Index: src/arm/stub-cache-arm.cc |
diff --git a/src/arm/stub-cache-arm.cc b/src/arm/stub-cache-arm.cc |
index 4604c33312f7034fb8fc48ded5ca0cbf520fec6a..e79c520bf0bbb1e5a7b1b38b987d64259828bf5b 100644 |
--- a/src/arm/stub-cache-arm.cc |
+++ b/src/arm/stub-cache-arm.cc |
@@ -1053,42 +1053,6 @@ static void StoreIntAsFloat(MacroAssembler* masm, |
} |
-// Convert unsigned integer with specified number of leading zeroes in binary |
-// representation to IEEE 754 double. |
-// Integer to convert is passed in register hiword. |
-// Resulting double is returned in registers hiword:loword. |
-// This functions does not work correctly for 0. |
-static void GenerateUInt2Double(MacroAssembler* masm, |
- Register hiword, |
- Register loword, |
- Register scratch, |
- int leading_zeroes) { |
- const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; |
- const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; |
- |
- const int mantissa_shift_for_hi_word = |
- meaningful_bits - HeapNumber::kMantissaBitsInTopWord; |
- |
- const int mantissa_shift_for_lo_word = |
- kBitsPerInt - mantissa_shift_for_hi_word; |
- |
- __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift)); |
- if (mantissa_shift_for_hi_word > 0) { |
- __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word)); |
- __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word)); |
- } else { |
- __ mov(loword, Operand(0, RelocInfo::NONE)); |
- __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word)); |
- } |
- |
- // If least significant bit of biased exponent was not 1 it was corrupted |
- // by most significant bit of mantissa so we should fix that. |
- if (!(biased_exponent & 1)) { |
- __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift)); |
- } |
-} |
- |
- |
#undef __ |
#define __ ACCESS_MASM(masm()) |
@@ -3319,9 +3283,17 @@ Handle<Code> KeyedLoadStubCompiler::CompileLoadElement( |
// -- r1 : receiver |
// ----------------------------------- |
ElementsKind elements_kind = receiver_map->elements_kind(); |
- Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode(); |
- |
- __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK); |
+ if (receiver_map->has_fast_elements() || |
+ receiver_map->has_external_array_elements()) { |
+ Handle<Code> stub = KeyedLoadFastElementStub( |
+ receiver_map->instance_type() == JS_ARRAY_TYPE, |
+ elements_kind).GetCode(); |
+ __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK); |
+ } else { |
+ Handle<Code> stub = |
+ KeyedLoadDictionaryElementStub().GetCode(); |
+ __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK); |
+ } |
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss(); |
__ Jump(ic, RelocInfo::CODE_TARGET); |
@@ -3726,339 +3698,6 @@ static void GenerateSmiKeyCheck(MacroAssembler* masm, |
} |
-void KeyedLoadStubCompiler::GenerateLoadExternalArray( |
- MacroAssembler* masm, |
- ElementsKind elements_kind) { |
- // ---------- S t a t e -------------- |
- // -- lr : return address |
- // -- r0 : key |
- // -- r1 : receiver |
- // ----------------------------------- |
- Label miss_force_generic, slow, failed_allocation; |
- |
- Register key = r0; |
- Register receiver = r1; |
- |
- // This stub is meant to be tail-jumped to, the receiver must already |
- // have been verified by the caller to not be a smi. |
- |
- // Check that the key is a smi or a heap number convertible to a smi. |
- GenerateSmiKeyCheck(masm, key, r4, r5, d1, d2, &miss_force_generic); |
- |
- __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
- // r3: elements array |
- |
- // Check that the index is in range. |
- __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); |
- __ cmp(key, ip); |
- // Unsigned comparison catches both negative and too-large values. |
- __ b(hs, &miss_force_generic); |
- |
- __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); |
- // r3: base pointer of external storage |
- |
- // We are not untagging smi key and instead work with it |
- // as if it was premultiplied by 2. |
- STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); |
- |
- Register value = r2; |
- switch (elements_kind) { |
- case EXTERNAL_BYTE_ELEMENTS: |
- __ ldrsb(value, MemOperand(r3, key, LSR, 1)); |
- break; |
- case EXTERNAL_PIXEL_ELEMENTS: |
- case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
- __ ldrb(value, MemOperand(r3, key, LSR, 1)); |
- break; |
- case EXTERNAL_SHORT_ELEMENTS: |
- __ ldrsh(value, MemOperand(r3, key, LSL, 0)); |
- break; |
- case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
- __ ldrh(value, MemOperand(r3, key, LSL, 0)); |
- break; |
- case EXTERNAL_INT_ELEMENTS: |
- case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
- __ ldr(value, MemOperand(r3, key, LSL, 1)); |
- break; |
- case EXTERNAL_FLOAT_ELEMENTS: |
- if (CpuFeatures::IsSupported(VFP2)) { |
- CpuFeatures::Scope scope(VFP2); |
- __ add(r2, r3, Operand(key, LSL, 1)); |
- __ vldr(s0, r2, 0); |
- } else { |
- __ ldr(value, MemOperand(r3, key, LSL, 1)); |
- } |
- break; |
- case EXTERNAL_DOUBLE_ELEMENTS: |
- if (CpuFeatures::IsSupported(VFP2)) { |
- CpuFeatures::Scope scope(VFP2); |
- __ add(r2, r3, Operand(key, LSL, 2)); |
- __ vldr(d0, r2, 0); |
- } else { |
- __ add(r4, r3, Operand(key, LSL, 2)); |
- // r4: pointer to the beginning of the double we want to load. |
- __ ldr(r2, MemOperand(r4, 0)); |
- __ ldr(r3, MemOperand(r4, Register::kSizeInBytes)); |
- } |
- break; |
- case FAST_ELEMENTS: |
- case FAST_SMI_ELEMENTS: |
- case FAST_DOUBLE_ELEMENTS: |
- case FAST_HOLEY_ELEMENTS: |
- case FAST_HOLEY_SMI_ELEMENTS: |
- case FAST_HOLEY_DOUBLE_ELEMENTS: |
- case DICTIONARY_ELEMENTS: |
- case NON_STRICT_ARGUMENTS_ELEMENTS: |
- UNREACHABLE(); |
- break; |
- } |
- |
- // For integer array types: |
- // r2: value |
- // For float array type: |
- // s0: value (if VFP3 is supported) |
- // r2: value (if VFP3 is not supported) |
- // For double array type: |
- // d0: value (if VFP3 is supported) |
- // r2/r3: value (if VFP3 is not supported) |
- |
- if (elements_kind == EXTERNAL_INT_ELEMENTS) { |
- // For the Int and UnsignedInt array types, we need to see whether |
- // the value can be represented in a Smi. If not, we need to convert |
- // it to a HeapNumber. |
- Label box_int; |
- __ cmp(value, Operand(0xC0000000)); |
- __ b(mi, &box_int); |
- // Tag integer as smi and return it. |
- __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
- __ Ret(); |
- |
- __ bind(&box_int); |
- if (CpuFeatures::IsSupported(VFP2)) { |
- CpuFeatures::Scope scope(VFP2); |
- // Allocate a HeapNumber for the result and perform int-to-double |
- // conversion. Don't touch r0 or r1 as they are needed if allocation |
- // fails. |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- |
- __ AllocateHeapNumber(r5, r3, r4, r6, &slow, DONT_TAG_RESULT); |
- // Now we can use r0 for the result as key is not needed any more. |
- __ add(r0, r5, Operand(kHeapObjectTag)); |
- __ vmov(s0, value); |
- __ vcvt_f64_s32(d0, s0); |
- __ vstr(d0, r5, HeapNumber::kValueOffset); |
- __ Ret(); |
- } else { |
- // Allocate a HeapNumber for the result and perform int-to-double |
- // conversion. Don't touch r0 or r1 as they are needed if allocation |
- // fails. |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r5, r3, r4, r6, &slow, TAG_RESULT); |
- // Now we can use r0 for the result as key is not needed any more. |
- __ mov(r0, r5); |
- Register dst_mantissa = r1; |
- Register dst_exponent = r3; |
- FloatingPointHelper::Destination dest = |
- FloatingPointHelper::kCoreRegisters; |
- FloatingPointHelper::ConvertIntToDouble(masm, |
- value, |
- dest, |
- d0, |
- dst_mantissa, |
- dst_exponent, |
- r9, |
- s0); |
- __ str(dst_mantissa, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
- __ str(dst_exponent, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
- __ Ret(); |
- } |
- } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { |
- // The test is different for unsigned int values. Since we need |
- // the value to be in the range of a positive smi, we can't |
- // handle either of the top two bits being set in the value. |
- if (CpuFeatures::IsSupported(VFP2)) { |
- CpuFeatures::Scope scope(VFP2); |
- Label box_int, done; |
- __ tst(value, Operand(0xC0000000)); |
- __ b(ne, &box_int); |
- // Tag integer as smi and return it. |
- __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
- __ Ret(); |
- |
- __ bind(&box_int); |
- __ vmov(s0, value); |
- // Allocate a HeapNumber for the result and perform int-to-double |
- // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all |
- // registers - also when jumping due to exhausted young space. |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT); |
- |
- __ vcvt_f64_u32(d0, s0); |
- __ vstr(d0, r2, HeapNumber::kValueOffset); |
- |
- __ add(r0, r2, Operand(kHeapObjectTag)); |
- __ Ret(); |
- } else { |
- // Check whether unsigned integer fits into smi. |
- Label box_int_0, box_int_1, done; |
- __ tst(value, Operand(0x80000000)); |
- __ b(ne, &box_int_0); |
- __ tst(value, Operand(0x40000000)); |
- __ b(ne, &box_int_1); |
- // Tag integer as smi and return it. |
- __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
- __ Ret(); |
- |
- Register hiword = value; // r2. |
- Register loword = r3; |
- |
- __ bind(&box_int_0); |
- // Integer does not have leading zeros. |
- GenerateUInt2Double(masm, hiword, loword, r4, 0); |
- __ b(&done); |
- |
- __ bind(&box_int_1); |
- // Integer has one leading zero. |
- GenerateUInt2Double(masm, hiword, loword, r4, 1); |
- |
- |
- __ bind(&done); |
- // Integer was converted to double in registers hiword:loword. |
- // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber |
- // clobbers all registers - also when jumping due to exhausted young |
- // space. |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r4, r5, r7, r6, &slow, TAG_RESULT); |
- |
- __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset)); |
- __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); |
- |
- __ mov(r0, r4); |
- __ Ret(); |
- } |
- } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
- // For the floating-point array type, we need to always allocate a |
- // HeapNumber. |
- if (CpuFeatures::IsSupported(VFP2)) { |
- CpuFeatures::Scope scope(VFP2); |
- // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT); |
- __ vcvt_f64_f32(d0, s0); |
- __ vstr(d0, r2, HeapNumber::kValueOffset); |
- |
- __ add(r0, r2, Operand(kHeapObjectTag)); |
- __ Ret(); |
- } else { |
- // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r3, r4, r5, r6, &slow, TAG_RESULT); |
- // VFP is not available, do manual single to double conversion. |
- |
- // r2: floating point value (binary32) |
- // r3: heap number for result |
- |
- // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to |
- // the slow case from here. |
- __ and_(r0, value, Operand(kBinary32MantissaMask)); |
- |
- // Extract exponent to r1. OK to clobber r1 now as there are no jumps to |
- // the slow case from here. |
- __ mov(r1, Operand(value, LSR, kBinary32MantissaBits)); |
- __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); |
- |
- Label exponent_rebiased; |
- __ teq(r1, Operand(0x00)); |
- __ b(eq, &exponent_rebiased); |
- |
- __ teq(r1, Operand(0xff)); |
- __ mov(r1, Operand(0x7ff), LeaveCC, eq); |
- __ b(eq, &exponent_rebiased); |
- |
- // Rebias exponent. |
- __ add(r1, |
- r1, |
- Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); |
- |
- __ bind(&exponent_rebiased); |
- __ and_(r2, value, Operand(kBinary32SignMask)); |
- value = no_reg; |
- __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord)); |
- |
- // Shift mantissa. |
- static const int kMantissaShiftForHiWord = |
- kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
- |
- static const int kMantissaShiftForLoWord = |
- kBitsPerInt - kMantissaShiftForHiWord; |
- |
- __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord)); |
- __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord)); |
- |
- __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset)); |
- __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); |
- |
- __ mov(r0, r3); |
- __ Ret(); |
- } |
- } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
- if (CpuFeatures::IsSupported(VFP2)) { |
- CpuFeatures::Scope scope(VFP2); |
- // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT); |
- __ vstr(d0, r2, HeapNumber::kValueOffset); |
- |
- __ add(r0, r2, Operand(kHeapObjectTag)); |
- __ Ret(); |
- } else { |
- // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(r7, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r4, r5, r6, r7, &slow, TAG_RESULT); |
- |
- __ str(r2, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); |
- __ str(r3, FieldMemOperand(r4, HeapNumber::kExponentOffset)); |
- __ mov(r0, r4); |
- __ Ret(); |
- } |
- |
- } else { |
- // Tag integer as smi and return it. |
- __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
- __ Ret(); |
- } |
- |
- // Slow case, key and receiver still in r0 and r1. |
- __ bind(&slow); |
- __ IncrementCounter( |
- masm->isolate()->counters()->keyed_load_external_array_slow(), |
- 1, r2, r3); |
- |
- // ---------- S t a t e -------------- |
- // -- lr : return address |
- // -- r0 : key |
- // -- r1 : receiver |
- // ----------------------------------- |
- |
- __ Push(r1, r0); |
- |
- __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); |
- |
- __ bind(&miss_force_generic); |
- Handle<Code> stub = |
- masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
- __ Jump(stub, RelocInfo::CODE_TARGET); |
-} |
- |
- |
void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
MacroAssembler* masm, |
ElementsKind elements_kind) { |
@@ -4403,118 +4042,6 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
} |
-void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- lr : return address |
- // -- r0 : key |
- // -- r1 : receiver |
- // ----------------------------------- |
- Label miss_force_generic; |
- |
- // This stub is meant to be tail-jumped to, the receiver must already |
- // have been verified by the caller to not be a smi. |
- |
- // Check that the key is a smi or a heap number convertible to a smi. |
- GenerateSmiKeyCheck(masm, r0, r4, r5, d1, d2, &miss_force_generic); |
- |
- // Get the elements array. |
- __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); |
- __ AssertFastElements(r2); |
- |
- // Check that the key is within bounds. |
- __ ldr(r3, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
- __ cmp(r0, Operand(r3)); |
- __ b(hs, &miss_force_generic); |
- |
- // Load the result and make sure it's not the hole. |
- __ add(r3, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
- __ ldr(r4, |
- MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
- __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
- __ cmp(r4, ip); |
- __ b(eq, &miss_force_generic); |
- __ mov(r0, r4); |
- __ Ret(); |
- |
- __ bind(&miss_force_generic); |
- Handle<Code> stub = |
- masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
- __ Jump(stub, RelocInfo::CODE_TARGET); |
-} |
- |
- |
-void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement( |
- MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- lr : return address |
- // -- r0 : key |
- // -- r1 : receiver |
- // ----------------------------------- |
- Label miss_force_generic, slow_allocate_heapnumber; |
- |
- Register key_reg = r0; |
- Register receiver_reg = r1; |
- Register elements_reg = r2; |
- Register heap_number_reg = r2; |
- Register indexed_double_offset = r3; |
- Register scratch = r4; |
- Register scratch2 = r5; |
- Register scratch3 = r6; |
- Register heap_number_map = r7; |
- |
- // This stub is meant to be tail-jumped to, the receiver must already |
- // have been verified by the caller to not be a smi. |
- |
- // Check that the key is a smi or a heap number convertible to a smi. |
- GenerateSmiKeyCheck(masm, key_reg, r4, r5, d1, d2, &miss_force_generic); |
- |
- // Get the elements array. |
- __ ldr(elements_reg, |
- FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); |
- |
- // Check that the key is within bounds. |
- __ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); |
- __ cmp(key_reg, Operand(scratch)); |
- __ b(hs, &miss_force_generic); |
- |
- // Load the upper word of the double in the fixed array and test for NaN. |
- __ add(indexed_double_offset, elements_reg, |
- Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize)); |
- uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32); |
- __ ldr(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset)); |
- __ cmp(scratch, Operand(kHoleNanUpper32)); |
- __ b(&miss_force_generic, eq); |
- |
- // Non-NaN. Allocate a new heap number and copy the double value into it. |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3, |
- heap_number_map, &slow_allocate_heapnumber, TAG_RESULT); |
- |
- // Don't need to reload the upper 32 bits of the double, it's already in |
- // scratch. |
- __ str(scratch, FieldMemOperand(heap_number_reg, |
- HeapNumber::kExponentOffset)); |
- __ ldr(scratch, FieldMemOperand(indexed_double_offset, |
- FixedArray::kHeaderSize)); |
- __ str(scratch, FieldMemOperand(heap_number_reg, |
- HeapNumber::kMantissaOffset)); |
- |
- __ mov(r0, heap_number_reg); |
- __ Ret(); |
- |
- __ bind(&slow_allocate_heapnumber); |
- Handle<Code> slow_ic = |
- masm->isolate()->builtins()->KeyedLoadIC_Slow(); |
- __ Jump(slow_ic, RelocInfo::CODE_TARGET); |
- |
- __ bind(&miss_force_generic); |
- Handle<Code> miss_ic = |
- masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
- __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
-} |
- |
- |
void KeyedStoreStubCompiler::GenerateStoreFastElement( |
MacroAssembler* masm, |
bool is_js_array, |