| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 // Implementation of MiniDisassembler. | |
| 6 | |
| 7 #ifdef _WIN64 | |
| 8 #error The code in this file should not be used on 64-bit Windows. | |
| 9 #endif | |
| 10 | |
| 11 #include "sandbox/src/sidestep/mini_disassembler.h" | |
| 12 | |
| 13 namespace sidestep { | |
| 14 | |
| 15 MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits, | |
| 16 bool address_default_is_32_bits) | |
| 17 : operand_default_is_32_bits_(operand_default_is_32_bits), | |
| 18 address_default_is_32_bits_(address_default_is_32_bits) { | |
| 19 Initialize(); | |
| 20 } | |
| 21 | |
| 22 MiniDisassembler::MiniDisassembler() | |
| 23 : operand_default_is_32_bits_(true), | |
| 24 address_default_is_32_bits_(true) { | |
| 25 Initialize(); | |
| 26 } | |
| 27 | |
| 28 InstructionType MiniDisassembler::Disassemble( | |
| 29 unsigned char* start_byte, | |
| 30 unsigned int* instruction_bytes) { | |
| 31 // Clean up any state from previous invocations. | |
| 32 Initialize(); | |
| 33 | |
| 34 // Start by processing any prefixes. | |
| 35 unsigned char* current_byte = start_byte; | |
| 36 unsigned int size = 0; | |
| 37 InstructionType instruction_type = ProcessPrefixes(current_byte, &size); | |
| 38 | |
| 39 if (IT_UNKNOWN == instruction_type) | |
| 40 return instruction_type; | |
| 41 | |
| 42 current_byte += size; | |
| 43 size = 0; | |
| 44 | |
| 45 // Invariant: We have stripped all prefixes, and the operand_is_32_bits_ | |
| 46 // and address_is_32_bits_ flags are correctly set. | |
| 47 | |
| 48 instruction_type = ProcessOpcode(current_byte, 0, &size); | |
| 49 | |
| 50 // Check for error processing instruction | |
| 51 if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) { | |
| 52 return IT_UNKNOWN; | |
| 53 } | |
| 54 | |
| 55 current_byte += size; | |
| 56 | |
| 57 // Invariant: operand_bytes_ indicates the total size of operands | |
| 58 // specified by the opcode and/or ModR/M byte and/or SIB byte. | |
| 59 // pCurrentByte points to the first byte after the ModR/M byte, or after | |
| 60 // the SIB byte if it is present (i.e. the first byte of any operands | |
| 61 // encoded in the instruction). | |
| 62 | |
| 63 // We get the total length of any prefixes, the opcode, and the ModR/M and | |
| 64 // SIB bytes if present, by taking the difference of the original starting | |
| 65 // address and the current byte (which points to the first byte of the | |
| 66 // operands if present, or to the first byte of the next instruction if | |
| 67 // they are not). Adding the count of bytes in the operands encoded in | |
| 68 // the instruction gives us the full length of the instruction in bytes. | |
| 69 *instruction_bytes += operand_bytes_ + (current_byte - start_byte); | |
| 70 | |
| 71 // Return the instruction type, which was set by ProcessOpcode(). | |
| 72 return instruction_type_; | |
| 73 } | |
| 74 | |
| 75 void MiniDisassembler::Initialize() { | |
| 76 operand_is_32_bits_ = operand_default_is_32_bits_; | |
| 77 address_is_32_bits_ = address_default_is_32_bits_; | |
| 78 operand_bytes_ = 0; | |
| 79 have_modrm_ = false; | |
| 80 should_decode_modrm_ = false; | |
| 81 instruction_type_ = IT_UNKNOWN; | |
| 82 got_f2_prefix_ = false; | |
| 83 got_f3_prefix_ = false; | |
| 84 got_66_prefix_ = false; | |
| 85 } | |
| 86 | |
| 87 InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte, | |
| 88 unsigned int* size) { | |
| 89 InstructionType instruction_type = IT_GENERIC; | |
| 90 const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte]; | |
| 91 | |
| 92 switch (opcode.type_) { | |
| 93 case IT_PREFIX_ADDRESS: | |
| 94 address_is_32_bits_ = !address_default_is_32_bits_; | |
| 95 goto nochangeoperand; | |
| 96 case IT_PREFIX_OPERAND: | |
| 97 operand_is_32_bits_ = !operand_default_is_32_bits_; | |
| 98 nochangeoperand: | |
| 99 case IT_PREFIX: | |
| 100 | |
| 101 if (0xF2 == (*start_byte)) | |
| 102 got_f2_prefix_ = true; | |
| 103 else if (0xF3 == (*start_byte)) | |
| 104 got_f3_prefix_ = true; | |
| 105 else if (0x66 == (*start_byte)) | |
| 106 got_66_prefix_ = true; | |
| 107 | |
| 108 instruction_type = opcode.type_; | |
| 109 (*size)++; | |
| 110 // we got a prefix, so add one and check next byte | |
| 111 ProcessPrefixes(start_byte + 1, size); | |
| 112 default: | |
| 113 break; // not a prefix byte | |
| 114 } | |
| 115 | |
| 116 return instruction_type; | |
| 117 } | |
| 118 | |
| 119 InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte, | |
| 120 unsigned int table_index, | |
| 121 unsigned int* size) { | |
| 122 const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table | |
| 123 unsigned char current_byte = (*start_byte) >> table.shift_; | |
| 124 current_byte = current_byte & table.mask_; // Mask out the bits we will use | |
| 125 | |
| 126 // Check whether the byte we have is inside the table we have. | |
| 127 if (current_byte < table.min_lim_ || current_byte > table.max_lim_) { | |
| 128 instruction_type_ = IT_UNKNOWN; | |
| 129 return instruction_type_; | |
| 130 } | |
| 131 | |
| 132 const Opcode& opcode = table.table_[current_byte]; | |
| 133 if (IT_UNUSED == opcode.type_) { | |
| 134 // This instruction is not used by the IA-32 ISA, so we indicate | |
| 135 // this to the user. Probably means that we were pointed to | |
| 136 // a byte in memory that was not the start of an instruction. | |
| 137 instruction_type_ = IT_UNUSED; | |
| 138 return instruction_type_; | |
| 139 } else if (IT_REFERENCE == opcode.type_) { | |
| 140 // We are looking at an opcode that has more bytes (or is continued | |
| 141 // in the ModR/M byte). Recursively find the opcode definition in | |
| 142 // the table for the opcode's next byte. | |
| 143 (*size)++; | |
| 144 ProcessOpcode(start_byte + 1, opcode.table_index_, size); | |
| 145 return instruction_type_; | |
| 146 } | |
| 147 | |
| 148 const SpecificOpcode* specific_opcode = reinterpret_cast< | |
| 149 const SpecificOpcode*>(&opcode); | |
| 150 if (opcode.is_prefix_dependent_) { | |
| 151 if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) { | |
| 152 specific_opcode = &opcode.opcode_if_f2_prefix_; | |
| 153 } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) { | |
| 154 specific_opcode = &opcode.opcode_if_f3_prefix_; | |
| 155 } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) { | |
| 156 specific_opcode = &opcode.opcode_if_66_prefix_; | |
| 157 } | |
| 158 } | |
| 159 | |
| 160 // Inv: The opcode type is known. | |
| 161 instruction_type_ = specific_opcode->type_; | |
| 162 | |
| 163 // Let's process the operand types to see if we have any immediate | |
| 164 // operands, and/or a ModR/M byte. | |
| 165 | |
| 166 ProcessOperand(specific_opcode->flag_dest_); | |
| 167 ProcessOperand(specific_opcode->flag_source_); | |
| 168 ProcessOperand(specific_opcode->flag_aux_); | |
| 169 | |
| 170 // Inv: We have processed the opcode and incremented operand_bytes_ | |
| 171 // by the number of bytes of any operands specified by the opcode | |
| 172 // that are stored in the instruction (not registers etc.). Now | |
| 173 // we need to return the total number of bytes for the opcode and | |
| 174 // for the ModR/M or SIB bytes if they are present. | |
| 175 | |
| 176 if (table.mask_ != 0xff) { | |
| 177 if (have_modrm_) { | |
| 178 // we're looking at a ModR/M byte so we're not going to | |
| 179 // count that into the opcode size | |
| 180 ProcessModrm(start_byte, size); | |
| 181 return IT_GENERIC; | |
| 182 } else { | |
| 183 // need to count the ModR/M byte even if it's just being | |
| 184 // used for opcode extension | |
| 185 (*size)++; | |
| 186 return IT_GENERIC; | |
| 187 } | |
| 188 } else { | |
| 189 if (have_modrm_) { | |
| 190 // The ModR/M byte is the next byte. | |
| 191 (*size)++; | |
| 192 ProcessModrm(start_byte + 1, size); | |
| 193 return IT_GENERIC; | |
| 194 } else { | |
| 195 (*size)++; | |
| 196 return IT_GENERIC; | |
| 197 } | |
| 198 } | |
| 199 } | |
| 200 | |
| 201 bool MiniDisassembler::ProcessOperand(int flag_operand) { | |
| 202 bool succeeded = true; | |
| 203 if (AM_NOT_USED == flag_operand) | |
| 204 return succeeded; | |
| 205 | |
| 206 // Decide what to do based on the addressing mode. | |
| 207 switch (flag_operand & AM_MASK) { | |
| 208 // No ModR/M byte indicated by these addressing modes, and no | |
| 209 // additional (e.g. immediate) parameters. | |
| 210 case AM_A: // Direct address | |
| 211 case AM_F: // EFLAGS register | |
| 212 case AM_X: // Memory addressed by the DS:SI register pair | |
| 213 case AM_Y: // Memory addressed by the ES:DI register pair | |
| 214 case AM_IMPLICIT: // Parameter is implicit, occupies no space in | |
| 215 // instruction | |
| 216 break; | |
| 217 | |
| 218 // There is a ModR/M byte but it does not necessarily need | |
| 219 // to be decoded. | |
| 220 case AM_C: // reg field of ModR/M selects a control register | |
| 221 case AM_D: // reg field of ModR/M selects a debug register | |
| 222 case AM_G: // reg field of ModR/M selects a general register | |
| 223 case AM_P: // reg field of ModR/M selects an MMX register | |
| 224 case AM_R: // mod field of ModR/M may refer only to a general register | |
| 225 case AM_S: // reg field of ModR/M selects a segment register | |
| 226 case AM_T: // reg field of ModR/M selects a test register | |
| 227 case AM_V: // reg field of ModR/M selects a 128-bit XMM register | |
| 228 have_modrm_ = true; | |
| 229 break; | |
| 230 | |
| 231 // In these addressing modes, there is a ModR/M byte and it needs to be | |
| 232 // decoded. No other (e.g. immediate) params than indicated in ModR/M. | |
| 233 case AM_E: // Operand is either a general-purpose register or memory, | |
| 234 // specified by ModR/M byte | |
| 235 case AM_M: // ModR/M byte will refer only to memory | |
| 236 case AM_Q: // Operand is either an MMX register or memory (complex | |
| 237 // evaluation), specified by ModR/M byte | |
| 238 case AM_W: // Operand is either a 128-bit XMM register or memory (complex | |
| 239 // eval), specified by ModR/M byte | |
| 240 have_modrm_ = true; | |
| 241 should_decode_modrm_ = true; | |
| 242 break; | |
| 243 | |
| 244 // These addressing modes specify an immediate or an offset value | |
| 245 // directly, so we need to look at the operand type to see how many | |
| 246 // bytes. | |
| 247 case AM_I: // Immediate data. | |
| 248 case AM_J: // Jump to offset. | |
| 249 case AM_O: // Operand is at offset. | |
| 250 switch (flag_operand & OT_MASK) { | |
| 251 case OT_B: // Byte regardless of operand-size attribute. | |
| 252 operand_bytes_ += OS_BYTE; | |
| 253 break; | |
| 254 case OT_C: // Byte or word, depending on operand-size attribute. | |
| 255 if (operand_is_32_bits_) | |
| 256 operand_bytes_ += OS_WORD; | |
| 257 else | |
| 258 operand_bytes_ += OS_BYTE; | |
| 259 break; | |
| 260 case OT_D: // Doubleword, regardless of operand-size attribute. | |
| 261 operand_bytes_ += OS_DOUBLE_WORD; | |
| 262 break; | |
| 263 case OT_DQ: // Double-quadword, regardless of operand-size attribute. | |
| 264 operand_bytes_ += OS_DOUBLE_QUAD_WORD; | |
| 265 break; | |
| 266 case OT_P: // 32-bit or 48-bit pointer, depending on operand-size | |
| 267 // attribute. | |
| 268 if (operand_is_32_bits_) | |
| 269 operand_bytes_ += OS_48_BIT_POINTER; | |
| 270 else | |
| 271 operand_bytes_ += OS_32_BIT_POINTER; | |
| 272 break; | |
| 273 case OT_PS: // 128-bit packed single-precision floating-point data. | |
| 274 operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING; | |
| 275 break; | |
| 276 case OT_Q: // Quadword, regardless of operand-size attribute. | |
| 277 operand_bytes_ += OS_QUAD_WORD; | |
| 278 break; | |
| 279 case OT_S: // 6-byte pseudo-descriptor. | |
| 280 operand_bytes_ += OS_PSEUDO_DESCRIPTOR; | |
| 281 break; | |
| 282 case OT_SD: // Scalar Double-Precision Floating-Point Value | |
| 283 case OT_PD: // Unaligned packed double-precision floating point value | |
| 284 operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING; | |
| 285 break; | |
| 286 case OT_SS: | |
| 287 // Scalar element of a 128-bit packed single-precision | |
| 288 // floating data. | |
| 289 // We simply return enItUnknown since we don't have to support | |
| 290 // floating point | |
| 291 succeeded = false; | |
| 292 break; | |
| 293 case OT_V: // Word or doubleword, depending on operand-size attribute. | |
| 294 if (operand_is_32_bits_) | |
| 295 operand_bytes_ += OS_DOUBLE_WORD; | |
| 296 else | |
| 297 operand_bytes_ += OS_WORD; | |
| 298 break; | |
| 299 case OT_W: // Word, regardless of operand-size attribute. | |
| 300 operand_bytes_ += OS_WORD; | |
| 301 break; | |
| 302 | |
| 303 // Can safely ignore these. | |
| 304 case OT_A: // Two one-word operands in memory or two double-word | |
| 305 // operands in memory | |
| 306 case OT_PI: // Quadword MMX technology register (e.g. mm0) | |
| 307 case OT_SI: // Doubleword integer register (e.g., eax) | |
| 308 break; | |
| 309 | |
| 310 default: | |
| 311 break; | |
| 312 } | |
| 313 break; | |
| 314 | |
| 315 default: | |
| 316 break; | |
| 317 } | |
| 318 | |
| 319 return succeeded; | |
| 320 } | |
| 321 | |
| 322 bool MiniDisassembler::ProcessModrm(unsigned char* start_byte, | |
| 323 unsigned int* size) { | |
| 324 // If we don't need to decode, we just return the size of the ModR/M | |
| 325 // byte (there is never a SIB byte in this case). | |
| 326 if (!should_decode_modrm_) { | |
| 327 (*size)++; | |
| 328 return true; | |
| 329 } | |
| 330 | |
| 331 // We never care about the reg field, only the combination of the mod | |
| 332 // and r/m fields, so let's start by packing those fields together into | |
| 333 // 5 bits. | |
| 334 unsigned char modrm = (*start_byte); | |
| 335 unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field | |
| 336 modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field | |
| 337 mod = mod >> 3; // shift the mod field to the right place | |
| 338 modrm = mod | modrm; // combine the r/m and mod fields as discussed | |
| 339 mod = mod >> 3; // shift the mod field to bits 2..0 | |
| 340 | |
| 341 // Invariant: modrm contains the mod field in bits 4..3 and the r/m field | |
| 342 // in bits 2..0, and mod contains the mod field in bits 2..0 | |
| 343 | |
| 344 const ModrmEntry* modrm_entry = 0; | |
| 345 if (address_is_32_bits_) | |
| 346 modrm_entry = &s_ia32_modrm_map_[modrm]; | |
| 347 else | |
| 348 modrm_entry = &s_ia16_modrm_map_[modrm]; | |
| 349 | |
| 350 // Invariant: modrm_entry points to information that we need to decode | |
| 351 // the ModR/M byte. | |
| 352 | |
| 353 // Add to the count of operand bytes, if the ModR/M byte indicates | |
| 354 // that some operands are encoded in the instruction. | |
| 355 if (modrm_entry->is_encoded_in_instruction_) | |
| 356 operand_bytes_ += modrm_entry->operand_size_; | |
| 357 | |
| 358 // Process the SIB byte if necessary, and return the count | |
| 359 // of ModR/M and SIB bytes. | |
| 360 if (modrm_entry->use_sib_byte_) { | |
| 361 (*size)++; | |
| 362 return ProcessSib(start_byte + 1, mod, size); | |
| 363 } else { | |
| 364 (*size)++; | |
| 365 return true; | |
| 366 } | |
| 367 } | |
| 368 | |
| 369 bool MiniDisassembler::ProcessSib(unsigned char* start_byte, | |
| 370 unsigned char mod, | |
| 371 unsigned int* size) { | |
| 372 // get the mod field from the 2..0 bits of the SIB byte | |
| 373 unsigned char sib_base = (*start_byte) & 0x07; | |
| 374 if (0x05 == sib_base) { | |
| 375 switch (mod) { | |
| 376 case 0x00: // mod == 00 | |
| 377 case 0x02: // mod == 10 | |
| 378 operand_bytes_ += OS_DOUBLE_WORD; | |
| 379 break; | |
| 380 case 0x01: // mod == 01 | |
| 381 operand_bytes_ += OS_BYTE; | |
| 382 break; | |
| 383 case 0x03: // mod == 11 | |
| 384 // According to the IA-32 docs, there does not seem to be a disp | |
| 385 // value for this value of mod | |
| 386 default: | |
| 387 break; | |
| 388 } | |
| 389 } | |
| 390 | |
| 391 (*size)++; | |
| 392 return true; | |
| 393 } | |
| 394 | |
| 395 }; // namespace sidestep | |
| OLD | NEW |