757 | |
| 758 case ESC_s: | |
| 759 for (c = 0; c < 32; c++) | |
| 760 classbits[c] |= classBitmapForChar(c +
cbit_space); | |
| 761 continue; | |
| 762 | |
| 763 case ESC_S: | |
| 764 should_flip_negation = true; | |
| 765 for (c = 0; c < 32; c++) | |
| 766 classbits[c] |= ~classBitmapForChar(c +
cbit_space); | |
| 767 continue; | |
| 768 | |
| 769 /* Unrecognized escapes are faulted if PCRE
is running in its | |
| 770 strict mode. By default, for compatibility
with Perl, they are | |
| 771 treated as literals. */ | |
| 772 | |
| 773 default: | |
| 774 c = *ptr; /* The final characte
r */ | |
| 775 class_charcount -= 2; /* Undo the default c
ount from above */ | |
| 776 } | |
| 777 } | |
| 778 | |
| 779 /* Fall through if we have a single character (c >= 0).
This may be | |
| 780 > 256 in UTF-8 mode. */ | |
| 781 | |
| 782 } /* End of backslash handling */ | |
| 783 | |
| 784 /* A single character may be followed by '-' to form a range
. However, | |
| 785 Perl does not permit ']' to be the end of the range. A '-'
character | |
| 786 here is treated as a literal. */ | |
| 787 | |
| 788 if ((ptr + 2 < patternEnd) && ptr[1] == '-' && ptr[2] != ']'
) { | |
| 789 ptr += 2; | |
| 790 | |
| 791 int d = *ptr; | |
| 792 | |
| 793 /* The second part of a range can be a single-character
escape, but | |
| 794 not any of the other escapes. Perl 5.6 treats a hyphen
as a literal | |
| 795 in such circumstances. */ | |
| 796 | |
| 797 if (d == '\\') { | |
| 798 const UChar* oldptr = ptr; | |
| 799 d = checkEscape(&ptr, patternEnd, errorcodeptr, cd.n
umCapturingBrackets, true); | |
| 800 | |
| 801 /* \X is literal X; any other special means the '-'
was literal */ | |
| 802 if (d < 0) { | |
| 803 ptr = oldptr - 2; | |
| 804 goto LONE_SINGLE_CHARACTER; /* A few lines belo
w */ | |
| 805 } | |
| 806 } | |
| 807 | |
| 808 /* The check that the two values are in the correct orde
r happens in | |
| 809 the pre-pass. Optimize one-character ranges */ | |
| 810 | |
| 811 if (d == c) | |
| 812 goto LONE_SINGLE_CHARACTER; /* A few lines below */ | |
| 813 | |
| 814 /* In UTF-8 mode, if the upper limit is > 255, or > 127
for caseless | |
| 815 matching, we have to use an XCLASS with extra data item
s. Caseless | |
| 816 matching for characters > 127 is available only if UCP
support is | |
| 817 available. */ | |
| 818 | |
| 819 if ((d > 255 || ((options & IgnoreCaseOption) && d > 127
))) { | |
| 820 class_utf8 = true; | |
| 821 | |
| 822 /* With UCP support, we can find the other case equi
valents of | |
| 823 the relevant characters. There may be several range
s. Optimize how | |
| 824 they fit with the basic range. */ | |
| 825 | |
| 826 if (options & IgnoreCaseOption) { | |
| 827 int occ, ocd; | |
| 828 int cc = c; | |
| 829 int origd = d; | |
| 830 while (getOthercaseRange(&cc, origd, &occ, &ocd)
) { | |
| 831 if (occ >= c && ocd <= d) | |
| 832 continue; /* Skip embedded ranges */ | |
| 833 | |
| 834 if (occ < c && ocd >= c - 1) /* Exte
nd the basic range */ | |
| 835 { /* if the
re is overlap, */ | |
| 836 c = occ; /* no
ting that if occ < c */ | |
| 837 continue; /* we
can't have ocd > d */ | |
| 838 } /* becaus
e a subrange is */ | |
| 839 if (ocd > d && occ <= d + 1) /* alwa
ys shorter than */ | |
| 840 { /* the ba
sic range. */ | |
| 841 d = ocd; | |
| 842 continue; | |
| 843 } | |
| 844 | |
| 845 if (occ == ocd) | |
| 846 *class_utf8data++ = XCL_SINGLE; | |
| 847 else { | |
| 848 *class_utf8data++ = XCL_RANGE; | |
| 849 class_utf8data += encodeUTF8(occ, class_
utf8data); | |
| 850 } | |
| 851 class_utf8data += encodeUTF8(ocd, class_utf8
data); | |
| 852 } | |
| 853 } | |
| 854 | |
| 855 /* Now record the original range, possibly modified
for UCP caseless | |
| 856 overlapping ranges. */ | |
| 857 | |
| 858 *class_utf8data++ = XCL_RANGE; | |
| 859 class_utf8data += encodeUTF8(c, class_utf8data); | |
| 860 class_utf8data += encodeUTF8(d, class_utf8data); | |
| 861 | |
| 862 /* With UCP support, we are done. Without UCP suppor
t, there is no | |
| 863 caseless matching for UTF-8 characters > 127; we ca
n use the bit map | |
| 864 for the smaller ones. */ | |
| 865 | |
| 866 continue; /* With next character in the class */ | |
| 867 } | |
| 868 | |
| 869 /* We use the bit map for all cases when not in UTF-8 mo
de; else | |
| 870 ranges that lie entirely within 0-127 when there is UCP
support; else | |
| 871 for partial ranges without UCP support. */ | |
| 872 | |
| 873 for (; c <= d; c++) { | |
| 874 classbits[c/8] |= (1 << (c&7)); | |
| 875 if (options & IgnoreCaseOption) { | |
| 876 int uc = flipCase(c); | |
| 877 classbits[uc/8] |= (1 << (uc&7)); | |
| 878 } | |
| 879 class_charcount++; /* in case a one-c
har range */ | |
| 880 class_lastchar = c; | |
| 881 } | |
| 882 | |
| 883 continue; /* Go get the next char in the class */ | |
| 884 } | |
| 885 | |
| 886 /* Handle a lone single character - we can get here for a no
rmal | |
| 887 non-escape char, or after \ that introduces a single charac
ter or for an | |
| 888 apparent range that isn't. */ | |
| 889 | |
| 890 LONE_SINGLE_CHARACTER: | |
| 891 | |
| 892 /* Handle a character that cannot go in the bit map */ | |
| 893 | |
| 894 if ((c > 255 || ((options & IgnoreCaseOption) && c > 127)))
{ | |
| 895 class_utf8 = true; | |
| 896 *class_utf8data++ = XCL_SINGLE; | |
| 897 class_utf8data += encodeUTF8(c, class_utf8data); | |
| 898 | |
| 899 if (options & IgnoreCaseOption) { | |
| 900 int othercase; | |
| 901 if ((othercase = kjs_pcre_ucp_othercase(c)) >= 0) { | |
| 902 *class_utf8data++ = XCL_SINGLE; | |
| 903 class_utf8data += encodeUTF8(othercase, class_ut
f8data); | |
| 904 } | |
| 905 } | |
| 906 } else { | |
| 907 /* Handle a single-byte character */ | |
| 908 classbits[c/8] |= (1 << (c&7)); | |
| 909 if (options & IgnoreCaseOption) { | |
| 910 c = flipCase(c); | |
| 911 classbits[c/8] |= (1 << (c&7)); | |
| 912 } | |
| 913 class_charcount++; | |
| 914 class_lastchar = c; | |
| 915 } | |
| 916 } | |
| 917 | |
| 918 /* If class_charcount is 1, we saw precisely one character whose
value is | |
| 919 less than 256. In non-UTF-8 mode we can always optimize. In UTF
-8 mode, we | |
| 920 can optimize the negative case only if there were no characters
>= 128 | |
| 921 because OP_NOT and the related opcodes like OP_NOTSTAR operate
on | |
| 922 single-bytes only. This is an historical hangover. Maybe one da
y we can | |
| 923 tidy these opcodes to handle multi-byte characters. | |
| 924 | |
| 925 The optimization throws away the bit map. We turn the item into
a | |
| 926 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's neg
ative. Note | |
| 927 that OP_NOT does not support multibyte characters. In the posit
ive case, it | |
| 928 can cause firstbyte to be set. Otherwise, there can be no first
char if | |
| 929 this item is first, whatever repeat count may follow. In the ca
se of | |
| 930 reqbyte, save the previous value for reinstating. */ | |
| 931 | |
| 932 if (class_charcount == 1 && (!class_utf8 && (!negate_class || cl
ass_lastchar < 128))) { | |
| 933 zeroreqbyte = reqbyte; | |
| 934 | |
| 935 /* The OP_NOT opcode works on one-byte characters only. */ | |
| 936 | |
| 937 if (negate_class) { | |
| 938 if (firstbyte == REQ_UNSET) | |
| 939 firstbyte = REQ_NONE; | |
| 940 zerofirstbyte = firstbyte; | |
| 941 *code++ = OP_NOT; | |
| 942 *code++ = class_lastchar; | |
| 943 break; | |
| 944 } | |
| 945 | |
| 946 /* For a single, positive character, get the value into c, a
nd | |
| 947 then we can handle this with the normal one-character code.
*/ | |
| 948 | |
| 949 c = class_lastchar; | |
| 950 goto NORMAL_CHAR; | |
| 951 } /* End of 1-char optimization */ | |
| 952 | |
| 953 /* The general case - not the one-char optimization. If this is
the first | |
| 954 thing in the branch, there can be no first char setting, whatev
er the | |
| 955 repeat count. Any reqbyte setting must remain unchanged after a
ny kind of | |
| 956 repeat. */ | |
| 957 | |
| 958 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; | |
| 959 zerofirstbyte = firstbyte; | |
| 960 zeroreqbyte = reqbyte; | |
| 961 | |
| 962 /* If there are characters with values > 255, we have to compile
an | |
| 963 extended class, with its own opcode. If there are no characters
< 256, | |
| 964 we can omit the bitmap. */ | |
| 965 | |
| 966 if (class_utf8 && !should_flip_negation) { | |
| 967 *class_utf8data++ = XCL_END; /* Marks the end of extra da
ta */ | |
| 968 *code++ = OP_XCLASS; | |
| 969 code += LINK_SIZE; | |
| 970 *code = negate_class? XCL_NOT : 0; | |
| 971 | |
| 972 /* If the map is required, install it, and move on to the en
d of | |
| 973 the extra data */ | |
| 974 | |
| 975 if (class_charcount > 0) { | |
| 976 *code++ |= XCL_MAP; | |
| 977 memcpy(code, classbits, 32); | |
| 978 code = class_utf8data; | |
| 979 } | |
| 980 | |
| 981 /* If the map is not required, slide down the extra data. */ | |
| 982 | |
| 983 else { | |
| 984 int len = class_utf8data - (code + 33); | |
| 985 memmove(code + 1, code + 33, len); | |
| 986 code += len + 1; | |
| 987 } | |
| 988 | |
| 989 /* Now fill in the complete length of the item */ | |
| 990 | |
| 991 putLinkValue(previous + 1, code - previous); | |
| 992 break; /* End of class handling */ | |
| 993 } | |
| 994 | |
| 995 /* If there are no characters > 255, negate the 32-byte map if n
ecessary, | |
| 996 and copy it into the code vector. If this is the first thing in
the branch, | |
| 997 there can be no first char setting, whatever the repeat count.
Any reqbyte | |
| 998 setting must remain unchanged after any kind of repeat. */ | |
| 999 | |
| 1000 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP
_NCLASS; | |
| 1001 if (negate_class) | |
| 1002 for (c = 0; c < 32; c++) | |
| 1003 code[c] = ~classbits[c]; | |
| 1004 else | |
| 1005 memcpy(code, classbits, 32); | |
| 1006 code += 32; | |
| 1007 break; | |
| 1008 } | |
| 1009 | |
| 1010 /* Various kinds of repeat; '{' is not necessarily a quantifier, but
this | |
| 1011 has been tested above. */ | |
| 1012 | |
| 1013 case '{': | |
| 1014 if (!is_quantifier) | |
| 1015 goto NORMAL_CHAR; | |
| 1016 ptr = readRepeatCounts(ptr + 1, &repeat_min, &repeat_max, errorc
odeptr); | |
| 1017 if (*errorcodeptr) | |
| 1018 goto FAILED; | |
| 1019 goto REPEAT; | |
| 1020 | |
| 1021 case '*': | |
| 1022 repeat_min = 0; | |
| 1023 repeat_max = -1; | |
| 1024 goto REPEAT; | |
| 1025 | |
| 1026 case '+': | |
| 1027 repeat_min = 1; | |
| 1028 repeat_max = -1; | |
| 1029 goto REPEAT; | |
| 1030 | |
| 1031 case '?': | |
| 1032 repeat_min = 0; | |
| 1033 repeat_max = 1; | |
| 1034 | |
| 1035 REPEAT: | |
| 1036 if (!previous) { | |
| 1037 *errorcodeptr = ERR9; | |
| 1038 goto FAILED; | |
| 1039 } | |
| 1040 | |
| 1041 if (repeat_min == 0) { | |
| 1042 firstbyte = zerofirstbyte; /* Adjust for zero repeat */ | |
| 1043 reqbyte = zeroreqbyte; /* Ditto */ | |
| 1044 } | |
| 1045 | |
| 1046 /* Remember whether this is a variable length repeat */ | |
| 1047 | |
| 1048 reqvary = (repeat_min == repeat_max) ? 0 : REQ_VARY; | |
| 1049 | |
| 1050 op_type = 0; /* Default single-char op codes
*/ | |
| 1051 | |
| 1052 /* Save start of previous item, in case we have to move it up to
make space | |
| 1053 for an inserted OP_ONCE for the additional '+' extension. */ | |
| 1054 /* FIXME: Probably don't need this because we don't use OP_ONCE.
*/ | |
| 1055 | |
| 1056 tempcode = previous; | |
| 1057 | |
| 1058 /* If the next character is '+', we have a possessive quantifier
. This | |
| 1059 implies greediness, whatever the setting of the PCRE_UNGREEDY o
ption. | |
| 1060 If the next character is '?' this is a minimizing repeat, by de
fault, | |
| 1061 but if PCRE_UNGREEDY is set, it works the other way round. We c
hange the | |
| 1062 repeat type to the non-default. */ | |
| 1063 | |
| 1064 if (safelyCheckNextChar(ptr, patternEnd, '?')) { | |
| 1065 repeat_type = 1; | |
| 1066 ptr++; | |
| 1067 } else | |
| 1068 repeat_type = 0; | |
| 1069 | |
| 1070 /* If previous was a character match, abolish the item and gener
ate a | |
| 1071 repeat item instead. If a char item has a minumum of more than
one, ensure | |
| 1072 that it is set in reqbyte - it might not be if a sequence such
as x{3} is | |
| 1073 the first thing in a branch because the x will have gone into f
irstbyte | |
| 1074 instead. */ | |
| 1075 | |
| 1076 if (*previous == OP_CHAR || *previous == OP_CHAR_IGNORING_CASE)
{ | |
| 1077 /* Deal with UTF-8 characters that take up more than one byt
e. It's | |
| 1078 easier to write this out separately than try to macrify it.
Use c to | |
| 1079 hold the length of the character in bytes, plus 0x80 to fla
g that it's a | |
| 1080 length rather than a small character. */ | |
| 1081 | |
| 1082 if (code[-1] & 0x80) { | |
| 1083 unsigned char *lastchar = code - 1; | |
| 1084 while((*lastchar & 0xc0) == 0x80) | |
| 1085 lastchar--; | |
| 1086 c = code - lastchar; /* Length of UTF-8 chara
cter */ | |
| 1087 memcpy(utf8_char, lastchar, c); /* Save the char */ | |
| 1088 c |= 0x80; /* Flag c as a length */ | |
| 1089 } | |
| 1090 else { | |
| 1091 c = code[-1]; | |
| 1092 if (repeat_min > 1) | |
| 1093 reqbyte = c | req_caseopt | cd.req_varyopt; | |
| 1094 } | |
| 1095 | |
| 1096 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single char
acter types */ | |
| 1097 } | |
| 1098 | |
| 1099 else if (*previous == OP_ASCII_CHAR || *previous == OP_ASCII_LET
TER_IGNORING_CASE) { | |
| 1100 c = previous[1]; | |
| 1101 if (repeat_min > 1) | |
| 1102 reqbyte = c | req_caseopt | cd.req_varyopt; | |
| 1103 goto OUTPUT_SINGLE_REPEAT; | |
| 1104 } | |
| 1105 | |
| 1106 /* If previous was a single negated character ([^a] or similar),
we use | |
| 1107 one of the special opcodes, replacing it. The code is shared wi
th single- | |
| 1108 character repeats by setting opt_type to add a suitable offset
into | |
| 1109 repeat_type. OP_NOT is currently used only for single-byte char
s. */ | |
| 1110 | |
| 1111 else if (*previous == OP_NOT) { | |
| 1112 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ | |
| 1113 c = previous[1]; | |
| 1114 goto OUTPUT_SINGLE_REPEAT; | |
| 1115 } | |
| 1116 | |
| 1117 /* If previous was a character type match (\d or similar), aboli
sh it and | |
| 1118 create a suitable repeat item. The code is shared with single-c
haracter | |
| 1119 repeats by setting op_type to add a suitable offset into repeat
_type. */ | |
| 1120 | |
| 1121 else if (*previous <= OP_NOT_NEWLINE) { | |
| 1122 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ | |
| 1123 c = *previous; | |
| 1124 | |
| 1125 OUTPUT_SINGLE_REPEAT: | |
| 1126 int prop_type = -1; | |
| 1127 int prop_value = -1; | |
| 1128 | |
| 1129 unsigned char* oldcode = code; | |
| 1130 code = previous; /* Usually overwrite previ
ous item */ | |
| 1131 | |
| 1132 /* If the maximum is zero then the minimum must also be zero
; Perl allows | |
| 1133 this case, so we do too - by simply omitting the item altog
ether. */ | |
| 1134 | |
| 1135 if (repeat_max == 0) | |
| 1136 goto END_REPEAT; | |
| 1137 | |
| 1138 /* Combine the op_type with the repeat_type */ | |
| 1139 | |
| 1140 repeat_type += op_type; | |
| 1141 | |
| 1142 /* A minimum of zero is handled either as the special case *
or ?, or as | |
| 1143 an UPTO, with the maximum given. */ | |
| 1144 | |
| 1145 if (repeat_min == 0) { | |
| 1146 if (repeat_max == -1) | |
| 1147 *code++ = OP_STAR + repeat_type; | |
| 1148 else if (repeat_max == 1) | |
| 1149 *code++ = OP_QUERY + repeat_type; | |
| 1150 else { | |
| 1151 *code++ = OP_UPTO + repeat_type; | |
| 1152 put2ByteValueAndAdvance(code, repeat_max); | |
| 1153 } | |
| 1154 } | |
| 1155 | |
| 1156 /* A repeat minimum of 1 is optimized into some special case
s. If the | |
| 1157 maximum is unlimited, we use OP_PLUS. Otherwise, the origin
al item it | |
| 1158 left in place and, if the maximum is greater than 1, we use
OP_UPTO with | |
| 1159 one less than the maximum. */ | |
| 1160 | |
| 1161 else if (repeat_min == 1) { | |
| 1162 if (repeat_max == -1) | |
| 1163 *code++ = OP_PLUS + repeat_type; | |
| 1164 else { | |
| 1165 code = oldcode; /* leave previous it
em in place */ | |
| 1166 if (repeat_max == 1) | |
| 1167 goto END_REPEAT; | |
| 1168 *code++ = OP_UPTO + repeat_type; | |
| 1169 put2ByteValueAndAdvance(code, repeat_max - 1); | |
| 1170 } | |
| 1171 } | |
| 1172 | |
| 1173 /* The case {n,n} is just an EXACT, while the general case {
n,m} is | |
| 1174 handled as an EXACT followed by an UPTO. */ | |
| 1175 | |
| 1176 else { | |
| 1177 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have
repeat_type */ | |
| 1178 put2ByteValueAndAdvance(code, repeat_min); | |
| 1179 | |
| 1180 /* If the maximum is unlimited, insert an OP_STAR. Befor
e doing so, | |
| 1181 we have to insert the character for the previous code.
For a repeated | |
| 1182 Unicode property match, there are two extra bytes that
define the | |
| 1183 required property. In UTF-8 mode, long characters have
their length in | |
| 1184 c, with the 0x80 bit as a flag. */ | |
| 1185 | |
| 1186 if (repeat_max < 0) { | |
| 1187 if (c >= 128) { | |
| 1188 memcpy(code, utf8_char, c & 7); | |
| 1189 code += c & 7; | |
| 1190 } else { | |
| 1191 *code++ = c; | |
| 1192 if (prop_type >= 0) { | |
| 1193 *code++ = prop_type; | |
| 1194 *code++ = prop_value; | |
| 1195 } | |
| 1196 } | |
| 1197 *code++ = OP_STAR + repeat_type; | |
| 1198 } | |
| 1199 | |
| 1200 /* Else insert an UPTO if the max is greater than the mi
n, again | |
| 1201 preceded by the character, for the previously inserted
code. */ | |
| 1202 | |
| 1203 else if (repeat_max != repeat_min) { | |
| 1204 if (c >= 128) { | |
| 1205 memcpy(code, utf8_char, c & 7); | |
| 1206 code += c & 7; | |
| 1207 } else | |
| 1208 *code++ = c; | |
| 1209 if (prop_type >= 0) { | |
| 1210 *code++ = prop_type; | |
| 1211 *code++ = prop_value; | |
| 1212 } | |
| 1213 repeat_max -= repeat_min; | |
| 1214 *code++ = OP_UPTO + repeat_type; | |
| 1215 put2ByteValueAndAdvance(code, repeat_max); | |
| 1216 } | |
| 1217 } | |
| 1218 | |
| 1219 /* The character or character type itself comes last in all
cases. */ | |
| 1220 | |
| 1221 if (c >= 128) { | |
| 1222 memcpy(code, utf8_char, c & 7); | |
| 1223 code += c & 7; | |
| 1224 } else | |
| 1225 *code++ = c; | |
| 1226 | |
| 1227 /* For a repeated Unicode property match, there are two extr
a bytes that | |
| 1228 define the required property. */ | |
| 1229 | |
| 1230 if (prop_type >= 0) { | |
| 1231 *code++ = prop_type; | |
| 1232 *code++ = prop_value; | |
| 1233 } | |
| 1234 } | |
| 1235 | |
| 1236 /* If previous was a character class or a back reference, we put
the repeat | |
| 1237 stuff after it, but just skip the item if the repeat was {0,0}.
*/ | |
| 1238 | |
| 1239 else if (*previous == OP_CLASS || | |
| 1240 *previous == OP_NCLASS || | |
| 1241 *previous == OP_XCLASS || | |
| 1242 *previous == OP_REF) | |
| 1243 { | |
| 1244 if (repeat_max == 0) { | |
| 1245 code = previous; | |
| 1246 goto END_REPEAT; | |
| 1247 } | |
| 1248 | |
| 1249 if (repeat_min == 0 && repeat_max == -1) | |
| 1250 *code++ = OP_CRSTAR + repeat_type; | |
| 1251 else if (repeat_min == 1 && repeat_max == -1) | |
| 1252 *code++ = OP_CRPLUS + repeat_type; | |
| 1253 else if (repeat_min == 0 && repeat_max == 1) | |
| 1254 *code++ = OP_CRQUERY + repeat_type; | |
| 1255 else { | |
| 1256 *code++ = OP_CRRANGE + repeat_type; | |
| 1257 put2ByteValueAndAdvance(code, repeat_min); | |
| 1258 if (repeat_max == -1) | |
| 1259 repeat_max = 0; /* 2-byte encoding for max */ | |
| 1260 put2ByteValueAndAdvance(code, repeat_max); | |
| 1261 } | |
| 1262 } | |
| 1263 | |
| 1264 /* If previous was a bracket group, we may have to replicate it
in certain | |
| 1265 cases. */ | |
| 1266 | |
| 1267 else if (*previous >= OP_BRA) { | |
| 1268 int ketoffset = 0; | |
| 1269 int len = code - previous; | |
| 1270 unsigned char* bralink = NULL; | |
| 1271 | |
| 1272 /* If the maximum repeat count is unlimited, find the end of
the bracket | |
| 1273 by scanning through from the start, and compute the offset
back to it | |
| 1274 from the current code pointer. There may be an OP_OPT setti
ng following | |
| 1275 the final KET, so we can't find the end just by going back
from the code | |
| 1276 pointer. */ | |
| 1277 | |
| 1278 if (repeat_max == -1) { | |
| 1279 const unsigned char* ket = previous; | |
| 1280 advanceToEndOfBracket(ket); | |
| 1281 ketoffset = code - ket; | |
| 1282 } | |
| 1283 | |
| 1284 /* The case of a zero minimum is special because of the need
to stick | |
| 1285 OP_BRAZERO in front of it, and because the group appears on
ce in the | |
| 1286 data, whereas in other cases it appears the minimum number
of times. For | |
| 1287 this reason, it is simplest to treat this case separately,
as otherwise | |
| 1288 the code gets far too messy. There are several special subc
ases when the | |
| 1289 minimum is zero. */ | |
| 1290 | |
| 1291 if (repeat_min == 0) { | |
| 1292 /* If the maximum is also zero, we just omit the group f
rom the output | |
| 1293 altogether. */ | |
| 1294 | |
| 1295 if (repeat_max == 0) { | |
| 1296 code = previous; | |
| 1297 goto END_REPEAT; | |
| 1298 } | |
| 1299 | |
| 1300 /* If the maximum is 1 or unlimited, we just have to sti
ck in the | |
| 1301 BRAZERO and do no more at this point. However, we do ne
ed to adjust | |
| 1302 any OP_RECURSE calls inside the group that refer to the
group itself or | |
| 1303 any internal group, because the offset is from the star
t of the whole | |
| 1304 regex. Temporarily terminate the pattern while doing th
is. */ | |
| 1305 | |
| 1306 if (repeat_max <= 1) { | |
| 1307 *code = OP_END; | |
| 1308 memmove(previous+1, previous, len); | |
| 1309 code++; | |
| 1310 *previous++ = OP_BRAZERO + repeat_type; | |
| 1311 } | |
| 1312 | |
| 1313 /* If the maximum is greater than 1 and limited, we have
to replicate | |
| 1314 in a nested fashion, sticking OP_BRAZERO before each se
t of brackets. | |
| 1315 The first one has to be handled carefully because it's
the original | |
| 1316 copy, which has to be moved up. The remainder can be ha
ndled by code | |
| 1317 that is common with the non-zero minimum case below. We
have to | |
| 1318 adjust the value of repeat_max, since one less copy is
required. */ | |
| 1319 | |
| 1320 else { | |
| 1321 *code = OP_END; | |
| 1322 memmove(previous + 2 + LINK_SIZE, previous, len); | |
| 1323 code += 2 + LINK_SIZE; | |
| 1324 *previous++ = OP_BRAZERO + repeat_type; | |
| 1325 *previous++ = OP_BRA; | |
| 1326 | |
| 1327 /* We chain together the bracket offset fields that
have to be | |
| 1328 filled in later when the ends of the brackets are r
eached. */ | |
| 1329 | |
| 1330 int offset = (!bralink) ? 0 : previous - bralink; | |
| 1331 bralink = previous; | |
| 1332 putLinkValueAllowZeroAndAdvance(previous, offset); | |
| 1333 } | |
| 1334 | |
| 1335 repeat_max--; | |
| 1336 } | |
| 1337 | |
| 1338 /* If the minimum is greater than zero, replicate the group
as many | |
| 1339 times as necessary, and adjust the maximum to the number of
subsequent | |
| 1340 copies that we need. If we set a first char from the group,
and didn't | |
| 1341 set a required char, copy the latter from the former. */ | |
| 1342 | |
| 1343 else { | |
| 1344 if (repeat_min > 1) { | |
| 1345 if (groupsetfirstbyte && reqbyte < 0) | |
| 1346 reqbyte = firstbyte; | |
| 1347 for (int i = 1; i < repeat_min; i++) { | |
| 1348 memcpy(code, previous, len); | |
| 1349 code += len; | |
| 1350 } | |
| 1351 } | |
| 1352 if (repeat_max > 0) | |
| 1353 repeat_max -= repeat_min; | |
| 1354 } | |
| 1355 | |
| 1356 /* This code is common to both the zero and non-zero minimum
cases. If | |
| 1357 the maximum is limited, it replicates the group in a nested
fashion, | |
| 1358 remembering the bracket starts on a stack. In the case of a
zero minimum, | |
| 1359 the first one was set up above. In all cases the repeat_max
now specifies | |
| 1360 the number of additional copies needed. */ | |
| 1361 | |
| 1362 if (repeat_max >= 0) { | |
| 1363 for (int i = repeat_max - 1; i >= 0; i--) { | |
| 1364 *code++ = OP_BRAZERO + repeat_type; | |
| 1365 | |
| 1366 /* All but the final copy start a new nesting, maint
aining the | |
| 1367 chain of brackets outstanding. */ | |
| 1368 | |
| 1369 if (i != 0) { | |
| 1370 *code++ = OP_BRA; | |
| 1371 int offset = (!bralink) ? 0 : code - bralink; | |
| 1372 bralink = code; | |
| 1373 putLinkValueAllowZeroAndAdvance(code, offset); | |
| 1374 } | |
| 1375 | |
| 1376 memcpy(code, previous, len); | |
| 1377 code += len; | |
| 1378 } | |
| 1379 | |
| 1380 /* Now chain through the pending brackets, and fill in t
heir length | |
| 1381 fields (which are holding the chain links pro tem). */ | |
| 1382 | |
| 1383 while (bralink) { | |
| 1384 int offset = code - bralink + 1; | |
| 1385 unsigned char* bra = code - offset; | |
| 1386 int oldlinkoffset = getLinkValueAllowZero(bra + 1); | |
| 1387 bralink = (!oldlinkoffset) ? 0 : bralink - oldlinkof
fset; | |
| 1388 *code++ = OP_KET; | |
| 1389 putLinkValueAndAdvance(code, offset); | |
| 1390 putLinkValue(bra + 1, offset); | |
| 1391 } | |
| 1392 } | |
| 1393 | |
| 1394 /* If the maximum is unlimited, set a repeater in the final
copy. We | |
| 1395 can't just offset backwards from the current code point, be
cause we | |
| 1396 don't know if there's been an options resetting after the k
et. The | |
| 1397 correct offset was computed above. */ | |
| 1398 | |
| 1399 else | |
| 1400 code[-ketoffset] = OP_KETRMAX + repeat_type; | |
| 1401 } | |
| 1402 | |
| 1403 /* Else there's some kind of shambles */ | |
| 1404 | |
| 1405 else { | |
| 1406 *errorcodeptr = ERR11; | |
| 1407 goto FAILED; | |
| 1408 } | |
| 1409 | |
| 1410 /* In all case we no longer have a previous item. We also set th
e | |
| 1411 "follows varying string" flag for subsequently encountered reqb
ytes if | |
| 1412 it isn't already set and we have just passed a varying length i
tem. */ | |
| 1413 | |
| 1414 END_REPEAT: | |
| 1415 previous = NULL; | |
| 1416 cd.req_varyopt |= reqvary; | |
| 1417 break; | |
| 1418 | |
| 1419 /* Start of nested bracket sub-expression, or comment or lookahead o
r | |
| 1420 lookbehind or option setting or condition. First deal with special
things | |
| 1421 that can come after a bracket; all are introduced by ?, and the app
earance | |
| 1422 of any of them means that this is not a referencing group. They wer
e | |
| 1423 checked for validity in the first pass over the string, so we don't
have to | |
| 1424 check for syntax errors here. */ | |
| 1425 | |
| 1426 case '(': | |
| 1427 skipbytes = 0; | |
| 1428 | |
| 1429 if (*(++ptr) == '?') { | |
| 1430 switch (*(++ptr)) { | |
| 1431 case ':': /* Non-extracting bracket */ | |
| 1432 bravalue = OP_BRA; | |
| 1433 ptr++; | |
| 1434 break; | |
| 1435 | |
| 1436 case '=': /* Positive lookahead */ | |
| 1437 bravalue = OP_ASSERT; | |
| 1438 ptr++; | |
| 1439 break; | |
| 1440 | |
| 1441 case '!': /* Negative lookahead */ | |
| 1442 bravalue = OP_ASSERT_NOT; | |
| 1443 ptr++; | |
| 1444 break; | |
| 1445 | |
| 1446 /* Character after (? not specially recognized */ | |
| 1447 | |
| 1448 default: | |
| 1449 *errorcodeptr = ERR12; | |
| 1450 goto FAILED; | |
| 1451 } | |
| 1452 } | |
| 1453 | |
| 1454 /* Else we have a referencing group; adjust the opcode. If the b
racket | |
| 1455 number is greater than EXTRACT_BASIC_MAX, we set the opcode one
higher, and | |
| 1456 arrange for the true number to follow later, in an OP_BRANUMBER
item. */ | |
| 1457 | |
| 1458 else { | |
| 1459 if (++(*brackets) > EXTRACT_BASIC_MAX) { | |
| 1460 bravalue = OP_BRA + EXTRACT_BASIC_MAX + 1; | |
| 1461 code[1 + LINK_SIZE] = OP_BRANUMBER; | |
| 1462 put2ByteValue(code + 2 + LINK_SIZE, *brackets); | |
| 1463 skipbytes = 3; | |
| 1464 } | |
| 1465 else | |
| 1466 bravalue = OP_BRA + *brackets; | |
| 1467 } | |
| 1468 | |
| 1469 /* Process nested bracketed re. Assertions may not be repeated,
but other | |
| 1470 kinds can be. We copy code into a non-variable in order to be a
ble | |
| 1471 to pass its address because some compilers complain otherwise.
Pass in a | |
| 1472 new setting for the ims options if they have changed. */ | |
| 1473 | |
| 1474 previous = (bravalue >= OP_BRAZERO) ? code : 0; | |
| 1475 *code = bravalue; | |
| 1476 tempcode = code; | |
| 1477 tempreqvary = cd.req_varyopt; /* Save value before bracket *
/ | |
| 1478 | |
| 1479 if (!compileBracket( | |
| 1480 options, | |
| 1481 brackets, /* Extracting b
racket count */ | |
| 1482 &tempcode, /* Where to put
code (updated) */ | |
| 1483 &ptr, /* Input pointe
r (updated) */ | |
| 1484 patternEnd, | |
| 1485 errorcodeptr, /* Where to put
an error message */ | |
| 1486 skipbytes, /* Skip over OP
_BRANUMBER */ | |
| 1487 &subfirstbyte, /* For possible
first char */ | |
| 1488 &subreqbyte, /* For possible
last char */ | |
| 1489 cd)) /* Tables block
*/ | |
| 1490 goto FAILED; | |
| 1491 | |
| 1492 /* At the end of compiling, code is still pointing to the start
of the | |
| 1493 group, while tempcode has been updated to point past the end of
the group | |
| 1494 and any option resetting that may follow it. The pattern pointe
r (ptr) | |
| 1495 is on the bracket. */ | |
| 1496 | |
| 1497 /* Handle updating of the required and first characters. Update
for normal | |
| 1498 brackets of all kinds, and conditions with two branches (see co
de above). | |
| 1499 If the bracket is followed by a quantifier with zero repeat, we
have to | |
| 1500 back off. Hence the definition of zeroreqbyte and zerofirstbyte
outside the | |
| 1501 main loop so that they can be accessed for the back off. */ | |
| 1502 | |
| 1503 zeroreqbyte = reqbyte; | |
| 1504 zerofirstbyte = firstbyte; | |
| 1505 groupsetfirstbyte = false; | |
| 1506 | |
| 1507 if (bravalue >= OP_BRA) { | |
| 1508 /* If we have not yet set a firstbyte in this branch, take i
t from the | |
| 1509 subpattern, remembering that it was set here so that a repe
at of more | |
| 1510 than one can replicate it as reqbyte if necessary. If the s
ubpattern has | |
| 1511 no firstbyte, set "none" for the whole branch. In both case
s, a zero | |
| 1512 repeat forces firstbyte to "none". */ | |
| 1513 | |
| 1514 if (firstbyte == REQ_UNSET) { | |
| 1515 if (subfirstbyte >= 0) { | |
| 1516 firstbyte = subfirstbyte; | |
| 1517 groupsetfirstbyte = true; | |
| 1518 } | |
| 1519 else | |
| 1520 firstbyte = REQ_NONE; | |
| 1521 zerofirstbyte = REQ_NONE; | |
| 1522 } | |
| 1523 | |
| 1524 /* If firstbyte was previously set, convert the subpattern's
firstbyte | |
| 1525 into reqbyte if there wasn't one, using the vary flag that
was in | |
| 1526 existence beforehand. */ | |
| 1527 | |
| 1528 else if (subfirstbyte >= 0 && subreqbyte < 0) | |
| 1529 subreqbyte = subfirstbyte | tempreqvary; | |
| 1530 | |
| 1531 /* If the subpattern set a required byte (or set a first byt
e that isn't | |
| 1532 really the first byte - see above), set it. */ | |
| 1533 | |
| 1534 if (subreqbyte >= 0) | |
| 1535 reqbyte = subreqbyte; | |
| 1536 } | |
| 1537 | |
| 1538 /* For a forward assertion, we take the reqbyte, if set. This ca
n be | |
| 1539 helpful if the pattern that follows the assertion doesn't set a
different | |
| 1540 char. For example, it's useful for /(?=abcde).+/. We can't set
firstbyte | |
| 1541 for an assertion, however because it leads to incorrect effect
for patterns | |
| 1542 such as /(?=a)a.+/ when the "real" "a" would then become a reqb
yte instead | |
| 1543 of a firstbyte. This is overcome by a scan at the end if there'
s no | |
| 1544 firstbyte, looking for an asserted first char. */ | |
| 1545 | |
| 1546 else if (bravalue == OP_ASSERT && subreqbyte >= 0) | |
| 1547 reqbyte = subreqbyte; | |
| 1548 | |
| 1549 /* Now update the main code pointer to the end of the group. */ | |
| 1550 | |
| 1551 code = tempcode; | |
| 1552 | |
| 1553 /* Error if hit end of pattern */ | |
| 1554 | |
| 1555 if (ptr >= patternEnd || *ptr != ')') { | |
| 1556 *errorcodeptr = ERR14; | |
| 1557 goto FAILED; | |
| 1558 } | |
| 1559 break; | |
| 1560 | |
| 1561 /* Check \ for being a real metacharacter; if not, fall through and
handle | |
| 1562 it as a data character at the start of a string. Escape items are c
hecked | |
| 1563 for validity in the pre-compiling pass. */ | |
| 1564 | |
| 1565 case '\\': | |
| 1566 c = checkEscape(&ptr, patternEnd, errorcodeptr, cd.numCapturingB
rackets, false); | |
| 1567 | |
| 1568 /* Handle metacharacters introduced by \. For ones like \d, the
ESC_ values | |
| 1569 are arranged to be the negation of the corresponding OP_values.
For the | |
| 1570 back references, the values are ESC_REF plus the reference numb
er. Only | |
| 1571 back references and those types that consume a character may be
repeated. | |
| 1572 We can test for values between ESC_b and ESC_w for the latter;
this may | |
| 1573 have to change if any new ones are ever created. */ | |
| 1574 | |
| 1575 if (c < 0) { | |
| 1576 /* For metasequences that actually match a character, we dis
able the | |
| 1577 setting of a first character if it hasn't already been set.
*/ | |
| 1578 | |
| 1579 if (firstbyte == REQ_UNSET && -c > ESC_b && -c <= ESC_w) | |
| 1580 firstbyte = REQ_NONE; | |
| 1581 | |
| 1582 /* Set values to reset to if this is followed by a zero repe
at. */ | |
| 1583 | |
| 1584 zerofirstbyte = firstbyte; | |
| 1585 zeroreqbyte = reqbyte; | |
| 1586 | |
| 1587 /* Back references are handled specially */ | |
| 1588 | |
| 1589 if (-c >= ESC_REF) { | |
| 1590 int number = -c - ESC_REF; | |
| 1591 previous = code; | |
| 1592 *code++ = OP_REF; | |
| 1593 put2ByteValueAndAdvance(code, number); | |
| 1594 } | |
| 1595 | |
| 1596 /* For the rest, we can obtain the OP value by negating the
escape | |
| 1597 value */ | |
| 1598 | |
| 1599 else { | |
| 1600 previous = (-c > ESC_b && -c <= ESC_w) ? code : NULL; | |
| 1601 *code++ = -c; | |
| 1602 } | |
| 1603 continue; | |
| 1604 } | |
| 1605 | |
| 1606 /* Fall through. */ | |
| 1607 | |
| 1608 /* Handle a literal character. It is guaranteed not to be whites
pace or # | |
| 1609 when the extended flag is set. If we are in UTF-8 mode, it may
be a | |
| 1610 multi-byte literal character. */ | |
| 1611 | |
| 1612 default: | |
| 1613 NORMAL_CHAR: | |
| 1614 | |
| 1615 previous = code; | |
| 1616 | |
| 1617 if (c < 128) { | |
| 1618 mclength = 1; | |
| 1619 mcbuffer[0] = c; | |
| 1620 | |
| 1621 if ((options & IgnoreCaseOption) && (c | 0x20) >= 'a' && (c
| 0x20) <= 'z') { | |
| 1622 *code++ = OP_ASCII_LETTER_IGNORING_CASE; | |
| 1623 *code++ = c | 0x20; | |
| 1624 } else { | |
| 1625 *code++ = OP_ASCII_CHAR; | |
| 1626 *code++ = c; | |
| 1627 } | |
| 1628 } else { | |
| 1629 mclength = encodeUTF8(c, mcbuffer); | |
| 1630 | |
| 1631 *code++ = (options & IgnoreCaseOption) ? OP_CHAR_IGNORING_CA
SE : OP_CHAR; | |
| 1632 for (c = 0; c < mclength; c++) | |
| 1633 *code++ = mcbuffer[c]; | |
| 1634 } | |
| 1635 | |
| 1636 /* Set the first and required bytes appropriately. If no previou
s first | |
| 1637 byte, set it from this character, but revert to none on a zero
repeat. | |
| 1638 Otherwise, leave the firstbyte value alone, and don't change it
on a zero | |
| 1639 repeat. */ | |
| 1640 | |
| 1641 if (firstbyte == REQ_UNSET) { | |
| 1642 zerofirstbyte = REQ_NONE; | |
| 1643 zeroreqbyte = reqbyte; | |
| 1644 | |
| 1645 /* If the character is more than one byte long, we can set f
irstbyte | |
| 1646 only if it is not to be matched caselessly. */ | |
| 1647 | |
| 1648 if (mclength == 1 || req_caseopt == 0) { | |
| 1649 firstbyte = mcbuffer[0] | req_caseopt; | |
| 1650 if (mclength != 1) | |
| 1651 reqbyte = code[-1] | cd.req_varyopt; | |
| 1652 } | |
| 1653 else | |
| 1654 firstbyte = reqbyte = REQ_NONE; | |
| 1655 } | |
| 1656 | |
| 1657 /* firstbyte was previously set; we can set reqbyte only the len
gth is | |
| 1658 1 or the matching is caseful. */ | |
| 1659 | |
| 1660 else { | |
| 1661 zerofirstbyte = firstbyte; | |
| 1662 zeroreqbyte = reqbyte; | |
| 1663 if (mclength == 1 || req_caseopt == 0) | |
| 1664 reqbyte = code[-1] | req_caseopt | cd.req_varyopt; | |
| 1665 } | |
| 1666 | |
| 1667 break; /* End of literal character handling */ | |
| 1668 } | |
| 1669 } /* end of big loop */ | |
| 1670 | |
| 1671 /* Control never reaches here by falling through, only by a goto for all the | |
| 1672 error states. Pass back the position in the pattern so that it can be displ
ayed | |
| 1673 to the user for diagnosing the error. */ | |
| 1674 | |
| 1675 FAILED: | |
| 1676 *ptrptr = ptr; | |
| 1677 return false; | |
| 1678 } | |
| 1679 | |
| 1680 /************************************************* | |
| 1681 * Compile sequence of alternatives * | |
| 1682 *************************************************/ | |
| 1683 | |
| 1684 /* On entry, ptr is pointing past the bracket character, but on return | |
| 1685 it points to the closing bracket, or vertical bar, or end of string. | |
| 1686 The code variable is pointing at the byte into which the BRA operator has been | |
| 1687 stored. If the ims options are changed at the start (for a (?ims: group) or | |
| 1688 during any branch, we need to insert an OP_OPT item at the start of every | |
| 1689 following branch to ensure they get set correctly at run time, and also pass | |
| 1690 the new options into every subsequent branch compile. | |
| 1691 | |
| 1692 Argument: | |
| 1693 options option bits, including any changes for this subpattern | |
| 1694 brackets -> int containing the number of extracting brackets used | |
| 1695 codeptr -> the address of the current code pointer | |
| 1696 ptrptr -> the address of the current pattern pointer | |
| 1697 errorcodeptr -> pointer to error code variable | |
| 1698 skipbytes skip this many bytes at start (for OP_BRANUMBER) | |
| 1699 firstbyteptr place to put the first required character, or a negative number | |
| 1700 reqbyteptr place to put the last required character, or a negative number | |
| 1701 cd points to the data block with tables pointers etc. | |
| 1702 | |
| 1703 Returns: true on success | |
| 1704 */ | |
| 1705 | |
| 1706 static bool | |
| 1707 compileBracket(int options, int* brackets, unsigned char** codeptr, | |
| 1708 const UChar** ptrptr, const UChar* patternEnd, ErrorCode* errorcodeptr, int
skipbytes, | |
| 1709 int* firstbyteptr, int* reqbyteptr, CompileData& cd) | |
| 1710 { | |
| 1711 const UChar* ptr = *ptrptr; | |
| 1712 unsigned char* code = *codeptr; | |
| 1713 unsigned char* last_branch = code; | |
| 1714 unsigned char* start_bracket = code; | |
| 1715 int firstbyte = REQ_UNSET; | |
| 1716 int reqbyte = REQ_UNSET; | |
| 1717 | |
| 1718 /* Offset is set zero to mark that this bracket is still open */ | |
| 1719 | |
| 1720 putLinkValueAllowZero(code + 1, 0); | |
| 1721 code += 1 + LINK_SIZE + skipbytes; | |
| 1722 | |
| 1723 /* Loop for each alternative branch */ | |
| 1724 | |
| 1725 while (true) { | |
| 1726 /* Now compile the branch */ | |
| 1727 | |
| 1728 int branchfirstbyte; | |
| 1729 int branchreqbyte; | |
| 1730 if (!compileBranch(options, brackets, &code, &ptr, patternEnd, errorcode
ptr, | |
| 1731 &branchfirstbyte, &branchreqbyte, cd)) { | |
| 1732 *ptrptr = ptr; | |
| 1733 return false; | |
| 1734 } | |
| 1735 | |
| 1736 /* If this is the first branch, the firstbyte and reqbyte values for the | |
| 1737 branch become the values for the regex. */ | |
| 1738 | |
| 1739 if (*last_branch != OP_ALT) { | |
| 1740 firstbyte = branchfirstbyte; | |
| 1741 reqbyte = branchreqbyte; | |
| 1742 } | |
| 1743 | |
| 1744 /* If this is not the first branch, the first char and reqbyte have to | |
| 1745 match the values from all the previous branches, except that if the pre
vious | |
| 1746 value for reqbyte didn't have REQ_VARY set, it can still match, and we
set | |
| 1747 REQ_VARY for the regex. */ | |
| 1748 | |
| 1749 else { | |
| 1750 /* If we previously had a firstbyte, but it doesn't match the new br
anch, | |
| 1751 we have to abandon the firstbyte for the regex, but if there was pr
eviously | |
| 1752 no reqbyte, it takes on the value of the old firstbyte. */ | |
| 1753 | |
| 1754 if (firstbyte >= 0 && firstbyte != branchfirstbyte) { | |
| 1755 if (reqbyte < 0) | |
| 1756 reqbyte = firstbyte; | |
| 1757 firstbyte = REQ_NONE; | |
| 1758 } | |
| 1759 | |
| 1760 /* If we (now or from before) have no firstbyte, a firstbyte from th
e | |
| 1761 branch becomes a reqbyte if there isn't a branch reqbyte. */ | |
| 1762 | |
| 1763 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0) | |
| 1764 branchreqbyte = branchfirstbyte; | |
| 1765 | |
| 1766 /* Now ensure that the reqbytes match */ | |
| 1767 | |
| 1768 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY)) | |
| 1769 reqbyte = REQ_NONE; | |
| 1770 else | |
| 1771 reqbyte |= branchreqbyte; /* To "or" REQ_VARY */ | |
| 1772 } | |
| 1773 | |
| 1774 /* Reached end of expression, either ')' or end of pattern. Go back thro
ugh | |
| 1775 the alternative branches and reverse the chain of offsets, with the fie
ld in | |
| 1776 the BRA item now becoming an offset to the first alternative. If there
are | |
| 1777 no alternatives, it points to the end of the group. The length in the | |
| 1778 terminating ket is always the length of the whole bracketed item. If an
y of | |
| 1779 the ims options were changed inside the group, compile a resetting op-c
ode | |
| 1780 following, except at the very end of the pattern. Return leaving the po
inter | |
| 1781 at the terminating char. */ | |
| 1782 | |
| 1783 if (ptr >= patternEnd || *ptr != '|') { | |
| 1784 int length = code - last_branch; | |
| 1785 do { | |
| 1786 int prev_length = getLinkValueAllowZero(last_branch + 1); | |
| 1787 putLinkValue(last_branch + 1, length); | |
| 1788 length = prev_length; | |
| 1789 last_branch -= length; | |
| 1790 } while (length > 0); | |
| 1791 | |
| 1792 /* Fill in the ket */ | |
| 1793 | |
| 1794 *code = OP_KET; | |
| 1795 putLinkValue(code + 1, code - start_bracket); | |
| 1796 code += 1 + LINK_SIZE; | |
| 1797 | |
| 1798 /* Set values to pass back */ | |
| 1799 | |
| 1800 *codeptr = code; | |
| 1801 *ptrptr = ptr; | |
| 1802 *firstbyteptr = firstbyte; | |
| 1803 *reqbyteptr = reqbyte; | |
| 1804 return true; | |
| 1805 } | |
| 1806 | |
| 1807 /* Another branch follows; insert an "or" node. Its length field points
back | |
| 1808 to the previous branch while the bracket remains open. At the end the c
hain | |
| 1809 is reversed. It's done like this so that the start of the bracket has a | |
| 1810 zero offset until it is closed, making it possible to detect recursion.
*/ | |
| 1811 | |
| 1812 *code = OP_ALT; | |
| 1813 putLinkValue(code + 1, code - last_branch); | |
| 1814 last_branch = code; | |
| 1815 code += 1 + LINK_SIZE; | |
| 1816 ptr++; | |
| 1817 } | |
| 1818 ASSERT_NOT_REACHED(); | |
| 1819 } | |
| 1820 | |
| 1821 /************************************************* | |
| 1822 * Check for anchored expression * | |
| 1823 *************************************************/ | |
| 1824 | |
| 1825 /* Try to find out if this is an anchored regular expression. Consider each | |
| 1826 alternative branch. If they all start OP_CIRC, or with a bracket | |
| 1827 all of whose alternatives start OP_CIRC (recurse ad lib), then | |
| 1828 it's anchored. | |
| 1829 | |
| 1830 Arguments: | |
| 1831 code points to start of expression (the bracket) | |
| 1832 captureMap a bitmap of which brackets we are inside while testing; this | |
| 1833 handles up to substring 31; all brackets after that share | |
| 1834 the zero bit | |
| 1835 backrefMap the back reference bitmap | |
| 1836 */ | |
| 1837 | |
| 1838 static bool branchIsAnchored(const unsigned char* code) | |
| 1839 { | |
| 1840 const unsigned char* scode = firstSignificantOpcode(code); | |
| 1841 int op = *scode; | |
| 1842 | |
| 1843 /* Brackets */ | |
| 1844 if (op >= OP_BRA || op == OP_ASSERT) | |
| 1845 return bracketIsAnchored(scode); | |
| 1846 | |
| 1847 /* Check for explicit anchoring */ | |
| 1848 return op == OP_CIRC; | |
| 1849 } | |
| 1850 | |
| 1851 static bool bracketIsAnchored(const unsigned char* code) | |
| 1852 { | |
| 1853 do { | |
| 1854 if (!branchIsAnchored(code + 1 + LINK_SIZE)) | |
| 1855 return false; | |
| 1856 code += getLinkValue(code + 1); | |
| 1857 } while (*code == OP_ALT); /* Loop for each alternative */ | |
| 1858 return true; | |
| 1859 } | |
| 1860 | |
| 1861 /************************************************* | |
| 1862 * Check for starting with ^ or .* * | |
| 1863 *************************************************/ | |
| 1864 | |
| 1865 /* This is called to find out if every branch starts with ^ or .* so that | |
| 1866 "first char" processing can be done to speed things up in multiline | |
| 1867 matching and for non-DOTALL patterns that start with .* (which must start at | |
| 1868 the beginning or after \n) | |
| 1869 | |
| 1870 Except when the .* appears inside capturing parentheses, and there is a | |
| 1871 subsequent back reference to those parentheses. By keeping a bitmap of the | |
| 1872 first 31 back references, we can catch some of the more common cases more | |
| 1873 precisely; all the greater back references share a single bit. | |
| 1874 | |
| 1875 Arguments: | |
| 1876 code points to start of expression (the bracket) | |
| 1877 captureMap a bitmap of which brackets we are inside while testing; this | |
| 1878 handles up to substring 31; all brackets after that share | |
| 1879 the zero bit | |
| 1880 backrefMap the back reference bitmap | |
| 1881 */ | |
| 1882 | |
| 1883 static bool branchNeedsLineStart(const unsigned char* code, unsigned captureMap,
unsigned backrefMap) | |
| 1884 { | |
| 1885 const unsigned char* scode = firstSignificantOpcode(code); | |
| 1886 int op = *scode; | |
| 1887 | |
| 1888 /* Capturing brackets */ | |
| 1889 if (op > OP_BRA) { | |
| 1890 int captureNum = op - OP_BRA; | |
| 1891 if (captureNum > EXTRACT_BASIC_MAX) | |
| 1892 captureNum = get2ByteValue(scode + 2 + LINK_SIZE); | |
| 1893 int bracketMask = (captureNum < 32) ? (1 << captureNum) : 1; | |
| 1894 return bracketNeedsLineStart(scode, captureMap | bracketMask, backrefMap
); | |
| 1895 } | |
| 1896 | |
| 1897 /* Other brackets */ | |
| 1898 if (op == OP_BRA || op == OP_ASSERT) | |
| 1899 return bracketNeedsLineStart(scode, captureMap, backrefMap); | |
| 1900 | |
| 1901 /* .* means "start at start or after \n" if it isn't in brackets that | |
| 1902 may be referenced. */ | |
| 1903 | |
| 1904 if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR) | |
| 1905 return scode[1] == OP_NOT_NEWLINE && !(captureMap & backrefMap); | |
| 1906 | |
| 1907 /* Explicit ^ */ | |
| 1908 return op == OP_CIRC || op == OP_BOL; | |
| 1909 } | |
| 1910 | |
| 1911 static bool bracketNeedsLineStart(const unsigned char* code, unsigned captureMap
, unsigned backrefMap) | |
| 1912 { | |
| 1913 do { | |
| 1914 if (!branchNeedsLineStart(code + 1 + LINK_SIZE, captureMap, backrefMap)) | |
| 1915 return false; | |
| 1916 code += getLinkValue(code + 1); | |
| 1917 } while (*code == OP_ALT); /* Loop for each alternative */ | |
| 1918 return true; | |
| 1919 } | |
| 1920 | |
| 1921 /************************************************* | |
| 1922 * Check for asserted fixed first char * | |
| 1923 *************************************************/ | |
| 1924 | |
| 1925 /* During compilation, the "first char" settings from forward assertions are | |
| 1926 discarded, because they can cause conflicts with actual literals that follow. | |
| 1927 However, if we end up without a first char setting for an unanchored pattern, | |
| 1928 it is worth scanning the regex to see if there is an initial asserted first | |
| 1929 char. If all branches start with the same asserted char, or with a bracket all | |
| 1930 of whose alternatives start with the same asserted char (recurse ad lib), then | |
| 1931 we return that char, otherwise -1. | |
| 1932 | |
| 1933 Arguments: | |
| 1934 code points to start of expression (the bracket) | |
| 1935 options pointer to the options (used to check casing changes) | |
| 1936 inassert true if in an assertion | |
| 1937 | |
| 1938 Returns: -1 or the fixed first char | |
| 1939 */ | |
| 1940 | |
| 1941 static int branchFindFirstAssertedCharacter(const unsigned char* code, bool inas
sert) | |
| 1942 { | |
| 1943 const unsigned char* scode = firstSignificantOpcodeSkippingAssertions(code); | |
| 1944 int op = *scode; | |
| 1945 | |
| 1946 if (op >= OP_BRA) | |
| 1947 op = OP_BRA; | |
| 1948 | |
| 1949 switch (op) { | |
| 1950 default: | |
| 1951 return -1; | |
| 1952 | |
| 1953 case OP_BRA: | |
| 1954 case OP_ASSERT: | |
| 1955 return bracketFindFirstAssertedCharacter(scode, op == OP_ASSERT); | |
| 1956 | |
| 1957 case OP_EXACT: | |
| 1958 scode += 2; | |
| 1959 /* Fall through */ | |
| 1960 | |
| 1961 case OP_CHAR: | |
| 1962 case OP_CHAR_IGNORING_CASE: | |
| 1963 case OP_ASCII_CHAR: | |
| 1964 case OP_ASCII_LETTER_IGNORING_CASE: | |
| 1965 case OP_PLUS: | |
| 1966 case OP_MINPLUS: | |
| 1967 if (!inassert) | |
| 1968 return -1; | |
| 1969 return scode[1]; | |
| 1970 } | |
| 1971 } | |
| 1972 | |
| 1973 static int bracketFindFirstAssertedCharacter(const unsigned char* code, bool ina
ssert) | |
| 1974 { | |
| 1975 int c = -1; | |
| 1976 do { | |
| 1977 int d = branchFindFirstAssertedCharacter(code + 1 + LINK_SIZE, inassert)
; | |
| 1978 if (d < 0) | |
| 1979 return -1; | |
| 1980 if (c < 0) | |
| 1981 c = d; | |
| 1982 else if (c != d) | |
| 1983 return -1; | |
| 1984 code += getLinkValue(code + 1); | |
| 1985 } while (*code == OP_ALT); | |
| 1986 return c; | |
| 1987 } | |
| 1988 | |
| 1989 static inline int multiplyWithOverflowCheck(int a, int b) | |
| 1990 { | |
| 1991 if (!a || !b) | |
| 1992 return 0; | |
| 1993 if (a > MAX_PATTERN_SIZE / b) | |
| 1994 return -1; | |
| 1995 return a * b; | |
| 1996 } | |
| 1997 | |
| 1998 static int calculateCompiledPatternLength(const UChar* pattern, int patternLengt
h, JSRegExpIgnoreCaseOption ignoreCase, | |
| 1999 CompileData& cd, ErrorCode& errorcode) | |
| 2000 { | |
| 2001 /* Make a pass over the pattern to compute the | |
| 2002 amount of store required to hold the compiled code. This does not have to b
e | |
| 2003 perfect as long as errors are overestimates. */ | |
| 2004 | |
| 2005 if (patternLength > MAX_PATTERN_SIZE) { | |
| 2006 errorcode = ERR16; | |
| 2007 return -1; | |
| 2008 } | |
| 2009 | |
| 2010 int length = 1 + LINK_SIZE; /* For initial BRA plus length */ | |
| 2011 int branch_extra = 0; | |
| 2012 int lastitemlength = 0; | |
| 2013 unsigned brastackptr = 0; | |
| 2014 int brastack[BRASTACK_SIZE]; | |
| 2015 unsigned char bralenstack[BRASTACK_SIZE]; | |
| 2016 int bracount = 0; | |
| 2017 | |
| 2018 const UChar* ptr = reinterpret_cast<const UChar*>(pattern - 1); | |
| 2019 const UChar* patternEnd = reinterpret_cast<const UChar*>(pattern + patternLe
ngth); | |
| 2020 | |
| 2021 while (++ptr < patternEnd) { | |
| 2022 int minRepeats = 0, maxRepeats = 0; | |
| 2023 int c = *ptr; | |
| 2024 | |
| 2025 switch (c) { | |
| 2026 /* A backslashed item may be an escaped data character or it may be
a | |
| 2027 character type. */ | |
| 2028 | |
| 2029 case '\\': | |
| 2030 c = checkEscape(&ptr, patternEnd, &errorcode, cd.numCapturingBra
ckets, false); | |
| 2031 if (errorcode != 0) | |
| 2032 return -1; | |
| 2033 | |
| 2034 lastitemlength = 1; /* Default length of last item for repea
ts */ | |
| 2035 | |
| 2036 if (c >= 0) { /* Data character */ | |
| 2037 length += 2; /* For a one-byte character */ | |
| 2038 | |
| 2039 if (c > 127) { | |
| 2040 int i; | |
| 2041 for (i = 0; i < kjs_pcre_utf8_table1_size; i++) | |
| 2042 if (c <= kjs_pcre_utf8_table1[i]) break; | |
| 2043 length += i; | |
| 2044 lastitemlength += i; | |
| 2045 } | |
| 2046 | |
| 2047 continue; | |
| 2048 } | |
| 2049 | |
| 2050 /* Other escapes need one byte */ | |
| 2051 | |
| 2052 length++; | |
| 2053 | |
| 2054 /* A back reference needs an additional 2 bytes, plus either one
or 5 | |
| 2055 bytes for a repeat. We also need to keep the value of the highe
st | |
| 2056 back reference. */ | |
| 2057 | |
| 2058 if (c <= -ESC_REF) { | |
| 2059 int refnum = -c - ESC_REF; | |
| 2060 cd.backrefMap |= (refnum < 32) ? (1 << refnum) : 1; | |
| 2061 if (refnum > cd.top_backref) | |
| 2062 cd.top_backref = refnum; | |
| 2063 length += 2; /* For single back reference */ | |
| 2064 if (safelyCheckNextChar(ptr, patternEnd, '{') && isCountedRe
peat(ptr + 2, patternEnd)) { | |
| 2065 ptr = readRepeatCounts(ptr + 2, &minRepeats, &maxRepeats
, &errorcode); | |
| 2066 if (errorcode) | |
| 2067 return -1; | |
| 2068 if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats =
= -1)) || | |
| 2069 (minRepeats == 1 && maxRepeats == -1)) | |
| 2070 length++; | |
| 2071 else | |
| 2072 length += 5; | |
| 2073 if (safelyCheckNextChar(ptr, patternEnd, '?')) | |
| 2074 ptr++; | |
| 2075 } | |
| 2076 } | |
| 2077 continue; | |
| 2078 | |
| 2079 case '^': /* Single-byte metacharacters */ | |
| 2080 case '.': | |
| 2081 case '$': | |
| 2082 length++; | |
| 2083 lastitemlength = 1; | |
| 2084 continue; | |
| 2085 | |
| 2086 case '*': /* These repeats won't be after brackets; */ | |
| 2087 case '+': /* those are handled separately */ | |
| 2088 case '?': | |
| 2089 length++; | |
| 2090 goto POSSESSIVE; | |
| 2091 | |
| 2092 /* This covers the cases of braced repeats after a single char, meta
char, | |
| 2093 class, or back reference. */ | |
| 2094 | |
| 2095 case '{': | |
| 2096 if (!isCountedRepeat(ptr + 1, patternEnd)) | |
| 2097 goto NORMAL_CHAR; | |
| 2098 ptr = readRepeatCounts(ptr + 1, &minRepeats, &maxRepeats, &error
code); | |
| 2099 if (errorcode != 0) | |
| 2100 return -1; | |
| 2101 | |
| 2102 /* These special cases just insert one extra opcode */ | |
| 2103 | |
| 2104 if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats == -1)) |
| | |
| 2105 (minRepeats == 1 && maxRepeats == -1)) | |
| 2106 length++; | |
| 2107 | |
| 2108 /* These cases might insert additional copies of a preceding cha
racter. */ | |
| 2109 | |
| 2110 else { | |
| 2111 if (minRepeats != 1) { | |
| 2112 length -= lastitemlength; /* Uncount the original char
or metachar */ | |
| 2113 if (minRepeats > 0) | |
| 2114 length += 3 + lastitemlength; | |
| 2115 } | |
| 2116 length += lastitemlength + ((maxRepeats > 0) ? 3 : 1); | |
| 2117 } | |
| 2118 | |
| 2119 if (safelyCheckNextChar(ptr, patternEnd, '?')) | |
| 2120 ptr++; /* Needs no extra length */ | |
| 2121 | |
| 2122 POSSESSIVE: /* Test for possessive quantifier */ | |
| 2123 if (safelyCheckNextChar(ptr, patternEnd, '+')) { | |
| 2124 ptr++; | |
| 2125 length += 2 + 2 * LINK_SIZE; /* Allow for atomic brackets
*/ | |
| 2126 } | |
| 2127 continue; | |
| 2128 | |
| 2129 /* An alternation contains an offset to the next branch or ket. If a
ny ims | |
| 2130 options changed in the previous branch(es), and/or if we are in a | |
| 2131 lookbehind assertion, extra space will be needed at the start of th
e | |
| 2132 branch. This is handled by branch_extra. */ | |
| 2133 | |
| 2134 case '|': | |
| 2135 if (brastackptr == 0) | |
| 2136 cd.needOuterBracket = true; | |
| 2137 length += 1 + LINK_SIZE + branch_extra; | |
| 2138 continue; | |
| 2139 | |
| 2140 /* A character class uses 33 characters provided that all the charac
ter | |
| 2141 values are less than 256. Otherwise, it uses a bit map for low valu
ed | |
| 2142 characters, and individual items for others. Don't worry about char
acter | |
| 2143 types that aren't allowed in classes - they'll get picked up during
the | |
| 2144 compile. A character class that contains only one single-byte chara
cter | |
| 2145 uses 2 or 3 bytes, depending on whether it is negated or not. Notic
e this | |
| 2146 where we can. (In UTF-8 mode we can do this only for chars < 128.)
*/ | |
| 2147 | |
| 2148 case '[': { | |
| 2149 int class_optcount; | |
| 2150 if (*(++ptr) == '^') { | |
| 2151 class_optcount = 10; /* Greater than one */ | |
| 2152 ptr++; | |
| 2153 } | |
| 2154 else | |
| 2155 class_optcount = 0; | |
| 2156 | |
| 2157 bool class_utf8 = false; | |
| 2158 | |
| 2159 for (; ptr < patternEnd && *ptr != ']'; ++ptr) { | |
| 2160 /* Check for escapes */ | |
| 2161 | |
| 2162 if (*ptr == '\\') { | |
| 2163 c = checkEscape(&ptr, patternEnd, &errorcode, cd.numCapt
uringBrackets, true); | |
| 2164 if (errorcode != 0) | |
| 2165 return -1; | |
| 2166 | |
| 2167 /* Handle escapes that turn into characters */ | |
| 2168 | |
| 2169 if (c >= 0) | |
| 2170 goto NON_SPECIAL_CHARACTER; | |
| 2171 | |
| 2172 /* Escapes that are meta-things. The normal ones just af
fect the | |
| 2173 bit map, but Unicode properties require an XCLASS exten
ded item. */ | |
| 2174 | |
| 2175 else | |
| 2176 class_optcount = 10; /* \d, \s etc; make sur
e > 1 */ | |
| 2177 } | |
| 2178 | |
| 2179 /* Anything else increments the possible optimization count.
We have to | |
| 2180 detect ranges here so that we can compute the number of ext
ra ranges for | |
| 2181 caseless wide characters when UCP support is available. If
there are wide | |
| 2182 characters, we are going to have to use an XCLASS, even for
single | |
| 2183 characters. */ | |
| 2184 | |
| 2185 else { | |
| 2186 c = *ptr; | |
| 2187 | |
| 2188 /* Come here from handling \ above when it escapes to a
char value */ | |
| 2189 | |
| 2190 NON_SPECIAL_CHARACTER: | |
| 2191 class_optcount++; | |
| 2192 | |
| 2193 int d = -1; | |
| 2194 if (safelyCheckNextChar(ptr, patternEnd, '-')) { | |
| 2195 UChar const *hyptr = ptr++; | |
| 2196 if (safelyCheckNextChar(ptr, patternEnd, '\\')) { | |
| 2197 ptr++; | |
| 2198 d = checkEscape(&ptr, patternEnd, &errorcode, cd
.numCapturingBrackets, true); | |
| 2199 if (errorcode != 0) | |
| 2200 return -1; | |
| 2201 } | |
| 2202 else if ((ptr + 1 < patternEnd) && ptr[1] != ']') | |
| 2203 d = *++ptr; | |
| 2204 if (d < 0) | |
| 2205 ptr = hyptr; /* go back to hyphen as data *
/ | |
| 2206 } | |
| 2207 | |
| 2208 /* If d >= 0 we have a range. In UTF-8 mode, if the end
is > 255, or > | |
| 2209 127 for caseless matching, we will need to use an XCLAS
S. */ | |
| 2210 | |
| 2211 if (d >= 0) { | |
| 2212 class_optcount = 10; /* Ensure > 1 */ | |
| 2213 if (d < c) { | |
| 2214 errorcode = ERR8; | |
| 2215 return -1; | |
| 2216 } | |
| 2217 | |
| 2218 if ((d > 255 || (ignoreCase && d > 127))) { | |
| 2219 unsigned char buffer[6]; | |
| 2220 if (!class_utf8) /* Allow for XCLASS ove
rhead */ | |
| 2221 { | |
| 2222 class_utf8 = true; | |
| 2223 length += LINK_SIZE + 2; | |
| 2224 } | |
| 2225 | |
| 2226 /* If we have UCP support, find out how many ext
ra ranges are | |
| 2227 needed to map the other case of characters with
in this range. We | |
| 2228 have to mimic the range optimization here, beca
use extending the | |
| 2229 range upwards might push d over a boundary that
makes it use | |
| 2230 another byte in the UTF-8 representation. */ | |
| 2231 | |
| 2232 if (ignoreCase) { | |
| 2233 int occ, ocd; | |
| 2234 int cc = c; | |
| 2235 int origd = d; | |
| 2236 while (getOthercaseRange(&cc, origd, &occ, &
ocd)) { | |
| 2237 if (occ >= c && ocd <= d) | |
| 2238 continue; /* Skip embedded */ | |
| 2239 | |
| 2240 if (occ < c && ocd >= c - 1) /* Extend
the basic range */ | |
| 2241 { /* if there
is overlap, */ | |
| 2242 c = occ; /* noti
ng that if occ < c */ | |
| 2243 continue; /* we c
an't have ocd > d */ | |
| 2244 } /* because
a subrange is */ | |
| 2245 if (ocd > d && occ <= d + 1) /* always
shorter than */ | |
| 2246 { /* the basi
c range. */ | |
| 2247 d = ocd; | |
| 2248 continue; | |
| 2249 } | |
| 2250 | |
| 2251 /* An extra item is needed */ | |
| 2252 | |
| 2253 length += 1 + encodeUTF8(occ, buffer) + | |
| 2254 ((occ == ocd) ? 0 : encodeUTF8(ocd, buff
er)); | |
| 2255 } | |
| 2256 } | |
| 2257 | |
| 2258 /* The length of the (possibly extended) range *
/ | |
| 2259 | |
| 2260 length += 1 + encodeUTF8(c, buffer) + encodeUTF8
(d, buffer); | |
| 2261 } | |
| 2262 | |
| 2263 } | |
| 2264 | |
| 2265 /* We have a single character. There is nothing to be do
ne unless we | |
| 2266 are in UTF-8 mode. If the char is > 255, or 127 when ca
seless, we must | |
| 2267 allow for an XCL_SINGLE item, doubled for caselessness
if there is UCP | |
| 2268 support. */ | |
| 2269 | |
| 2270 else { | |
| 2271 if ((c > 255 || (ignoreCase && c > 127))) { | |
| 2272 unsigned char buffer[6]; | |
| 2273 class_optcount = 10; /* Ensure > 1 */ | |
| 2274 if (!class_utf8) /* Allow for XCLASS ove
rhead */ | |
| 2275 { | |
| 2276 class_utf8 = true; | |
| 2277 length += LINK_SIZE + 2; | |
| 2278 } | |
| 2279 length += (ignoreCase ? 2 : 1) * (1 + encodeUTF8
(c, buffer)); | |
| 2280 } | |
| 2281 } | |
| 2282 } | |
| 2283 } | |
| 2284 | |
| 2285 if (ptr >= patternEnd) { /* Missing terminating ']' */ | |
| 2286 errorcode = ERR6; | |
| 2287 return -1; | |
| 2288 } | |
| 2289 | |
| 2290 /* We can optimize when there was only one optimizable character
. | |
| 2291 Note that this does not detect the case of a negated single cha
racter. | |
| 2292 In that case we do an incorrect length computation, but it's no
t a serious | |
| 2293 problem because the computed length is too large rather than to
o small. */ | |
| 2294 | |
| 2295 if (class_optcount == 1) | |
| 2296 goto NORMAL_CHAR; | |
| 2297 | |
| 2298 /* Here, we handle repeats for the class opcodes. */ | |
| 2299 { | |
| 2300 length += 33; | |
| 2301 | |
| 2302 /* A repeat needs either 1 or 5 bytes. If it is a possessive
quantifier, | |
| 2303 we also need extra for wrapping the whole thing in a sub-pa
ttern. */ | |
| 2304 | |
| 2305 if (safelyCheckNextChar(ptr, patternEnd, '{') && isCountedRe
peat(ptr + 2, patternEnd)) { | |
| 2306 ptr = readRepeatCounts(ptr + 2, &minRepeats, &maxRepeats
, &errorcode); | |
| 2307 if (errorcode != 0) | |
| 2308 return -1; | |
| 2309 if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats =
= -1)) || | |
| 2310 (minRepeats == 1 && maxRepeats == -1)) | |
| 2311 length++; | |
| 2312 else | |
| 2313 length += 5; | |
| 2314 if (safelyCheckNextChar(ptr, patternEnd, '+')) { | |
| 2315 ptr++; | |
| 2316 length += 2 + 2 * LINK_SIZE; | |
| 2317 } else if (safelyCheckNextChar(ptr, patternEnd, '?')) | |
| 2318 ptr++; | |
| 2319 } | |
| 2320 } | |
| 2321 continue; | |
| 2322 } | |
| 2323 | |
| 2324 /* Brackets may be genuine groups or special things */ | |
| 2325 | |
| 2326 case '(': { | |
| 2327 int branch_newextra = 0; | |
| 2328 int bracket_length = 1 + LINK_SIZE; | |
| 2329 bool capturing = false; | |
| 2330 | |
| 2331 /* Handle special forms of bracket, which all start (? */ | |
| 2332 | |
| 2333 if (safelyCheckNextChar(ptr, patternEnd, '?')) { | |
| 2334 switch (c = (ptr + 2 < patternEnd ? ptr[2] : 0)) { | |
| 2335 /* Non-referencing groups and lookaheads just move the p
ointer on, and | |
| 2336 then behave like a non-special bracket, except that the
y don't increment | |
| 2337 the count of extracting brackets. Ditto for the "once o
nly" bracket, | |
| 2338 which is in Perl from version 5.005. */ | |
| 2339 | |
| 2340 case ':': | |
| 2341 case '=': | |
| 2342 case '!': | |
| 2343 ptr += 2; | |
| 2344 break; | |
| 2345 | |
| 2346 /* Else loop checking valid options until ) is met. Anyt
hing else is an | |
| 2347 error. If we are without any brackets, i.e. at top leve
l, the settings | |
| 2348 act as if specified in the options, so massage the opti
ons immediately. | |
| 2349 This is for backward compatibility with Perl 5.004. */ | |
| 2350 | |
| 2351 default: | |
| 2352 errorcode = ERR12; | |
| 2353 return -1; | |
| 2354 } | |
| 2355 } else | |
| 2356 capturing = 1; | |
| 2357 | |
| 2358 /* Capturing brackets must be counted so we can process escapes
in a | |
| 2359 Perlish way. If the number exceeds EXTRACT_BASIC_MAX we are goi
ng to need | |
| 2360 an additional 3 bytes of memory per capturing bracket. */ | |
| 2361 | |
| 2362 if (capturing) { | |
| 2363 bracount++; | |
| 2364 if (bracount > EXTRACT_BASIC_MAX) | |
| 2365 bracket_length += 3; | |
| 2366 } | |
| 2367 | |
| 2368 /* Save length for computing whole length at end if there's a re
peat that | |
| 2369 requires duplication of the group. Also save the current value
of | |
| 2370 branch_extra, and start the new group with the new value. If no
n-zero, this | |
| 2371 will either be 2 for a (?imsx: group, or 3 for a lookbehind ass
ertion. */ | |
| 2372 | |
| 2373 if (brastackptr >= sizeof(brastack)/sizeof(int)) { | |
| 2374 errorcode = ERR17; | |
| 2375 return -1; | |
| 2376 } | |
| 2377 | |
| 2378 bralenstack[brastackptr] = branch_extra; | |
| 2379 branch_extra = branch_newextra; | |
| 2380 | |
| 2381 brastack[brastackptr++] = length; | |
| 2382 length += bracket_length; | |
| 2383 continue; | |
| 2384 } | |
| 2385 | |
| 2386 /* Handle ket. Look for subsequent maxRepeats/minRepeats; for certai
n sets of values we | |
| 2387 have to replicate this bracket up to that many times. If brastackpt
r is | |
| 2388 0 this is an unmatched bracket which will generate an error, but ta
ke care | |
| 2389 not to try to access brastack[-1] when computing the length and res
toring | |
| 2390 the branch_extra value. */ | |
| 2391 | |
| 2392 case ')': { | |
| 2393 int duplength; | |
| 2394 length += 1 + LINK_SIZE; | |
| 2395 if (brastackptr > 0) { | |
| 2396 duplength = length - brastack[--brastackptr]; | |
| 2397 branch_extra = bralenstack[brastackptr]; | |
| 2398 } | |
| 2399 else | |
| 2400 duplength = 0; | |
| 2401 | |
| 2402 /* Leave ptr at the final char; for readRepeatCounts this happen
s | |
| 2403 automatically; for the others we need an increment. */ | |
| 2404 | |
| 2405 if ((ptr + 1 < patternEnd) && (c = ptr[1]) == '{' && isCountedRe
peat(ptr + 2, patternEnd)) { | |
| 2406 ptr = readRepeatCounts(ptr + 2, &minRepeats, &maxRepeats, &e
rrorcode); | |
| 2407 if (errorcode) | |
| 2408 return -1; | |
| 2409 } else if (c == '*') { | |
| 2410 minRepeats = 0; | |
| 2411 maxRepeats = -1; | |
| 2412 ptr++; | |
| 2413 } else if (c == '+') { | |
| 2414 minRepeats = 1; | |
| 2415 maxRepeats = -1; | |
| 2416 ptr++; | |
| 2417 } else if (c == '?') { | |
| 2418 minRepeats = 0; | |
| 2419 maxRepeats = 1; | |
| 2420 ptr++; | |
| 2421 } else { | |
| 2422 minRepeats = 1; | |
| 2423 maxRepeats = 1; | |
| 2424 } | |
| 2425 | |
| 2426 /* If the minimum is zero, we have to allow for an OP_BRAZERO be
fore the | |
| 2427 group, and if the maximum is greater than zero, we have to repl
icate | |
| 2428 maxval-1 times; each replication acquires an OP_BRAZERO plus a
nesting | |
| 2429 bracket set. */ | |
| 2430 | |
| 2431 int repeatsLength; | |
| 2432 if (minRepeats == 0) { | |
| 2433 length++; | |
| 2434 if (maxRepeats > 0) { | |
| 2435 repeatsLength = multiplyWithOverflowCheck(maxRepeats - 1
, duplength + 3 + 2 * LINK_SIZE); | |
| 2436 if (repeatsLength < 0) { | |
| 2437 errorcode = ERR16; | |
| 2438 return -1; | |
| 2439 } | |
| 2440 length += repeatsLength; | |
| 2441 if (length > MAX_PATTERN_SIZE) { | |
| 2442 errorcode = ERR16; | |
| 2443 return -1; | |
| 2444 } | |
| 2445 } | |
| 2446 } | |
| 2447 | |
| 2448 /* When the minimum is greater than zero, we have to replicate u
p to | |
| 2449 minval-1 times, with no additions required in the copies. Then,
if there | |
| 2450 is a limited maximum we have to replicate up to maxval-1 times
allowing | |
| 2451 for a BRAZERO item before each optional copy and nesting bracke
ts for all | |
| 2452 but one of the optional copies. */ | |
| 2453 | |
| 2454 else { | |
| 2455 repeatsLength = multiplyWithOverflowCheck(minRepeats - 1, du
plength); | |
| 2456 if (repeatsLength < 0) { | |
| 2457 errorcode = ERR16; | |
| 2458 return -1; | |
| 2459 } | |
| 2460 length += repeatsLength; | |
| 2461 if (maxRepeats > minRepeats) { /* Need this test as maxRepea
ts=-1 means no limit */ | |
| 2462 repeatsLength = multiplyWithOverflowCheck(maxRepeats - m
inRepeats, duplength + 3 + 2 * LINK_SIZE); | |
| 2463 if (repeatsLength < 0) { | |
| 2464 errorcode = ERR16; | |
| 2465 return -1; | |
| 2466 } | |
| 2467 length += repeatsLength - (2 + 2 * LINK_SIZE); | |
| 2468 } | |
| 2469 if (length > MAX_PATTERN_SIZE) { | |
| 2470 errorcode = ERR16; | |
| 2471 return -1; | |
| 2472 } | |
| 2473 } | |
| 2474 | |
| 2475 /* Allow space for once brackets for "possessive quantifier" */ | |
| 2476 | |
| 2477 if (safelyCheckNextChar(ptr, patternEnd, '+')) { | |
| 2478 ptr++; | |
| 2479 length += 2 + 2 * LINK_SIZE; | |
| 2480 } | |
| 2481 continue; | |
| 2482 } | |
| 2483 | |
| 2484 /* Non-special character. It won't be space or # in extended mode, s
o it is | |
| 2485 always a genuine character. If we are in a \Q...\E sequence, check
for the | |
| 2486 end; if not, we have a literal. */ | |
| 2487 | |
| 2488 default: | |
| 2489 NORMAL_CHAR: | |
| 2490 length += 2; /* For a one-byte character */ | |
| 2491 lastitemlength = 1; /* Default length of last item for repeats
*/ | |
| 2492 | |
| 2493 if (c > 127) { | |
| 2494 int i; | |
| 2495 for (i = 0; i < kjs_pcre_utf8_table1_size; i++) | |
| 2496 if (c <= kjs_pcre_utf8_table1[i]) | |
| 2497 break; | |
| 2498 length += i; | |
| 2499 lastitemlength += i; | |
| 2500 } | |
| 2501 | |
| 2502 continue; | |
| 2503 } | |
| 2504 } | |
| 2505 | |
| 2506 length += 2 + LINK_SIZE; /* For final KET and END */ | |
| 2507 | |
| 2508 cd.numCapturingBrackets = bracount; | |
| 2509 return length; | |
| 2510 } | |
| 2511 | |
| 2512 /************************************************* | |
| 2513 * Compile a Regular Expression * | |
| 2514 *************************************************/ | |
| 2515 | |
| 2516 /* This function takes a string and returns a pointer to a block of store | |
| 2517 holding a compiled version of the expression. The original API for this | |
| 2518 function had no error code return variable; it is retained for backwards | |
| 2519 compatibility. The new function is given a new name. | |
| 2520 | |
| 2521 Arguments: | |
| 2522 pattern the regular expression | |
| 2523 options various option bits | |
| 2524 errorcodeptr pointer to error code variable (pcre_compile2() only) | |
| 2525 can be NULL if you don't want a code value | |
| 2526 errorptr pointer to pointer to error text | |
| 2527 erroroffset ptr offset in pattern where error was detected | |
| 2528 tables pointer to character tables or NULL | |
| 2529 | |
| 2530 Returns: pointer to compiled data block, or NULL on error, | |
| 2531 with errorptr and erroroffset set | |
| 2532 */ | |
| 2533 | |
| 2534 static inline JSRegExp* returnError(ErrorCode errorcode, const char** errorptr) | |
| 2535 { | |
| 2536 *errorptr = errorText(errorcode); | |
| 2537 return 0; | |
| 2538 } | |
| 2539 | |
| 2540 JSRegExp* jsRegExpCompile(const UChar* pattern, int patternLength, | |
| 2541 JSRegExpIgnoreCaseOption ignoreCase, JSRegExpMultilineOption mul
tiline, | |
| 2542 unsigned* numSubpatterns, const char** errorptr, | |
| 2543 malloc_t* allocate_function, free_t* free_function) | |
| 2544 { | |
| 2545 /* We can't pass back an error message if errorptr is NULL; I guess the best
we | |
| 2546 can do is just return NULL, but we can set a code value if there is a code
pointer. */ | |
| 2547 if (!errorptr) | |
| 2548 return 0; | |
| 2549 *errorptr = NULL; | |
| 2550 | |
| 2551 CompileData cd; | |
| 2552 | |
| 2553 ErrorCode errorcode = ERR0; | |
| 2554 /* Call this once just to count the brackets. */ | |
| 2555 calculateCompiledPatternLength(pattern, patternLength, ignoreCase, cd, error
code); | |
| 2556 /* Call it again to compute the length. */ | |
| 2557 int length = calculateCompiledPatternLength(pattern, patternLength, ignoreCa
se, cd, errorcode); | |
| 2558 if (errorcode) | |
| 2559 return returnError(errorcode, errorptr); | |
| 2560 | |
| 2561 if (length > MAX_PATTERN_SIZE) | |
| 2562 return returnError(ERR16, errorptr); | |
| 2563 | |
| 2564 size_t size = length + sizeof(JSRegExp); | |
| 2565 JSRegExp* re = reinterpret_cast<JSRegExp*>((*allocate_function)(size)); | |
| 2566 | |
| 2567 if (!re) | |
| 2568 return returnError(ERR13, errorptr); | |
| 2569 | |
| 2570 re->options = (ignoreCase ? IgnoreCaseOption : 0) | (multiline ? MatchAcross
MultipleLinesOption : 0); | |
| 2571 | |
| 2572 /* The starting points of the name/number translation table and of the code
are | |
| 2573 passed around in the compile data block. */ | |
| 2574 | |
| 2575 unsigned char* codeStart = reinterpret_cast<unsigned char*>(re + 1); | |
| 2576 | |
| 2577 /* Set up a starting, non-extracting bracket, then compile the expression. O
n | |
| 2578 error, errorcode will be set non-zero, so we don't need to look at the resu
lt | |
| 2579 of the function here. */ | |
| 2580 | |
| 2581 const UChar* ptr = reinterpret_cast<const UChar*>(pattern); | |
| 2582 const UChar* patternEnd = pattern + patternLength; | |
| 2583 unsigned char* code = reinterpret_cast<unsigned char*>(codeStart); | |
| 2584 int firstbyte, reqbyte; | |
| 2585 int bracketCount = 0; | |
| 2586 if (!cd.needOuterBracket) | |
| 2587 compileBranch(re->options, &bracketCount, &code, &ptr, patternEnd, &erro
rcode, &firstbyte, &reqbyte, cd); | |
| 2588 else { | |
| 2589 *code = OP_BRA; | |
| 2590 compileBracket(re->options, &bracketCount, &code, &ptr, patternEnd, &err
orcode, 0, &firstbyte, &reqbyte, cd); | |
| 2591 } | |
| 2592 re->top_bracket = bracketCount; | |
| 2593 re->top_backref = cd.top_backref; | |
| 2594 | |
| 2595 /* If not reached end of pattern on success, there's an excess bracket. */ | |
| 2596 | |
| 2597 if (errorcode == 0 && ptr < patternEnd) | |
| 2598 errorcode = ERR10; | |
| 2599 | |
| 2600 /* Fill in the terminating state and check for disastrous overflow, but | |
| 2601 if debugging, leave the test till after things are printed out. */ | |
| 2602 | |
| 2603 *code++ = OP_END; | |
| 2604 | |
| 2605 ASSERT(code - codeStart <= length); | |
| 2606 if (code - codeStart > length) | |
| 2607 errorcode = ERR7; | |
| 2608 | |
| 2609 /* Give an error if there's back reference to a non-existent capturing | |
| 2610 subpattern. */ | |
| 2611 | |
| 2612 if (re->top_backref > re->top_bracket) | |
| 2613 errorcode = ERR15; | |
| 2614 | |
| 2615 /* Failed to compile, or error while post-processing */ | |
| 2616 | |
| 2617 if (errorcode != ERR0) { | |
| 2618 (*free_function)(reinterpret_cast<void*>(re)); | |
| 2619 return returnError(errorcode, errorptr); | |
| 2620 } | |
| 2621 | |
| 2622 /* If the anchored option was not passed, set the flag if we can determine t
hat | |
| 2623 the pattern is anchored by virtue of ^ characters or \A or anything else (s
uch | |
| 2624 as starting with .* when DOTALL is set). | |
| 2625 | |
| 2626 Otherwise, if we know what the first character has to be, save it, because
that | |
| 2627 speeds up unanchored matches no end. If not, see if we can set the | |
| 2628 UseMultiLineFirstByteOptimizationOption flag. This is helpful for multiline
matches when all branches | |
| 2629 start with ^. and also when all branches start with .* for non-DOTALL match
es. | |
| 2630 */ | |
| 2631 | |
| 2632 if (cd.needOuterBracket ? bracketIsAnchored(codeStart) : branchIsAnchored(co
deStart)) | |
| 2633 re->options |= IsAnchoredOption; | |
| 2634 else { | |
| 2635 if (firstbyte < 0) { | |
| 2636 firstbyte = (cd.needOuterBracket | |
| 2637 ? bracketFindFirstAssertedCharacter(codeStart, false) | |
| 2638 : branchFindFirstAssertedCharacter(codeStart, false)) | |
| 2639 | ((re->options & IgnoreCaseOption) ? REQ_IGNORE_CASE : 0); | |
| 2640 } | |
| 2641 if (firstbyte >= 0) { | |
| 2642 int ch = firstbyte & 255; | |
| 2643 if (ch < 127) { | |
| 2644 re->first_byte = ((firstbyte & REQ_IGNORE_CASE) && flipCase(ch)
== ch) ? ch : firstbyte; | |
| 2645 re->options |= UseFirstByteOptimizationOption; | |
| 2646 } | |
| 2647 } else { | |
| 2648 if (cd.needOuterBracket ? bracketNeedsLineStart(codeStart, 0, cd.bac
krefMap) : branchNeedsLineStart(codeStart, 0, cd.backrefMap)) | |
| 2649 re->options |= UseMultiLineFirstByteOptimizationOption; | |
| 2650 } | |
| 2651 } | |
| 2652 | |
| 2653 /* For an anchored pattern, we use the "required byte" only if it follows a | |
| 2654 variable length item in the regex. Remove the caseless flag for non-caseabl
e | |
| 2655 bytes. */ | |
| 2656 | |
| 2657 if (reqbyte >= 0 && (!(re->options & IsAnchoredOption) || (reqbyte & REQ_VAR
Y))) { | |
| 2658 int ch = reqbyte & 255; | |
| 2659 if (ch < 127) { | |
| 2660 re->req_byte = ((reqbyte & REQ_IGNORE_CASE) && flipCase(ch) == ch) ?
(reqbyte & ~REQ_IGNORE_CASE) : reqbyte; | |
| 2661 re->options |= UseRequiredByteOptimizationOption; | |
| 2662 } | |
| 2663 } | |
| 2664 | |
| 2665 if (numSubpatterns) | |
| 2666 *numSubpatterns = re->top_bracket; | |
| 2667 return re; | |
| 2668 } | |
| 2669 | |
| 2670 void jsRegExpFree(JSRegExp* re, free_t* free_function) | |
| 2671 { | |
| 2672 (*free_function)(reinterpret_cast<void*>(re)); | |
| 2673 } | |
| 2674 | |
| 2675 } } // namespace dart::jscre | |
| OLD | NEW |