| OLD | NEW |
| (Empty) |
| 1 // Copyright 2011 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "cc/trees/layer_tree_host_common.h" | |
| 6 | |
| 7 #include <algorithm> | |
| 8 | |
| 9 #include "base/trace_event/trace_event.h" | |
| 10 #include "cc/base/math_util.h" | |
| 11 #include "cc/layers/heads_up_display_layer_impl.h" | |
| 12 #include "cc/layers/layer.h" | |
| 13 #include "cc/layers/layer_impl.h" | |
| 14 #include "cc/layers/layer_iterator.h" | |
| 15 #include "cc/layers/render_surface.h" | |
| 16 #include "cc/layers/render_surface_impl.h" | |
| 17 #include "cc/trees/draw_property_utils.h" | |
| 18 #include "cc/trees/layer_tree_host.h" | |
| 19 #include "cc/trees/layer_tree_impl.h" | |
| 20 #include "ui/gfx/geometry/rect_conversions.h" | |
| 21 #include "ui/gfx/geometry/vector2d_conversions.h" | |
| 22 #include "ui/gfx/transform.h" | |
| 23 #include "ui/gfx/transform_util.h" | |
| 24 | |
| 25 namespace cc { | |
| 26 | |
| 27 ScrollAndScaleSet::ScrollAndScaleSet() | |
| 28 : page_scale_delta(1.f), top_controls_delta(0.f) { | |
| 29 } | |
| 30 | |
| 31 ScrollAndScaleSet::~ScrollAndScaleSet() {} | |
| 32 | |
| 33 template <typename LayerType> | |
| 34 static gfx::Vector2dF GetEffectiveScrollDelta(LayerType* layer) { | |
| 35 // Layer's scroll offset can have an integer part and fractional part. | |
| 36 // Due to Blink's limitation, it only counter-scrolls the position-fixed | |
| 37 // layer using the integer part of Layer's scroll offset. | |
| 38 // CC scrolls the layer using the full scroll offset, so we have to | |
| 39 // add the ScrollCompensationAdjustment (fractional part of the scroll | |
| 40 // offset) to the effective scroll delta which is used to counter-scroll | |
| 41 // the position-fixed layer. | |
| 42 gfx::Vector2dF scroll_delta = | |
| 43 layer->ScrollDelta() + layer->ScrollCompensationAdjustment(); | |
| 44 // The scroll parent's scroll delta is the amount we've scrolled on the | |
| 45 // compositor thread since the commit for this layer tree's source frame. | |
| 46 // we last reported to the main thread. I.e., it's the discrepancy between | |
| 47 // a scroll parent's scroll delta and offset, so we must add it here. | |
| 48 if (layer->scroll_parent()) | |
| 49 scroll_delta += layer->scroll_parent()->ScrollDelta() + | |
| 50 layer->ScrollCompensationAdjustment(); | |
| 51 return scroll_delta; | |
| 52 } | |
| 53 | |
| 54 template <typename LayerType> | |
| 55 static gfx::ScrollOffset GetEffectiveCurrentScrollOffset(LayerType* layer) { | |
| 56 gfx::ScrollOffset offset = layer->CurrentScrollOffset(); | |
| 57 // The scroll parent's total scroll offset (scroll offset + scroll delta) | |
| 58 // can't be used because its scroll offset has already been applied to the | |
| 59 // scroll children's positions by the main thread layer positioning code. | |
| 60 if (layer->scroll_parent()) | |
| 61 offset += gfx::ScrollOffset(layer->scroll_parent()->ScrollDelta()); | |
| 62 return offset; | |
| 63 } | |
| 64 | |
| 65 inline gfx::Rect CalculateVisibleRectWithCachedLayerRect( | |
| 66 const gfx::Rect& target_surface_rect, | |
| 67 const gfx::Rect& layer_bound_rect, | |
| 68 const gfx::Rect& layer_rect_in_target_space, | |
| 69 const gfx::Transform& transform) { | |
| 70 if (layer_rect_in_target_space.IsEmpty()) | |
| 71 return gfx::Rect(); | |
| 72 | |
| 73 // Is this layer fully contained within the target surface? | |
| 74 if (target_surface_rect.Contains(layer_rect_in_target_space)) | |
| 75 return layer_bound_rect; | |
| 76 | |
| 77 // If the layer doesn't fill up the entire surface, then find the part of | |
| 78 // the surface rect where the layer could be visible. This avoids trying to | |
| 79 // project surface rect points that are behind the projection point. | |
| 80 gfx::Rect minimal_surface_rect = target_surface_rect; | |
| 81 minimal_surface_rect.Intersect(layer_rect_in_target_space); | |
| 82 | |
| 83 if (minimal_surface_rect.IsEmpty()) | |
| 84 return gfx::Rect(); | |
| 85 | |
| 86 // Project the corners of the target surface rect into the layer space. | |
| 87 // This bounding rectangle may be larger than it needs to be (being | |
| 88 // axis-aligned), but is a reasonable filter on the space to consider. | |
| 89 // Non-invertible transforms will create an empty rect here. | |
| 90 | |
| 91 gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization); | |
| 92 if (!transform.GetInverse(&surface_to_layer)) { | |
| 93 // Because we cannot use the surface bounds to determine what portion of | |
| 94 // the layer is visible, we must conservatively assume the full layer is | |
| 95 // visible. | |
| 96 return layer_bound_rect; | |
| 97 } | |
| 98 | |
| 99 gfx::Rect layer_rect = MathUtil::ProjectEnclosingClippedRect( | |
| 100 surface_to_layer, minimal_surface_rect); | |
| 101 layer_rect.Intersect(layer_bound_rect); | |
| 102 return layer_rect; | |
| 103 } | |
| 104 | |
| 105 gfx::Rect LayerTreeHostCommon::CalculateVisibleRect( | |
| 106 const gfx::Rect& target_surface_rect, | |
| 107 const gfx::Rect& layer_bound_rect, | |
| 108 const gfx::Transform& transform) { | |
| 109 gfx::Rect layer_in_surface_space = | |
| 110 MathUtil::MapEnclosingClippedRect(transform, layer_bound_rect); | |
| 111 return CalculateVisibleRectWithCachedLayerRect( | |
| 112 target_surface_rect, layer_bound_rect, layer_in_surface_space, transform); | |
| 113 } | |
| 114 | |
| 115 template <typename LayerType> | |
| 116 static LayerType* NextTargetSurface(LayerType* layer) { | |
| 117 return layer->parent() ? layer->parent()->render_target() : 0; | |
| 118 } | |
| 119 | |
| 120 // Given two layers, this function finds their respective render targets and, | |
| 121 // computes a change of basis translation. It does this by accumulating the | |
| 122 // translation components of the draw transforms of each target between the | |
| 123 // ancestor and descendant. These transforms must be 2D translations, and this | |
| 124 // requirement is enforced at every step. | |
| 125 template <typename LayerType> | |
| 126 static gfx::Vector2dF ComputeChangeOfBasisTranslation( | |
| 127 const LayerType& ancestor_layer, | |
| 128 const LayerType& descendant_layer) { | |
| 129 DCHECK(descendant_layer.HasAncestor(&ancestor_layer)); | |
| 130 const LayerType* descendant_target = descendant_layer.render_target(); | |
| 131 DCHECK(descendant_target); | |
| 132 const LayerType* ancestor_target = ancestor_layer.render_target(); | |
| 133 DCHECK(ancestor_target); | |
| 134 | |
| 135 gfx::Vector2dF translation; | |
| 136 for (const LayerType* target = descendant_target; target != ancestor_target; | |
| 137 target = NextTargetSurface(target)) { | |
| 138 const gfx::Transform& trans = target->render_surface()->draw_transform(); | |
| 139 // Ensure that this translation is truly 2d. | |
| 140 DCHECK(trans.IsIdentityOrTranslation()); | |
| 141 DCHECK_EQ(0.f, trans.matrix().get(2, 3)); | |
| 142 translation += trans.To2dTranslation(); | |
| 143 } | |
| 144 | |
| 145 return translation; | |
| 146 } | |
| 147 | |
| 148 enum TranslateRectDirection { | |
| 149 TRANSLATE_RECT_DIRECTION_TO_ANCESTOR, | |
| 150 TRANSLATE_RECT_DIRECTION_TO_DESCENDANT | |
| 151 }; | |
| 152 | |
| 153 template <typename LayerType> | |
| 154 static gfx::Rect TranslateRectToTargetSpace(const LayerType& ancestor_layer, | |
| 155 const LayerType& descendant_layer, | |
| 156 const gfx::Rect& rect, | |
| 157 TranslateRectDirection direction) { | |
| 158 gfx::Vector2dF translation = ComputeChangeOfBasisTranslation<LayerType>( | |
| 159 ancestor_layer, descendant_layer); | |
| 160 if (direction == TRANSLATE_RECT_DIRECTION_TO_DESCENDANT) | |
| 161 translation.Scale(-1.f); | |
| 162 return gfx::ToEnclosingRect( | |
| 163 gfx::RectF(rect.origin() + translation, rect.size())); | |
| 164 } | |
| 165 | |
| 166 // Attempts to update the clip rects for the given layer. If the layer has a | |
| 167 // clip_parent, it may not inherit its immediate ancestor's clip. | |
| 168 template <typename LayerType> | |
| 169 static void UpdateClipRectsForClipChild( | |
| 170 const LayerType* layer, | |
| 171 gfx::Rect* clip_rect_in_parent_target_space, | |
| 172 bool* subtree_should_be_clipped) { | |
| 173 // If the layer has no clip_parent, or the ancestor is the same as its actual | |
| 174 // parent, then we don't need special clip rects. Bail now and leave the out | |
| 175 // parameters untouched. | |
| 176 const LayerType* clip_parent = layer->scroll_parent(); | |
| 177 | |
| 178 if (!clip_parent) | |
| 179 clip_parent = layer->clip_parent(); | |
| 180 | |
| 181 if (!clip_parent || clip_parent == layer->parent()) | |
| 182 return; | |
| 183 | |
| 184 // The root layer is never a clip child. | |
| 185 DCHECK(layer->parent()); | |
| 186 | |
| 187 // Grab the cached values. | |
| 188 *clip_rect_in_parent_target_space = clip_parent->clip_rect(); | |
| 189 *subtree_should_be_clipped = clip_parent->is_clipped(); | |
| 190 | |
| 191 // We may have to project the clip rect into our parent's target space. Note, | |
| 192 // it must be our parent's target space, not ours. For one, we haven't | |
| 193 // computed our transforms, so we couldn't put it in our space yet even if we | |
| 194 // wanted to. But more importantly, this matches the expectations of | |
| 195 // CalculateDrawPropertiesInternal. If we, say, create a render surface, these | |
| 196 // clip rects will want to be in its target space, not ours. | |
| 197 if (clip_parent == layer->clip_parent()) { | |
| 198 *clip_rect_in_parent_target_space = TranslateRectToTargetSpace<LayerType>( | |
| 199 *clip_parent, *layer->parent(), *clip_rect_in_parent_target_space, | |
| 200 TRANSLATE_RECT_DIRECTION_TO_DESCENDANT); | |
| 201 } else { | |
| 202 // If we're being clipped by our scroll parent, we must translate through | |
| 203 // our common ancestor. This happens to be our parent, so it is sufficent to | |
| 204 // translate from our clip parent's space to the space of its ancestor (our | |
| 205 // parent). | |
| 206 *clip_rect_in_parent_target_space = TranslateRectToTargetSpace<LayerType>( | |
| 207 *layer->parent(), *clip_parent, *clip_rect_in_parent_target_space, | |
| 208 TRANSLATE_RECT_DIRECTION_TO_ANCESTOR); | |
| 209 } | |
| 210 } | |
| 211 | |
| 212 // We collect an accumulated drawable content rect per render surface. | |
| 213 // Typically, a layer will contribute to only one surface, the surface | |
| 214 // associated with its render target. Clip children, however, may affect | |
| 215 // several surfaces since there may be several surfaces between the clip child | |
| 216 // and its parent. | |
| 217 // | |
| 218 // NB: we accumulate the layer's *clipped* drawable content rect. | |
| 219 template <typename LayerType> | |
| 220 struct AccumulatedSurfaceState { | |
| 221 explicit AccumulatedSurfaceState(LayerType* render_target) | |
| 222 : render_target(render_target) {} | |
| 223 | |
| 224 // The accumulated drawable content rect for the surface associated with the | |
| 225 // given |render_target|. | |
| 226 gfx::Rect drawable_content_rect; | |
| 227 | |
| 228 // The target owning the surface. (We hang onto the target rather than the | |
| 229 // surface so that we can DCHECK that the surface's draw transform is simply | |
| 230 // a translation when |render_target| reports that it has no unclipped | |
| 231 // descendants). | |
| 232 LayerType* render_target; | |
| 233 }; | |
| 234 | |
| 235 template <typename LayerType> | |
| 236 void UpdateAccumulatedSurfaceState( | |
| 237 LayerType* layer, | |
| 238 const gfx::Rect& drawable_content_rect, | |
| 239 std::vector<AccumulatedSurfaceState<LayerType>>* | |
| 240 accumulated_surface_state) { | |
| 241 if (IsRootLayer(layer)) | |
| 242 return; | |
| 243 | |
| 244 // We will apply our drawable content rect to the accumulated rects for all | |
| 245 // surfaces between us and |render_target| (inclusive). This is either our | |
| 246 // clip parent's target if we are a clip child, or else simply our parent's | |
| 247 // target. We use our parent's target because we're either the owner of a | |
| 248 // render surface and we'll want to add our rect to our *surface's* target, or | |
| 249 // we're not and our target is the same as our parent's. In both cases, the | |
| 250 // parent's target gives us what we want. | |
| 251 LayerType* render_target = layer->clip_parent() | |
| 252 ? layer->clip_parent()->render_target() | |
| 253 : layer->parent()->render_target(); | |
| 254 | |
| 255 // If the layer owns a surface, then the content rect is in the wrong space. | |
| 256 // Instead, we will use the surface's DrawableContentRect which is in target | |
| 257 // space as required. | |
| 258 gfx::Rect target_rect = drawable_content_rect; | |
| 259 if (layer->render_surface()) { | |
| 260 target_rect = | |
| 261 gfx::ToEnclosedRect(layer->render_surface()->DrawableContentRect()); | |
| 262 } | |
| 263 | |
| 264 if (render_target->is_clipped()) { | |
| 265 gfx::Rect clip_rect = render_target->clip_rect(); | |
| 266 // If the layer has a clip parent, the clip rect may be in the wrong space, | |
| 267 // so we'll need to transform it before it is applied. | |
| 268 if (layer->clip_parent()) { | |
| 269 clip_rect = TranslateRectToTargetSpace<LayerType>( | |
| 270 *layer->clip_parent(), *layer, clip_rect, | |
| 271 TRANSLATE_RECT_DIRECTION_TO_DESCENDANT); | |
| 272 } | |
| 273 target_rect.Intersect(clip_rect); | |
| 274 } | |
| 275 | |
| 276 // We must have at least one entry in the vector for the root. | |
| 277 DCHECK_LT(0ul, accumulated_surface_state->size()); | |
| 278 | |
| 279 typedef typename std::vector<AccumulatedSurfaceState<LayerType>> | |
| 280 AccumulatedSurfaceStateVector; | |
| 281 typedef typename AccumulatedSurfaceStateVector::reverse_iterator | |
| 282 AccumulatedSurfaceStateIterator; | |
| 283 AccumulatedSurfaceStateIterator current_state = | |
| 284 accumulated_surface_state->rbegin(); | |
| 285 | |
| 286 // Add this rect to the accumulated content rect for all surfaces until we | |
| 287 // reach the target surface. | |
| 288 bool found_render_target = false; | |
| 289 for (; current_state != accumulated_surface_state->rend(); ++current_state) { | |
| 290 current_state->drawable_content_rect.Union(target_rect); | |
| 291 | |
| 292 // If we've reached |render_target| our work is done and we can bail. | |
| 293 if (current_state->render_target == render_target) { | |
| 294 found_render_target = true; | |
| 295 break; | |
| 296 } | |
| 297 | |
| 298 // Transform rect from the current target's space to the next. | |
| 299 LayerType* current_target = current_state->render_target; | |
| 300 DCHECK(current_target->render_surface()); | |
| 301 const gfx::Transform& current_draw_transform = | |
| 302 current_target->render_surface()->draw_transform(); | |
| 303 | |
| 304 // If we have unclipped descendants, the draw transform is a translation. | |
| 305 DCHECK(current_target->num_unclipped_descendants() == 0 || | |
| 306 current_draw_transform.IsIdentityOrTranslation()); | |
| 307 | |
| 308 target_rect = gfx::ToEnclosingRect( | |
| 309 MathUtil::MapClippedRect(current_draw_transform, target_rect)); | |
| 310 } | |
| 311 | |
| 312 // It is an error to not reach |render_target|. If this happens, it means that | |
| 313 // either the clip parent is not an ancestor of the clip child or the surface | |
| 314 // state vector is empty, both of which should be impossible. | |
| 315 DCHECK(found_render_target); | |
| 316 } | |
| 317 | |
| 318 template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) { | |
| 319 return !layer->parent(); | |
| 320 } | |
| 321 | |
| 322 template <typename LayerType> | |
| 323 static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) { | |
| 324 return layer->Is3dSorted() && layer->parent() && | |
| 325 layer->parent()->Is3dSorted() && | |
| 326 (layer->parent()->sorting_context_id() == layer->sorting_context_id()); | |
| 327 } | |
| 328 | |
| 329 template <typename LayerType> | |
| 330 static bool IsRootLayerOfNewRenderingContext(LayerType* layer) { | |
| 331 if (layer->parent()) | |
| 332 return !layer->parent()->Is3dSorted() && layer->Is3dSorted(); | |
| 333 | |
| 334 return layer->Is3dSorted(); | |
| 335 } | |
| 336 | |
| 337 template <typename LayerType> | |
| 338 static bool IsLayerBackFaceVisible(LayerType* layer) { | |
| 339 // The current W3C spec on CSS transforms says that backface visibility should | |
| 340 // be determined differently depending on whether the layer is in a "3d | |
| 341 // rendering context" or not. For Chromium code, we can determine whether we | |
| 342 // are in a 3d rendering context by checking if the parent preserves 3d. | |
| 343 | |
| 344 if (LayerIsInExisting3DRenderingContext(layer)) | |
| 345 return layer->draw_transform().IsBackFaceVisible(); | |
| 346 | |
| 347 // In this case, either the layer establishes a new 3d rendering context, or | |
| 348 // is not in a 3d rendering context at all. | |
| 349 return layer->transform().IsBackFaceVisible(); | |
| 350 } | |
| 351 | |
| 352 template <typename LayerType> | |
| 353 static bool IsSurfaceBackFaceVisible(LayerType* layer, | |
| 354 const gfx::Transform& draw_transform) { | |
| 355 if (LayerIsInExisting3DRenderingContext(layer)) | |
| 356 return draw_transform.IsBackFaceVisible(); | |
| 357 | |
| 358 if (IsRootLayerOfNewRenderingContext(layer)) | |
| 359 return layer->transform().IsBackFaceVisible(); | |
| 360 | |
| 361 // If the render_surface is not part of a new or existing rendering context, | |
| 362 // then the layers that contribute to this surface will decide back-face | |
| 363 // visibility for themselves. | |
| 364 return false; | |
| 365 } | |
| 366 | |
| 367 template <typename LayerType> | |
| 368 static inline bool LayerClipsSubtree(LayerType* layer) { | |
| 369 return layer->masks_to_bounds() || layer->mask_layer(); | |
| 370 } | |
| 371 | |
| 372 template <typename LayerType> | |
| 373 static gfx::Rect CalculateVisibleContentRect( | |
| 374 LayerType* layer, | |
| 375 const gfx::Rect& clip_rect_of_target_surface_in_target_space, | |
| 376 const gfx::Rect& layer_rect_in_target_space) { | |
| 377 DCHECK(layer->render_target()); | |
| 378 | |
| 379 // Nothing is visible if the layer bounds are empty. | |
| 380 if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || | |
| 381 layer->drawable_content_rect().IsEmpty()) | |
| 382 return gfx::Rect(); | |
| 383 | |
| 384 // Compute visible bounds in target surface space. | |
| 385 gfx::Rect visible_rect_in_target_surface_space = | |
| 386 layer->drawable_content_rect(); | |
| 387 | |
| 388 if (layer->render_target()->render_surface()->is_clipped()) { | |
| 389 // The |layer| L has a target T which owns a surface Ts. The surface Ts | |
| 390 // has a target TsT. | |
| 391 // | |
| 392 // In this case the target surface Ts does clip the layer L that contributes | |
| 393 // to it. So, we have to convert the clip rect of Ts from the target space | |
| 394 // of Ts (that is the space of TsT), to the current render target's space | |
| 395 // (that is the space of T). This conversion is done outside this function | |
| 396 // so that it can be cached instead of computing it redundantly for every | |
| 397 // layer. | |
| 398 visible_rect_in_target_surface_space.Intersect( | |
| 399 clip_rect_of_target_surface_in_target_space); | |
| 400 } | |
| 401 | |
| 402 if (visible_rect_in_target_surface_space.IsEmpty()) | |
| 403 return gfx::Rect(); | |
| 404 | |
| 405 return CalculateVisibleRectWithCachedLayerRect( | |
| 406 visible_rect_in_target_surface_space, | |
| 407 gfx::Rect(layer->content_bounds()), | |
| 408 layer_rect_in_target_space, | |
| 409 layer->draw_transform()); | |
| 410 } | |
| 411 | |
| 412 static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; } | |
| 413 | |
| 414 static inline bool TransformToParentIsKnown(Layer* layer) { | |
| 415 return !layer->TransformIsAnimating(); | |
| 416 } | |
| 417 | |
| 418 static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; } | |
| 419 | |
| 420 static inline bool TransformToScreenIsKnown(Layer* layer) { | |
| 421 return !layer->screen_space_transform_is_animating(); | |
| 422 } | |
| 423 | |
| 424 template <typename LayerType> | |
| 425 static bool LayerShouldBeSkipped(LayerType* layer, bool layer_is_drawn) { | |
| 426 // Layers can be skipped if any of these conditions are met. | |
| 427 // - is not drawn due to it or one of its ancestors being hidden (or having | |
| 428 // no copy requests). | |
| 429 // - does not draw content. | |
| 430 // - is transparent. | |
| 431 // - has empty bounds | |
| 432 // - the layer is not double-sided, but its back face is visible. | |
| 433 // | |
| 434 // Some additional conditions need to be computed at a later point after the | |
| 435 // recursion is finished. | |
| 436 // - the intersection of render_surface content and layer clip_rect is empty | |
| 437 // - the visible_content_rect is empty | |
| 438 // | |
| 439 // Note, if the layer should not have been drawn due to being fully | |
| 440 // transparent, we would have skipped the entire subtree and never made it | |
| 441 // into this function, so it is safe to omit this check here. | |
| 442 | |
| 443 if (!layer_is_drawn) | |
| 444 return true; | |
| 445 | |
| 446 if (!layer->DrawsContent() || layer->bounds().IsEmpty()) | |
| 447 return true; | |
| 448 | |
| 449 LayerType* backface_test_layer = layer; | |
| 450 if (layer->use_parent_backface_visibility()) { | |
| 451 DCHECK(layer->parent()); | |
| 452 DCHECK(!layer->parent()->use_parent_backface_visibility()); | |
| 453 backface_test_layer = layer->parent(); | |
| 454 } | |
| 455 | |
| 456 // The layer should not be drawn if (1) it is not double-sided and (2) the | |
| 457 // back of the layer is known to be facing the screen. | |
| 458 if (!backface_test_layer->double_sided() && | |
| 459 TransformToScreenIsKnown(backface_test_layer) && | |
| 460 IsLayerBackFaceVisible(backface_test_layer)) | |
| 461 return true; | |
| 462 | |
| 463 return false; | |
| 464 } | |
| 465 | |
| 466 template <typename LayerType> | |
| 467 static bool HasInvertibleOrAnimatedTransform(LayerType* layer) { | |
| 468 return layer->transform_is_invertible() || layer->TransformIsAnimating(); | |
| 469 } | |
| 470 | |
| 471 static inline bool SubtreeShouldBeSkipped(LayerImpl* layer, | |
| 472 bool layer_is_drawn) { | |
| 473 // If the layer transform is not invertible, it should not be drawn. | |
| 474 // TODO(ajuma): Correctly process subtrees with singular transform for the | |
| 475 // case where we may animate to a non-singular transform and wish to | |
| 476 // pre-raster. | |
| 477 if (!HasInvertibleOrAnimatedTransform(layer)) | |
| 478 return true; | |
| 479 | |
| 480 // When we need to do a readback/copy of a layer's output, we can not skip | |
| 481 // it or any of its ancestors. | |
| 482 if (layer->draw_properties().layer_or_descendant_has_copy_request) | |
| 483 return false; | |
| 484 | |
| 485 // We cannot skip the the subtree if a descendant has a wheel or touch handler | |
| 486 // or the hit testing code will break (it requires fresh transforms, etc). | |
| 487 if (layer->draw_properties().layer_or_descendant_has_input_handler) | |
| 488 return false; | |
| 489 | |
| 490 // If the layer is not drawn, then skip it and its subtree. | |
| 491 if (!layer_is_drawn) | |
| 492 return true; | |
| 493 | |
| 494 // If layer is on the pending tree and opacity is being animated then | |
| 495 // this subtree can't be skipped as we need to create, prioritize and | |
| 496 // include tiles for this layer when deciding if tree can be activated. | |
| 497 if (layer->layer_tree_impl()->IsPendingTree() && layer->OpacityIsAnimating()) | |
| 498 return false; | |
| 499 | |
| 500 // The opacity of a layer always applies to its children (either implicitly | |
| 501 // via a render surface or explicitly if the parent preserves 3D), so the | |
| 502 // entire subtree can be skipped if this layer is fully transparent. | |
| 503 return !layer->opacity(); | |
| 504 } | |
| 505 | |
| 506 static inline bool SubtreeShouldBeSkipped(Layer* layer, bool layer_is_drawn) { | |
| 507 // If the layer transform is not invertible, it should not be drawn. | |
| 508 if (!layer->transform_is_invertible() && !layer->TransformIsAnimating()) | |
| 509 return true; | |
| 510 | |
| 511 // When we need to do a readback/copy of a layer's output, we can not skip | |
| 512 // it or any of its ancestors. | |
| 513 if (layer->draw_properties().layer_or_descendant_has_copy_request) | |
| 514 return false; | |
| 515 | |
| 516 // We cannot skip the the subtree if a descendant has a wheel or touch handler | |
| 517 // or the hit testing code will break (it requires fresh transforms, etc). | |
| 518 if (layer->draw_properties().layer_or_descendant_has_input_handler) | |
| 519 return false; | |
| 520 | |
| 521 // If the layer is not drawn, then skip it and its subtree. | |
| 522 if (!layer_is_drawn) | |
| 523 return true; | |
| 524 | |
| 525 // If the opacity is being animated then the opacity on the main thread is | |
| 526 // unreliable (since the impl thread may be using a different opacity), so it | |
| 527 // should not be trusted. | |
| 528 // In particular, it should not cause the subtree to be skipped. | |
| 529 // Similarly, for layers that might animate opacity using an impl-only | |
| 530 // animation, their subtree should also not be skipped. | |
| 531 return !layer->opacity() && !layer->OpacityIsAnimating() && | |
| 532 !layer->OpacityCanAnimateOnImplThread(); | |
| 533 } | |
| 534 | |
| 535 static inline void SavePaintPropertiesLayer(LayerImpl* layer) {} | |
| 536 | |
| 537 static inline void SavePaintPropertiesLayer(Layer* layer) { | |
| 538 layer->SavePaintProperties(); | |
| 539 | |
| 540 if (layer->mask_layer()) | |
| 541 layer->mask_layer()->SavePaintProperties(); | |
| 542 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) | |
| 543 layer->replica_layer()->mask_layer()->SavePaintProperties(); | |
| 544 } | |
| 545 | |
| 546 static bool SubtreeShouldRenderToSeparateSurface( | |
| 547 Layer* layer, | |
| 548 bool axis_aligned_with_respect_to_parent) { | |
| 549 // | |
| 550 // A layer and its descendants should render onto a new RenderSurfaceImpl if | |
| 551 // any of these rules hold: | |
| 552 // | |
| 553 | |
| 554 // The root layer owns a render surface, but it never acts as a contributing | |
| 555 // surface to another render target. Compositor features that are applied via | |
| 556 // a contributing surface can not be applied to the root layer. In order to | |
| 557 // use these effects, another child of the root would need to be introduced | |
| 558 // in order to act as a contributing surface to the root layer's surface. | |
| 559 bool is_root = IsRootLayer(layer); | |
| 560 | |
| 561 // If the layer uses a mask. | |
| 562 if (layer->mask_layer()) { | |
| 563 DCHECK(!is_root); | |
| 564 return true; | |
| 565 } | |
| 566 | |
| 567 // If the layer has a reflection. | |
| 568 if (layer->replica_layer()) { | |
| 569 DCHECK(!is_root); | |
| 570 return true; | |
| 571 } | |
| 572 | |
| 573 // If the layer uses a CSS filter. | |
| 574 if (!layer->filters().IsEmpty() || !layer->background_filters().IsEmpty()) { | |
| 575 DCHECK(!is_root); | |
| 576 return true; | |
| 577 } | |
| 578 | |
| 579 // If the layer will use a CSS filter. In this case, the animation | |
| 580 // will start and add a filter to this layer, so it needs a surface. | |
| 581 if (layer->FilterIsAnimating()) { | |
| 582 DCHECK(!is_root); | |
| 583 return true; | |
| 584 } | |
| 585 | |
| 586 int num_descendants_that_draw_content = | |
| 587 layer->NumDescendantsThatDrawContent(); | |
| 588 | |
| 589 // If the layer flattens its subtree, but it is treated as a 3D object by its | |
| 590 // parent (i.e. parent participates in a 3D rendering context). | |
| 591 if (LayerIsInExisting3DRenderingContext(layer) && | |
| 592 layer->should_flatten_transform() && | |
| 593 num_descendants_that_draw_content > 0) { | |
| 594 TRACE_EVENT_INSTANT0( | |
| 595 "cc", | |
| 596 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening", | |
| 597 TRACE_EVENT_SCOPE_THREAD); | |
| 598 DCHECK(!is_root); | |
| 599 return true; | |
| 600 } | |
| 601 | |
| 602 // If the layer has blending. | |
| 603 // TODO(rosca): this is temporary, until blending is implemented for other | |
| 604 // types of quads than RenderPassDrawQuad. Layers having descendants that draw | |
| 605 // content will still create a separate rendering surface. | |
| 606 if (!layer->uses_default_blend_mode()) { | |
| 607 TRACE_EVENT_INSTANT0( | |
| 608 "cc", | |
| 609 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface blending", | |
| 610 TRACE_EVENT_SCOPE_THREAD); | |
| 611 DCHECK(!is_root); | |
| 612 return true; | |
| 613 } | |
| 614 | |
| 615 // If the layer clips its descendants but it is not axis-aligned with respect | |
| 616 // to its parent. | |
| 617 bool layer_clips_external_content = | |
| 618 LayerClipsSubtree(layer) || layer->HasDelegatedContent(); | |
| 619 if (layer_clips_external_content && !axis_aligned_with_respect_to_parent && | |
| 620 num_descendants_that_draw_content > 0) { | |
| 621 TRACE_EVENT_INSTANT0( | |
| 622 "cc", | |
| 623 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping", | |
| 624 TRACE_EVENT_SCOPE_THREAD); | |
| 625 DCHECK(!is_root); | |
| 626 return true; | |
| 627 } | |
| 628 | |
| 629 // If the layer has some translucency and does not have a preserves-3d | |
| 630 // transform style. This condition only needs a render surface if two or more | |
| 631 // layers in the subtree overlap. But checking layer overlaps is unnecessarily | |
| 632 // costly so instead we conservatively create a surface whenever at least two | |
| 633 // layers draw content for this subtree. | |
| 634 bool at_least_two_layers_in_subtree_draw_content = | |
| 635 num_descendants_that_draw_content > 0 && | |
| 636 (layer->DrawsContent() || num_descendants_that_draw_content > 1); | |
| 637 | |
| 638 if (layer->opacity() != 1.f && layer->should_flatten_transform() && | |
| 639 at_least_two_layers_in_subtree_draw_content) { | |
| 640 TRACE_EVENT_INSTANT0( | |
| 641 "cc", | |
| 642 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity", | |
| 643 TRACE_EVENT_SCOPE_THREAD); | |
| 644 DCHECK(!is_root); | |
| 645 return true; | |
| 646 } | |
| 647 | |
| 648 // The root layer should always have a render_surface. | |
| 649 if (is_root) | |
| 650 return true; | |
| 651 | |
| 652 // | |
| 653 // These are allowed on the root surface, as they don't require the surface to | |
| 654 // be used as a contributing surface in order to apply correctly. | |
| 655 // | |
| 656 | |
| 657 // If the layer has isolation. | |
| 658 // TODO(rosca): to be optimized - create separate rendering surface only when | |
| 659 // the blending descendants might have access to the content behind this layer | |
| 660 // (layer has transparent background or descendants overflow). | |
| 661 // https://code.google.com/p/chromium/issues/detail?id=301738 | |
| 662 if (layer->is_root_for_isolated_group()) { | |
| 663 TRACE_EVENT_INSTANT0( | |
| 664 "cc", | |
| 665 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface isolation", | |
| 666 TRACE_EVENT_SCOPE_THREAD); | |
| 667 return true; | |
| 668 } | |
| 669 | |
| 670 // If we force it. | |
| 671 if (layer->force_render_surface()) | |
| 672 return true; | |
| 673 | |
| 674 // If we'll make a copy of the layer's contents. | |
| 675 if (layer->HasCopyRequest()) | |
| 676 return true; | |
| 677 | |
| 678 return false; | |
| 679 } | |
| 680 | |
| 681 // This function returns a translation matrix that can be applied on a vector | |
| 682 // that's in the layer's target surface coordinate, while the position offset is | |
| 683 // specified in some ancestor layer's coordinate. | |
| 684 template <typename LayerType> | |
| 685 gfx::Transform ComputeSizeDeltaCompensation( | |
| 686 LayerType* layer, | |
| 687 LayerType* container, | |
| 688 const gfx::Vector2dF& position_offset) { | |
| 689 gfx::Transform result_transform; | |
| 690 | |
| 691 // To apply a translate in the container's layer space, | |
| 692 // the following steps need to be done: | |
| 693 // Step 1a. transform from target surface space to the container's target | |
| 694 // surface space | |
| 695 // Step 1b. transform from container's target surface space to the | |
| 696 // container's layer space | |
| 697 // Step 2. apply the compensation | |
| 698 // Step 3. transform back to target surface space | |
| 699 | |
| 700 gfx::Transform target_surface_space_to_container_layer_space; | |
| 701 // Calculate step 1a | |
| 702 LayerType* container_target_surface = container->render_target(); | |
| 703 for (LayerType* current_target_surface = NextTargetSurface(layer); | |
| 704 current_target_surface && | |
| 705 current_target_surface != container_target_surface; | |
| 706 current_target_surface = NextTargetSurface(current_target_surface)) { | |
| 707 // Note: Concat is used here to convert the result coordinate space from | |
| 708 // current render surface to the next render surface. | |
| 709 target_surface_space_to_container_layer_space.ConcatTransform( | |
| 710 current_target_surface->render_surface()->draw_transform()); | |
| 711 } | |
| 712 // Calculate step 1b | |
| 713 gfx::Transform container_layer_space_to_container_target_surface_space = | |
| 714 container->draw_transform(); | |
| 715 container_layer_space_to_container_target_surface_space.Scale( | |
| 716 container->contents_scale_x(), container->contents_scale_y()); | |
| 717 | |
| 718 gfx::Transform container_target_surface_space_to_container_layer_space; | |
| 719 if (container_layer_space_to_container_target_surface_space.GetInverse( | |
| 720 &container_target_surface_space_to_container_layer_space)) { | |
| 721 // Note: Again, Concat is used to conver the result coordinate space from | |
| 722 // the container render surface to the container layer. | |
| 723 target_surface_space_to_container_layer_space.ConcatTransform( | |
| 724 container_target_surface_space_to_container_layer_space); | |
| 725 } | |
| 726 | |
| 727 // Apply step 3 | |
| 728 gfx::Transform container_layer_space_to_target_surface_space; | |
| 729 if (target_surface_space_to_container_layer_space.GetInverse( | |
| 730 &container_layer_space_to_target_surface_space)) { | |
| 731 result_transform.PreconcatTransform( | |
| 732 container_layer_space_to_target_surface_space); | |
| 733 } else { | |
| 734 // TODO(shawnsingh): A non-invertible matrix could still make meaningful | |
| 735 // projection. For example ScaleZ(0) is non-invertible but the layer is | |
| 736 // still visible. | |
| 737 return gfx::Transform(); | |
| 738 } | |
| 739 | |
| 740 // Apply step 2 | |
| 741 result_transform.Translate(position_offset.x(), position_offset.y()); | |
| 742 | |
| 743 // Apply step 1 | |
| 744 result_transform.PreconcatTransform( | |
| 745 target_surface_space_to_container_layer_space); | |
| 746 | |
| 747 return result_transform; | |
| 748 } | |
| 749 | |
| 750 template <typename LayerType> | |
| 751 void ApplyPositionAdjustment( | |
| 752 LayerType* layer, | |
| 753 LayerType* container, | |
| 754 const gfx::Transform& scroll_compensation, | |
| 755 gfx::Transform* combined_transform) { | |
| 756 if (!layer->position_constraint().is_fixed_position()) | |
| 757 return; | |
| 758 | |
| 759 // Special case: this layer is a composited fixed-position layer; we need to | |
| 760 // explicitly compensate for all ancestors' nonzero scroll_deltas to keep | |
| 761 // this layer fixed correctly. | |
| 762 // Note carefully: this is Concat, not Preconcat | |
| 763 // (current_scroll_compensation * combined_transform). | |
| 764 combined_transform->ConcatTransform(scroll_compensation); | |
| 765 | |
| 766 // For right-edge or bottom-edge anchored fixed position layers, | |
| 767 // the layer should relocate itself if the container changes its size. | |
| 768 bool fixed_to_right_edge = | |
| 769 layer->position_constraint().is_fixed_to_right_edge(); | |
| 770 bool fixed_to_bottom_edge = | |
| 771 layer->position_constraint().is_fixed_to_bottom_edge(); | |
| 772 gfx::Vector2dF position_offset = container->FixedContainerSizeDelta(); | |
| 773 position_offset.set_x(fixed_to_right_edge ? position_offset.x() : 0); | |
| 774 position_offset.set_y(fixed_to_bottom_edge ? position_offset.y() : 0); | |
| 775 if (position_offset.IsZero()) | |
| 776 return; | |
| 777 | |
| 778 // Note: Again, this is Concat. The compensation matrix will be applied on | |
| 779 // the vector in target surface space. | |
| 780 combined_transform->ConcatTransform( | |
| 781 ComputeSizeDeltaCompensation(layer, container, position_offset)); | |
| 782 } | |
| 783 | |
| 784 template <typename LayerType> | |
| 785 gfx::Transform ComputeScrollCompensationForThisLayer( | |
| 786 LayerType* scrolling_layer, | |
| 787 const gfx::Transform& parent_matrix, | |
| 788 const gfx::Vector2dF& scroll_delta) { | |
| 789 // For every layer that has non-zero scroll_delta, we have to compute a | |
| 790 // transform that can undo the scroll_delta translation. In particular, we | |
| 791 // want this matrix to premultiply a fixed-position layer's parent_matrix, so | |
| 792 // we design this transform in three steps as follows. The steps described | |
| 793 // here apply from right-to-left, so Step 1 would be the right-most matrix: | |
| 794 // | |
| 795 // Step 1. transform from target surface space to the exact space where | |
| 796 // scroll_delta is actually applied. | |
| 797 // -- this is inverse of parent_matrix | |
| 798 // Step 2. undo the scroll_delta | |
| 799 // -- this is just a translation by scroll_delta. | |
| 800 // Step 3. transform back to target surface space. | |
| 801 // -- this transform is the parent_matrix | |
| 802 // | |
| 803 // These steps create a matrix that both start and end in target surface | |
| 804 // space. So this matrix can pre-multiply any fixed-position layer's | |
| 805 // draw_transform to undo the scroll_deltas -- as long as that fixed position | |
| 806 // layer is fixed onto the same render_target as this scrolling_layer. | |
| 807 // | |
| 808 | |
| 809 gfx::Transform scroll_compensation_for_this_layer = parent_matrix; // Step 3 | |
| 810 scroll_compensation_for_this_layer.Translate( | |
| 811 scroll_delta.x(), | |
| 812 scroll_delta.y()); // Step 2 | |
| 813 | |
| 814 gfx::Transform inverse_parent_matrix(gfx::Transform::kSkipInitialization); | |
| 815 if (!parent_matrix.GetInverse(&inverse_parent_matrix)) { | |
| 816 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
| 817 // here, or DCHECK that the transform is invertible. | |
| 818 } | |
| 819 scroll_compensation_for_this_layer.PreconcatTransform( | |
| 820 inverse_parent_matrix); // Step 1 | |
| 821 return scroll_compensation_for_this_layer; | |
| 822 } | |
| 823 | |
| 824 template <typename LayerType> | |
| 825 gfx::Transform ComputeScrollCompensationMatrixForChildren( | |
| 826 LayerType* layer, | |
| 827 const gfx::Transform& parent_matrix, | |
| 828 const gfx::Transform& current_scroll_compensation_matrix, | |
| 829 const gfx::Vector2dF& scroll_delta) { | |
| 830 // "Total scroll compensation" is the transform needed to cancel out all | |
| 831 // scroll_delta translations that occurred since the nearest container layer, | |
| 832 // even if there are render_surfaces in-between. | |
| 833 // | |
| 834 // There are some edge cases to be aware of, that are not explicit in the | |
| 835 // code: | |
| 836 // - A layer that is both a fixed-position and container should not be its | |
| 837 // own container, instead, that means it is fixed to an ancestor, and is a | |
| 838 // container for any fixed-position descendants. | |
| 839 // - A layer that is a fixed-position container and has a render_surface | |
| 840 // should behave the same as a container without a render_surface, the | |
| 841 // render_surface is irrelevant in that case. | |
| 842 // - A layer that does not have an explicit container is simply fixed to the | |
| 843 // viewport. (i.e. the root render_surface.) | |
| 844 // - If the fixed-position layer has its own render_surface, then the | |
| 845 // render_surface is the one who gets fixed. | |
| 846 // | |
| 847 // This function needs to be called AFTER layers create their own | |
| 848 // render_surfaces. | |
| 849 // | |
| 850 | |
| 851 // Scroll compensation restarts from identity under two possible conditions: | |
| 852 // - the current layer is a container for fixed-position descendants | |
| 853 // - the current layer is fixed-position itself, so any fixed-position | |
| 854 // descendants are positioned with respect to this layer. Thus, any | |
| 855 // fixed position descendants only need to compensate for scrollDeltas | |
| 856 // that occur below this layer. | |
| 857 bool current_layer_resets_scroll_compensation_for_descendants = | |
| 858 layer->IsContainerForFixedPositionLayers() || | |
| 859 layer->position_constraint().is_fixed_position(); | |
| 860 | |
| 861 // Avoid the overheads (including stack allocation and matrix | |
| 862 // initialization/copy) if we know that the scroll compensation doesn't need | |
| 863 // to be reset or adjusted. | |
| 864 if (!current_layer_resets_scroll_compensation_for_descendants && | |
| 865 scroll_delta.IsZero() && !layer->render_surface()) | |
| 866 return current_scroll_compensation_matrix; | |
| 867 | |
| 868 // Start as identity matrix. | |
| 869 gfx::Transform next_scroll_compensation_matrix; | |
| 870 | |
| 871 // If this layer does not reset scroll compensation, then it inherits the | |
| 872 // existing scroll compensations. | |
| 873 if (!current_layer_resets_scroll_compensation_for_descendants) | |
| 874 next_scroll_compensation_matrix = current_scroll_compensation_matrix; | |
| 875 | |
| 876 // If the current layer has a non-zero scroll_delta, then we should compute | |
| 877 // its local scroll compensation and accumulate it to the | |
| 878 // next_scroll_compensation_matrix. | |
| 879 if (!scroll_delta.IsZero()) { | |
| 880 gfx::Transform scroll_compensation_for_this_layer = | |
| 881 ComputeScrollCompensationForThisLayer( | |
| 882 layer, parent_matrix, scroll_delta); | |
| 883 next_scroll_compensation_matrix.PreconcatTransform( | |
| 884 scroll_compensation_for_this_layer); | |
| 885 } | |
| 886 | |
| 887 // If the layer created its own render_surface, we have to adjust | |
| 888 // next_scroll_compensation_matrix. The adjustment allows us to continue | |
| 889 // using the scroll compensation on the next surface. | |
| 890 // Step 1 (right-most in the math): transform from the new surface to the | |
| 891 // original ancestor surface | |
| 892 // Step 2: apply the scroll compensation | |
| 893 // Step 3: transform back to the new surface. | |
| 894 if (layer->render_surface() && | |
| 895 !next_scroll_compensation_matrix.IsIdentity()) { | |
| 896 gfx::Transform inverse_surface_draw_transform( | |
| 897 gfx::Transform::kSkipInitialization); | |
| 898 if (!layer->render_surface()->draw_transform().GetInverse( | |
| 899 &inverse_surface_draw_transform)) { | |
| 900 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
| 901 // here, or DCHECK that the transform is invertible. | |
| 902 } | |
| 903 next_scroll_compensation_matrix = | |
| 904 inverse_surface_draw_transform * next_scroll_compensation_matrix * | |
| 905 layer->render_surface()->draw_transform(); | |
| 906 } | |
| 907 | |
| 908 return next_scroll_compensation_matrix; | |
| 909 } | |
| 910 | |
| 911 template <typename LayerType> | |
| 912 static inline void UpdateLayerScaleDrawProperties( | |
| 913 LayerType* layer, | |
| 914 float ideal_contents_scale, | |
| 915 float maximum_animation_contents_scale, | |
| 916 float page_scale_factor, | |
| 917 float device_scale_factor) { | |
| 918 layer->draw_properties().ideal_contents_scale = ideal_contents_scale; | |
| 919 layer->draw_properties().maximum_animation_contents_scale = | |
| 920 maximum_animation_contents_scale; | |
| 921 layer->draw_properties().page_scale_factor = page_scale_factor; | |
| 922 layer->draw_properties().device_scale_factor = device_scale_factor; | |
| 923 } | |
| 924 | |
| 925 static inline void CalculateContentsScale(LayerImpl* layer, | |
| 926 float contents_scale) { | |
| 927 // LayerImpl has all of its content scales and bounds pushed from the Main | |
| 928 // thread during commit and just uses those values as-is. | |
| 929 } | |
| 930 | |
| 931 static inline void CalculateContentsScale(Layer* layer, float contents_scale) { | |
| 932 layer->CalculateContentsScale(contents_scale, | |
| 933 &layer->draw_properties().contents_scale_x, | |
| 934 &layer->draw_properties().contents_scale_y, | |
| 935 &layer->draw_properties().content_bounds); | |
| 936 | |
| 937 Layer* mask_layer = layer->mask_layer(); | |
| 938 if (mask_layer) { | |
| 939 mask_layer->CalculateContentsScale( | |
| 940 contents_scale, | |
| 941 &mask_layer->draw_properties().contents_scale_x, | |
| 942 &mask_layer->draw_properties().contents_scale_y, | |
| 943 &mask_layer->draw_properties().content_bounds); | |
| 944 } | |
| 945 | |
| 946 Layer* replica_mask_layer = | |
| 947 layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL; | |
| 948 if (replica_mask_layer) { | |
| 949 replica_mask_layer->CalculateContentsScale( | |
| 950 contents_scale, | |
| 951 &replica_mask_layer->draw_properties().contents_scale_x, | |
| 952 &replica_mask_layer->draw_properties().contents_scale_y, | |
| 953 &replica_mask_layer->draw_properties().content_bounds); | |
| 954 } | |
| 955 } | |
| 956 | |
| 957 static inline void UpdateLayerContentsScale( | |
| 958 LayerImpl* layer, | |
| 959 bool can_adjust_raster_scale, | |
| 960 float ideal_contents_scale, | |
| 961 float device_scale_factor, | |
| 962 float page_scale_factor, | |
| 963 bool animating_transform_to_screen) { | |
| 964 CalculateContentsScale(layer, ideal_contents_scale); | |
| 965 } | |
| 966 | |
| 967 static inline void UpdateLayerContentsScale( | |
| 968 Layer* layer, | |
| 969 bool can_adjust_raster_scale, | |
| 970 float ideal_contents_scale, | |
| 971 float device_scale_factor, | |
| 972 float page_scale_factor, | |
| 973 bool animating_transform_to_screen) { | |
| 974 if (can_adjust_raster_scale) { | |
| 975 float ideal_raster_scale = | |
| 976 ideal_contents_scale / (device_scale_factor * page_scale_factor); | |
| 977 | |
| 978 bool need_to_set_raster_scale = layer->raster_scale_is_unknown(); | |
| 979 | |
| 980 // If we've previously saved a raster_scale but the ideal changes, things | |
| 981 // are unpredictable and we should just use 1. | |
| 982 if (!need_to_set_raster_scale && layer->raster_scale() != 1.f && | |
| 983 ideal_raster_scale != layer->raster_scale()) { | |
| 984 ideal_raster_scale = 1.f; | |
| 985 need_to_set_raster_scale = true; | |
| 986 } | |
| 987 | |
| 988 if (need_to_set_raster_scale) { | |
| 989 bool use_and_save_ideal_scale = | |
| 990 ideal_raster_scale >= 1.f && !animating_transform_to_screen; | |
| 991 if (use_and_save_ideal_scale) | |
| 992 layer->set_raster_scale(ideal_raster_scale); | |
| 993 } | |
| 994 } | |
| 995 | |
| 996 float raster_scale = 1.f; | |
| 997 if (!layer->raster_scale_is_unknown()) | |
| 998 raster_scale = layer->raster_scale(); | |
| 999 | |
| 1000 gfx::Size old_content_bounds = layer->content_bounds(); | |
| 1001 float old_contents_scale_x = layer->contents_scale_x(); | |
| 1002 float old_contents_scale_y = layer->contents_scale_y(); | |
| 1003 | |
| 1004 float contents_scale = raster_scale * device_scale_factor * page_scale_factor; | |
| 1005 CalculateContentsScale(layer, contents_scale); | |
| 1006 | |
| 1007 if (layer->content_bounds() != old_content_bounds || | |
| 1008 layer->contents_scale_x() != old_contents_scale_x || | |
| 1009 layer->contents_scale_y() != old_contents_scale_y) | |
| 1010 layer->SetNeedsPushProperties(); | |
| 1011 } | |
| 1012 | |
| 1013 static inline void CalculateAnimationContentsScale( | |
| 1014 Layer* layer, | |
| 1015 bool ancestor_is_animating_scale, | |
| 1016 float ancestor_maximum_animation_contents_scale, | |
| 1017 const gfx::Transform& parent_transform, | |
| 1018 const gfx::Transform& combined_transform, | |
| 1019 bool* combined_is_animating_scale, | |
| 1020 float* combined_maximum_animation_contents_scale) { | |
| 1021 *combined_is_animating_scale = false; | |
| 1022 *combined_maximum_animation_contents_scale = 0.f; | |
| 1023 } | |
| 1024 | |
| 1025 static inline void CalculateAnimationContentsScale( | |
| 1026 LayerImpl* layer, | |
| 1027 bool ancestor_is_animating_scale, | |
| 1028 float ancestor_maximum_animation_contents_scale, | |
| 1029 const gfx::Transform& ancestor_transform, | |
| 1030 const gfx::Transform& combined_transform, | |
| 1031 bool* combined_is_animating_scale, | |
| 1032 float* combined_maximum_animation_contents_scale) { | |
| 1033 if (ancestor_is_animating_scale && | |
| 1034 ancestor_maximum_animation_contents_scale == 0.f) { | |
| 1035 // We've already failed to compute a maximum animated scale at an | |
| 1036 // ancestor, so we'll continue to fail. | |
| 1037 *combined_maximum_animation_contents_scale = 0.f; | |
| 1038 *combined_is_animating_scale = true; | |
| 1039 return; | |
| 1040 } | |
| 1041 | |
| 1042 if (!combined_transform.IsScaleOrTranslation()) { | |
| 1043 // Computing maximum animated scale in the presence of | |
| 1044 // non-scale/translation transforms isn't supported. | |
| 1045 *combined_maximum_animation_contents_scale = 0.f; | |
| 1046 *combined_is_animating_scale = true; | |
| 1047 return; | |
| 1048 } | |
| 1049 | |
| 1050 // We currently only support computing maximum scale for combinations of | |
| 1051 // scales and translations. We treat all non-translations as potentially | |
| 1052 // affecting scale. Animations that include non-translation/scale components | |
| 1053 // will cause the computation of MaximumScale below to fail. | |
| 1054 bool layer_is_animating_scale = | |
| 1055 !layer->layer_animation_controller()->HasOnlyTranslationTransforms(); | |
| 1056 | |
| 1057 if (!layer_is_animating_scale && !ancestor_is_animating_scale) { | |
| 1058 *combined_maximum_animation_contents_scale = 0.f; | |
| 1059 *combined_is_animating_scale = false; | |
| 1060 return; | |
| 1061 } | |
| 1062 | |
| 1063 // We don't attempt to accumulate animation scale from multiple nodes, | |
| 1064 // because of the risk of significant overestimation. For example, one node | |
| 1065 // may be increasing scale from 1 to 10 at the same time as a descendant is | |
| 1066 // decreasing scale from 10 to 1. Naively combining these scales would produce | |
| 1067 // a scale of 100. | |
| 1068 if (layer_is_animating_scale && ancestor_is_animating_scale) { | |
| 1069 *combined_maximum_animation_contents_scale = 0.f; | |
| 1070 *combined_is_animating_scale = true; | |
| 1071 return; | |
| 1072 } | |
| 1073 | |
| 1074 // At this point, we know either the layer or an ancestor, but not both, | |
| 1075 // is animating scale. | |
| 1076 *combined_is_animating_scale = true; | |
| 1077 if (!layer_is_animating_scale) { | |
| 1078 gfx::Vector2dF layer_transform_scales = | |
| 1079 MathUtil::ComputeTransform2dScaleComponents(layer->transform(), 0.f); | |
| 1080 *combined_maximum_animation_contents_scale = | |
| 1081 ancestor_maximum_animation_contents_scale * | |
| 1082 std::max(layer_transform_scales.x(), layer_transform_scales.y()); | |
| 1083 return; | |
| 1084 } | |
| 1085 | |
| 1086 float layer_maximum_animated_scale = 0.f; | |
| 1087 if (!layer->layer_animation_controller()->MaximumTargetScale( | |
| 1088 &layer_maximum_animated_scale)) { | |
| 1089 *combined_maximum_animation_contents_scale = 0.f; | |
| 1090 return; | |
| 1091 } | |
| 1092 gfx::Vector2dF ancestor_transform_scales = | |
| 1093 MathUtil::ComputeTransform2dScaleComponents(ancestor_transform, 0.f); | |
| 1094 *combined_maximum_animation_contents_scale = | |
| 1095 layer_maximum_animated_scale * | |
| 1096 std::max(ancestor_transform_scales.x(), ancestor_transform_scales.y()); | |
| 1097 } | |
| 1098 | |
| 1099 template <typename LayerTypePtr> | |
| 1100 static inline void MarkLayerWithRenderSurfaceLayerListId( | |
| 1101 LayerTypePtr layer, | |
| 1102 int current_render_surface_layer_list_id) { | |
| 1103 layer->draw_properties().last_drawn_render_surface_layer_list_id = | |
| 1104 current_render_surface_layer_list_id; | |
| 1105 layer->draw_properties().layer_or_descendant_is_drawn = | |
| 1106 !!current_render_surface_layer_list_id; | |
| 1107 } | |
| 1108 | |
| 1109 template <typename LayerTypePtr> | |
| 1110 static inline void MarkMasksWithRenderSurfaceLayerListId( | |
| 1111 LayerTypePtr layer, | |
| 1112 int current_render_surface_layer_list_id) { | |
| 1113 if (layer->mask_layer()) { | |
| 1114 MarkLayerWithRenderSurfaceLayerListId(layer->mask_layer(), | |
| 1115 current_render_surface_layer_list_id); | |
| 1116 } | |
| 1117 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { | |
| 1118 MarkLayerWithRenderSurfaceLayerListId(layer->replica_layer()->mask_layer(), | |
| 1119 current_render_surface_layer_list_id); | |
| 1120 } | |
| 1121 } | |
| 1122 | |
| 1123 template <typename LayerListType> | |
| 1124 static inline void MarkLayerListWithRenderSurfaceLayerListId( | |
| 1125 LayerListType* layer_list, | |
| 1126 int current_render_surface_layer_list_id) { | |
| 1127 for (typename LayerListType::iterator it = layer_list->begin(); | |
| 1128 it != layer_list->end(); | |
| 1129 ++it) { | |
| 1130 MarkLayerWithRenderSurfaceLayerListId(*it, | |
| 1131 current_render_surface_layer_list_id); | |
| 1132 MarkMasksWithRenderSurfaceLayerListId(*it, | |
| 1133 current_render_surface_layer_list_id); | |
| 1134 } | |
| 1135 } | |
| 1136 | |
| 1137 template <typename LayerType> | |
| 1138 static inline void RemoveSurfaceForEarlyExit( | |
| 1139 LayerType* layer_to_remove, | |
| 1140 typename LayerType::RenderSurfaceListType* render_surface_layer_list) { | |
| 1141 DCHECK(layer_to_remove->render_surface()); | |
| 1142 // Technically, we know that the layer we want to remove should be | |
| 1143 // at the back of the render_surface_layer_list. However, we have had | |
| 1144 // bugs before that added unnecessary layers here | |
| 1145 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes | |
| 1146 // things to crash. So here we proactively remove any additional | |
| 1147 // layers from the end of the list. | |
| 1148 while (render_surface_layer_list->back() != layer_to_remove) { | |
| 1149 MarkLayerListWithRenderSurfaceLayerListId( | |
| 1150 &render_surface_layer_list->back()->render_surface()->layer_list(), 0); | |
| 1151 MarkLayerWithRenderSurfaceLayerListId(render_surface_layer_list->back(), 0); | |
| 1152 | |
| 1153 render_surface_layer_list->back()->ClearRenderSurfaceLayerList(); | |
| 1154 render_surface_layer_list->pop_back(); | |
| 1155 } | |
| 1156 DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove); | |
| 1157 MarkLayerListWithRenderSurfaceLayerListId( | |
| 1158 &layer_to_remove->render_surface()->layer_list(), 0); | |
| 1159 MarkLayerWithRenderSurfaceLayerListId(layer_to_remove, 0); | |
| 1160 render_surface_layer_list->pop_back(); | |
| 1161 layer_to_remove->ClearRenderSurfaceLayerList(); | |
| 1162 } | |
| 1163 | |
| 1164 struct PreCalculateMetaInformationRecursiveData { | |
| 1165 bool layer_or_descendant_has_copy_request; | |
| 1166 bool layer_or_descendant_has_input_handler; | |
| 1167 int num_unclipped_descendants; | |
| 1168 | |
| 1169 PreCalculateMetaInformationRecursiveData() | |
| 1170 : layer_or_descendant_has_copy_request(false), | |
| 1171 layer_or_descendant_has_input_handler(false), | |
| 1172 num_unclipped_descendants(0) {} | |
| 1173 | |
| 1174 void Merge(const PreCalculateMetaInformationRecursiveData& data) { | |
| 1175 layer_or_descendant_has_copy_request |= | |
| 1176 data.layer_or_descendant_has_copy_request; | |
| 1177 layer_or_descendant_has_input_handler |= | |
| 1178 data.layer_or_descendant_has_input_handler; | |
| 1179 num_unclipped_descendants += data.num_unclipped_descendants; | |
| 1180 } | |
| 1181 }; | |
| 1182 | |
| 1183 static void ValidateRenderSurface(LayerImpl* layer) { | |
| 1184 // This test verifies that there are no cases where a LayerImpl needs | |
| 1185 // a render surface, but doesn't have one. | |
| 1186 if (layer->render_surface()) | |
| 1187 return; | |
| 1188 | |
| 1189 DCHECK(layer->filters().IsEmpty()) << "layer: " << layer->id(); | |
| 1190 DCHECK(layer->background_filters().IsEmpty()) << "layer: " << layer->id(); | |
| 1191 DCHECK(!layer->mask_layer()) << "layer: " << layer->id(); | |
| 1192 DCHECK(!layer->replica_layer()) << "layer: " << layer->id(); | |
| 1193 DCHECK(!IsRootLayer(layer)) << "layer: " << layer->id(); | |
| 1194 DCHECK(!layer->is_root_for_isolated_group()) << "layer: " << layer->id(); | |
| 1195 DCHECK(!layer->HasCopyRequest()) << "layer: " << layer->id(); | |
| 1196 } | |
| 1197 | |
| 1198 static void ValidateRenderSurface(Layer* layer) { | |
| 1199 } | |
| 1200 | |
| 1201 // Recursively walks the layer tree to compute any information that is needed | |
| 1202 // before doing the main recursion. | |
| 1203 template <typename LayerType> | |
| 1204 static void PreCalculateMetaInformation( | |
| 1205 LayerType* layer, | |
| 1206 PreCalculateMetaInformationRecursiveData* recursive_data) { | |
| 1207 ValidateRenderSurface(layer); | |
| 1208 | |
| 1209 layer->draw_properties().sorted_for_recursion = false; | |
| 1210 layer->draw_properties().has_child_with_a_scroll_parent = false; | |
| 1211 layer->draw_properties().layer_or_descendant_is_drawn = false; | |
| 1212 layer->draw_properties().visited = false; | |
| 1213 | |
| 1214 if (!HasInvertibleOrAnimatedTransform(layer)) { | |
| 1215 // Layers with singular transforms should not be drawn, the whole subtree | |
| 1216 // can be skipped. | |
| 1217 return; | |
| 1218 } | |
| 1219 | |
| 1220 if (layer->clip_parent()) | |
| 1221 recursive_data->num_unclipped_descendants++; | |
| 1222 | |
| 1223 for (size_t i = 0; i < layer->children().size(); ++i) { | |
| 1224 LayerType* child_layer = | |
| 1225 LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i); | |
| 1226 | |
| 1227 PreCalculateMetaInformationRecursiveData data_for_child; | |
| 1228 PreCalculateMetaInformation(child_layer, &data_for_child); | |
| 1229 | |
| 1230 if (child_layer->scroll_parent()) | |
| 1231 layer->draw_properties().has_child_with_a_scroll_parent = true; | |
| 1232 recursive_data->Merge(data_for_child); | |
| 1233 } | |
| 1234 | |
| 1235 if (layer->clip_children()) { | |
| 1236 int num_clip_children = layer->clip_children()->size(); | |
| 1237 DCHECK_GE(recursive_data->num_unclipped_descendants, num_clip_children); | |
| 1238 recursive_data->num_unclipped_descendants -= num_clip_children; | |
| 1239 } | |
| 1240 | |
| 1241 if (layer->HasCopyRequest()) | |
| 1242 recursive_data->layer_or_descendant_has_copy_request = true; | |
| 1243 | |
| 1244 if (!layer->touch_event_handler_region().IsEmpty() || | |
| 1245 layer->have_wheel_event_handlers()) | |
| 1246 recursive_data->layer_or_descendant_has_input_handler = true; | |
| 1247 | |
| 1248 layer->draw_properties().num_unclipped_descendants = | |
| 1249 recursive_data->num_unclipped_descendants; | |
| 1250 layer->draw_properties().layer_or_descendant_has_copy_request = | |
| 1251 recursive_data->layer_or_descendant_has_copy_request; | |
| 1252 layer->draw_properties().layer_or_descendant_has_input_handler = | |
| 1253 recursive_data->layer_or_descendant_has_input_handler; | |
| 1254 } | |
| 1255 | |
| 1256 template <typename LayerType> | |
| 1257 struct SubtreeGlobals { | |
| 1258 int max_texture_size; | |
| 1259 float device_scale_factor; | |
| 1260 float page_scale_factor; | |
| 1261 const LayerType* page_scale_application_layer; | |
| 1262 gfx::Vector2dF elastic_overscroll; | |
| 1263 const LayerType* elastic_overscroll_application_layer; | |
| 1264 bool can_adjust_raster_scales; | |
| 1265 bool can_render_to_separate_surface; | |
| 1266 bool layers_always_allowed_lcd_text; | |
| 1267 }; | |
| 1268 | |
| 1269 template<typename LayerType> | |
| 1270 struct DataForRecursion { | |
| 1271 // The accumulated sequence of transforms a layer will use to determine its | |
| 1272 // own draw transform. | |
| 1273 gfx::Transform parent_matrix; | |
| 1274 | |
| 1275 // The accumulated sequence of transforms a layer will use to determine its | |
| 1276 // own screen-space transform. | |
| 1277 gfx::Transform full_hierarchy_matrix; | |
| 1278 | |
| 1279 // The transform that removes all scrolling that may have occurred between a | |
| 1280 // fixed-position layer and its container, so that the layer actually does | |
| 1281 // remain fixed. | |
| 1282 gfx::Transform scroll_compensation_matrix; | |
| 1283 | |
| 1284 // The ancestor that would be the container for any fixed-position / sticky | |
| 1285 // layers. | |
| 1286 LayerType* fixed_container; | |
| 1287 | |
| 1288 // This is the normal clip rect that is propagated from parent to child. | |
| 1289 gfx::Rect clip_rect_in_target_space; | |
| 1290 | |
| 1291 // When the layer's children want to compute their visible content rect, they | |
| 1292 // want to know what their target surface's clip rect will be. BUT - they | |
| 1293 // want to know this clip rect represented in their own target space. This | |
| 1294 // requires inverse-projecting the surface's clip rect from the surface's | |
| 1295 // render target space down to the surface's own space. Instead of computing | |
| 1296 // this value redundantly for each child layer, it is computed only once | |
| 1297 // while dealing with the parent layer, and then this precomputed value is | |
| 1298 // passed down the recursion to the children that actually use it. | |
| 1299 gfx::Rect clip_rect_of_target_surface_in_target_space; | |
| 1300 | |
| 1301 // The maximum amount by which this layer will be scaled during the lifetime | |
| 1302 // of currently running animations. | |
| 1303 float maximum_animation_contents_scale; | |
| 1304 | |
| 1305 bool ancestor_is_animating_scale; | |
| 1306 bool ancestor_clips_subtree; | |
| 1307 typename LayerType::RenderSurfaceType* | |
| 1308 nearest_occlusion_immune_ancestor_surface; | |
| 1309 bool in_subtree_of_page_scale_application_layer; | |
| 1310 bool subtree_can_use_lcd_text; | |
| 1311 bool subtree_is_visible_from_ancestor; | |
| 1312 }; | |
| 1313 | |
| 1314 template <typename LayerType> | |
| 1315 static LayerType* GetChildContainingLayer(const LayerType& parent, | |
| 1316 LayerType* layer) { | |
| 1317 for (LayerType* ancestor = layer; ancestor; ancestor = ancestor->parent()) { | |
| 1318 if (ancestor->parent() == &parent) | |
| 1319 return ancestor; | |
| 1320 } | |
| 1321 NOTREACHED(); | |
| 1322 return 0; | |
| 1323 } | |
| 1324 | |
| 1325 template <typename LayerType> | |
| 1326 static void AddScrollParentChain(std::vector<LayerType*>* out, | |
| 1327 const LayerType& parent, | |
| 1328 LayerType* layer) { | |
| 1329 // At a high level, this function walks up the chain of scroll parents | |
| 1330 // recursively, and once we reach the end of the chain, we add the child | |
| 1331 // of |parent| containing each scroll ancestor as we unwind. The result is | |
| 1332 // an ordering of parent's children that ensures that scroll parents are | |
| 1333 // visited before their descendants. | |
| 1334 // Take for example this layer tree: | |
| 1335 // | |
| 1336 // + stacking_context | |
| 1337 // + scroll_child (1) | |
| 1338 // + scroll_parent_graphics_layer (*) | |
| 1339 // | + scroll_parent_scrolling_layer | |
| 1340 // | + scroll_parent_scrolling_content_layer (2) | |
| 1341 // + scroll_grandparent_graphics_layer (**) | |
| 1342 // + scroll_grandparent_scrolling_layer | |
| 1343 // + scroll_grandparent_scrolling_content_layer (3) | |
| 1344 // | |
| 1345 // The scroll child is (1), its scroll parent is (2) and its scroll | |
| 1346 // grandparent is (3). Note, this doesn't mean that (2)'s scroll parent is | |
| 1347 // (3), it means that (*)'s scroll parent is (3). We don't want our list to | |
| 1348 // look like [ (3), (2), (1) ], even though that does have the ancestor chain | |
| 1349 // in the right order. Instead, we want [ (**), (*), (1) ]. That is, only want | |
| 1350 // (1)'s siblings in the list, but we want them to appear in such an order | |
| 1351 // that the scroll ancestors get visited in the correct order. | |
| 1352 // | |
| 1353 // So our first task at this step of the recursion is to determine the layer | |
| 1354 // that we will potentionally add to the list. That is, the child of parent | |
| 1355 // containing |layer|. | |
| 1356 LayerType* child = GetChildContainingLayer(parent, layer); | |
| 1357 if (child->draw_properties().sorted_for_recursion) | |
| 1358 return; | |
| 1359 | |
| 1360 if (LayerType* scroll_parent = child->scroll_parent()) | |
| 1361 AddScrollParentChain(out, parent, scroll_parent); | |
| 1362 | |
| 1363 out->push_back(child); | |
| 1364 child->draw_properties().sorted_for_recursion = true; | |
| 1365 } | |
| 1366 | |
| 1367 template <typename LayerType> | |
| 1368 static bool SortChildrenForRecursion(std::vector<LayerType*>* out, | |
| 1369 const LayerType& parent) { | |
| 1370 out->reserve(parent.children().size()); | |
| 1371 bool order_changed = false; | |
| 1372 for (size_t i = 0; i < parent.children().size(); ++i) { | |
| 1373 LayerType* current = | |
| 1374 LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i); | |
| 1375 | |
| 1376 if (current->draw_properties().sorted_for_recursion) { | |
| 1377 order_changed = true; | |
| 1378 continue; | |
| 1379 } | |
| 1380 | |
| 1381 AddScrollParentChain(out, parent, current); | |
| 1382 } | |
| 1383 | |
| 1384 DCHECK_EQ(parent.children().size(), out->size()); | |
| 1385 return order_changed; | |
| 1386 } | |
| 1387 | |
| 1388 template <typename LayerType> | |
| 1389 static void GetNewDescendantsStartIndexAndCount(LayerType* layer, | |
| 1390 size_t* start_index, | |
| 1391 size_t* count) { | |
| 1392 *start_index = layer->draw_properties().index_of_first_descendants_addition; | |
| 1393 *count = layer->draw_properties().num_descendants_added; | |
| 1394 } | |
| 1395 | |
| 1396 template <typename LayerType> | |
| 1397 static void GetNewRenderSurfacesStartIndexAndCount(LayerType* layer, | |
| 1398 size_t* start_index, | |
| 1399 size_t* count) { | |
| 1400 *start_index = layer->draw_properties() | |
| 1401 .index_of_first_render_surface_layer_list_addition; | |
| 1402 *count = layer->draw_properties().num_render_surfaces_added; | |
| 1403 } | |
| 1404 | |
| 1405 // We need to extract a list from the the two flavors of RenderSurfaceListType | |
| 1406 // for use in the sorting function below. | |
| 1407 static LayerList* GetLayerListForSorting(RenderSurfaceLayerList* rsll) { | |
| 1408 return &rsll->AsLayerList(); | |
| 1409 } | |
| 1410 | |
| 1411 static LayerImplList* GetLayerListForSorting(LayerImplList* layer_list) { | |
| 1412 return layer_list; | |
| 1413 } | |
| 1414 | |
| 1415 static inline gfx::Vector2d BoundsDelta(Layer* layer) { | |
| 1416 return gfx::Vector2d(); | |
| 1417 } | |
| 1418 | |
| 1419 static inline gfx::Vector2d BoundsDelta(LayerImpl* layer) { | |
| 1420 return gfx::ToCeiledVector2d(layer->bounds_delta()); | |
| 1421 } | |
| 1422 | |
| 1423 template <typename LayerType, typename GetIndexAndCountType> | |
| 1424 static void SortLayerListContributions( | |
| 1425 const LayerType& parent, | |
| 1426 typename LayerType::LayerListType* unsorted, | |
| 1427 size_t start_index_for_all_contributions, | |
| 1428 GetIndexAndCountType get_index_and_count) { | |
| 1429 typename LayerType::LayerListType buffer; | |
| 1430 for (size_t i = 0; i < parent.children().size(); ++i) { | |
| 1431 LayerType* child = | |
| 1432 LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i); | |
| 1433 | |
| 1434 size_t start_index = 0; | |
| 1435 size_t count = 0; | |
| 1436 get_index_and_count(child, &start_index, &count); | |
| 1437 for (size_t j = start_index; j < start_index + count; ++j) | |
| 1438 buffer.push_back(unsorted->at(j)); | |
| 1439 } | |
| 1440 | |
| 1441 DCHECK_EQ(buffer.size(), | |
| 1442 unsorted->size() - start_index_for_all_contributions); | |
| 1443 | |
| 1444 for (size_t i = 0; i < buffer.size(); ++i) | |
| 1445 (*unsorted)[i + start_index_for_all_contributions] = buffer[i]; | |
| 1446 } | |
| 1447 | |
| 1448 // Recursively walks the layer tree starting at the given node and computes all | |
| 1449 // the necessary transformations, clip rects, render surfaces, etc. | |
| 1450 template <typename LayerType> | |
| 1451 static void CalculateDrawPropertiesInternal( | |
| 1452 LayerType* layer, | |
| 1453 const SubtreeGlobals<LayerType>& globals, | |
| 1454 const DataForRecursion<LayerType>& data_from_ancestor, | |
| 1455 typename LayerType::RenderSurfaceListType* render_surface_layer_list, | |
| 1456 typename LayerType::LayerListType* layer_list, | |
| 1457 std::vector<AccumulatedSurfaceState<LayerType>>* accumulated_surface_state, | |
| 1458 int current_render_surface_layer_list_id) { | |
| 1459 // This function computes the new matrix transformations recursively for this | |
| 1460 // layer and all its descendants. It also computes the appropriate render | |
| 1461 // surfaces. | |
| 1462 // Some important points to remember: | |
| 1463 // | |
| 1464 // 0. Here, transforms are notated in Matrix x Vector order, and in words we | |
| 1465 // describe what the transform does from left to right. | |
| 1466 // | |
| 1467 // 1. In our terminology, the "layer origin" refers to the top-left corner of | |
| 1468 // a layer, and the positive Y-axis points downwards. This interpretation is | |
| 1469 // valid because the orthographic projection applied at draw time flips the Y | |
| 1470 // axis appropriately. | |
| 1471 // | |
| 1472 // 2. The anchor point, when given as a PointF object, is specified in "unit | |
| 1473 // layer space", where the bounds of the layer map to [0, 1]. However, as a | |
| 1474 // Transform object, the transform to the anchor point is specified in "layer | |
| 1475 // space", where the bounds of the layer map to [bounds.width(), | |
| 1476 // bounds.height()]. | |
| 1477 // | |
| 1478 // 3. Definition of various transforms used: | |
| 1479 // M[parent] is the parent matrix, with respect to the nearest render | |
| 1480 // surface, passed down recursively. | |
| 1481 // | |
| 1482 // M[root] is the full hierarchy, with respect to the root, passed down | |
| 1483 // recursively. | |
| 1484 // | |
| 1485 // Tr[origin] is the translation matrix from the parent's origin to | |
| 1486 // this layer's origin. | |
| 1487 // | |
| 1488 // Tr[origin2anchor] is the translation from the layer's origin to its | |
| 1489 // anchor point | |
| 1490 // | |
| 1491 // Tr[origin2center] is the translation from the layer's origin to its | |
| 1492 // center | |
| 1493 // | |
| 1494 // M[layer] is the layer's matrix (applied at the anchor point) | |
| 1495 // | |
| 1496 // S[layer2content] is the ratio of a layer's content_bounds() to its | |
| 1497 // Bounds(). | |
| 1498 // | |
| 1499 // Some composite transforms can help in understanding the sequence of | |
| 1500 // transforms: | |
| 1501 // composite_layer_transform = Tr[origin2anchor] * M[layer] * | |
| 1502 // Tr[origin2anchor].inverse() | |
| 1503 // | |
| 1504 // 4. When a layer (or render surface) is drawn, it is drawn into a "target | |
| 1505 // render surface". Therefore the draw transform does not necessarily | |
| 1506 // transform from screen space to local layer space. Instead, the draw | |
| 1507 // transform is the transform between the "target render surface space" and | |
| 1508 // local layer space. Note that render surfaces, except for the root, also | |
| 1509 // draw themselves into a different target render surface, and so their draw | |
| 1510 // transform and origin transforms are also described with respect to the | |
| 1511 // target. | |
| 1512 // | |
| 1513 // Using these definitions, then: | |
| 1514 // | |
| 1515 // The draw transform for the layer is: | |
| 1516 // M[draw] = M[parent] * Tr[origin] * composite_layer_transform * | |
| 1517 // S[layer2content] = M[parent] * Tr[layer->position() + anchor] * | |
| 1518 // M[layer] * Tr[anchor2origin] * S[layer2content] | |
| 1519 // | |
| 1520 // Interpreting the math left-to-right, this transforms from the | |
| 1521 // layer's render surface to the origin of the layer in content space. | |
| 1522 // | |
| 1523 // The screen space transform is: | |
| 1524 // M[screenspace] = M[root] * Tr[origin] * composite_layer_transform * | |
| 1525 // S[layer2content] | |
| 1526 // = M[root] * Tr[layer->position() + anchor] * M[layer] | |
| 1527 // * Tr[anchor2origin] * S[layer2content] | |
| 1528 // | |
| 1529 // Interpreting the math left-to-right, this transforms from the root | |
| 1530 // render surface's content space to the origin of the layer in content | |
| 1531 // space. | |
| 1532 // | |
| 1533 // The transform hierarchy that is passed on to children (i.e. the child's | |
| 1534 // parent_matrix) is: | |
| 1535 // M[parent]_for_child = M[parent] * Tr[origin] * | |
| 1536 // composite_layer_transform | |
| 1537 // = M[parent] * Tr[layer->position() + anchor] * | |
| 1538 // M[layer] * Tr[anchor2origin] | |
| 1539 // | |
| 1540 // and a similar matrix for the full hierarchy with respect to the | |
| 1541 // root. | |
| 1542 // | |
| 1543 // Finally, note that the final matrix used by the shader for the layer is P * | |
| 1544 // M[draw] * S . This final product is computed in drawTexturedQuad(), where: | |
| 1545 // P is the projection matrix | |
| 1546 // S is the scale adjustment (to scale up a canonical quad to the | |
| 1547 // layer's size) | |
| 1548 // | |
| 1549 // When a render surface has a replica layer, that layer's transform is used | |
| 1550 // to draw a second copy of the surface. gfx::Transforms named here are | |
| 1551 // relative to the surface, unless they specify they are relative to the | |
| 1552 // replica layer. | |
| 1553 // | |
| 1554 // We will denote a scale by device scale S[deviceScale] | |
| 1555 // | |
| 1556 // The render surface draw transform to its target surface origin is: | |
| 1557 // M[surfaceDraw] = M[owningLayer->Draw] | |
| 1558 // | |
| 1559 // The render surface origin transform to its the root (screen space) origin | |
| 1560 // is: | |
| 1561 // M[surface2root] = M[owningLayer->screenspace] * | |
| 1562 // S[deviceScale].inverse() | |
| 1563 // | |
| 1564 // The replica draw transform to its target surface origin is: | |
| 1565 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * | |
| 1566 // Tr[replica->position() + replica->anchor()] * Tr[replica] * | |
| 1567 // Tr[origin2anchor].inverse() * S[contents_scale].inverse() | |
| 1568 // | |
| 1569 // The replica draw transform to the root (screen space) origin is: | |
| 1570 // M[replica2root] = M[surface2root] * Tr[replica->position()] * | |
| 1571 // Tr[replica] * Tr[origin2anchor].inverse() | |
| 1572 // | |
| 1573 | |
| 1574 // It makes no sense to have a non-unit page_scale_factor without specifying | |
| 1575 // which layer roots the subtree the scale is applied to. | |
| 1576 DCHECK(globals.page_scale_application_layer || | |
| 1577 (globals.page_scale_factor == 1.f)); | |
| 1578 | |
| 1579 CHECK(!layer->draw_properties().visited); | |
| 1580 layer->draw_properties().visited = true; | |
| 1581 | |
| 1582 DataForRecursion<LayerType> data_for_children; | |
| 1583 typename LayerType::RenderSurfaceType* | |
| 1584 nearest_occlusion_immune_ancestor_surface = | |
| 1585 data_from_ancestor.nearest_occlusion_immune_ancestor_surface; | |
| 1586 data_for_children.in_subtree_of_page_scale_application_layer = | |
| 1587 data_from_ancestor.in_subtree_of_page_scale_application_layer; | |
| 1588 data_for_children.subtree_can_use_lcd_text = | |
| 1589 data_from_ancestor.subtree_can_use_lcd_text; | |
| 1590 | |
| 1591 // Layers that are marked as hidden will hide themselves and their subtree. | |
| 1592 // Exception: Layers with copy requests, whether hidden or not, must be drawn | |
| 1593 // anyway. In this case, we will inform their subtree they are visible to get | |
| 1594 // the right results. | |
| 1595 const bool layer_is_visible = | |
| 1596 data_from_ancestor.subtree_is_visible_from_ancestor && | |
| 1597 !layer->hide_layer_and_subtree(); | |
| 1598 const bool layer_is_drawn = layer_is_visible || layer->HasCopyRequest(); | |
| 1599 | |
| 1600 // The root layer cannot skip CalcDrawProperties. | |
| 1601 if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_drawn)) { | |
| 1602 if (layer->render_surface()) | |
| 1603 layer->ClearRenderSurfaceLayerList(); | |
| 1604 layer->draw_properties().render_target = nullptr; | |
| 1605 return; | |
| 1606 } | |
| 1607 | |
| 1608 // We need to circumvent the normal recursive flow of information for clip | |
| 1609 // children (they don't inherit their direct ancestor's clip information). | |
| 1610 // This is unfortunate, and would be unnecessary if we were to formally | |
| 1611 // separate the clipping hierarchy from the layer hierarchy. | |
| 1612 bool ancestor_clips_subtree = data_from_ancestor.ancestor_clips_subtree; | |
| 1613 gfx::Rect ancestor_clip_rect_in_target_space = | |
| 1614 data_from_ancestor.clip_rect_in_target_space; | |
| 1615 | |
| 1616 // Update our clipping state. If we have a clip parent we will need to pull | |
| 1617 // from the clip state cache rather than using the clip state passed from our | |
| 1618 // immediate ancestor. | |
| 1619 UpdateClipRectsForClipChild<LayerType>( | |
| 1620 layer, &ancestor_clip_rect_in_target_space, &ancestor_clips_subtree); | |
| 1621 | |
| 1622 // As this function proceeds, these are the properties for the current | |
| 1623 // layer that actually get computed. To avoid unnecessary copies | |
| 1624 // (particularly for matrices), we do computations directly on these values | |
| 1625 // when possible. | |
| 1626 DrawProperties<LayerType>& layer_draw_properties = layer->draw_properties(); | |
| 1627 | |
| 1628 gfx::Rect clip_rect_in_target_space; | |
| 1629 bool layer_or_ancestor_clips_descendants = false; | |
| 1630 | |
| 1631 // This value is cached on the stack so that we don't have to inverse-project | |
| 1632 // the surface's clip rect redundantly for every layer. This value is the | |
| 1633 // same as the target surface's clip rect, except that instead of being | |
| 1634 // described in the target surface's target's space, it is described in the | |
| 1635 // current render target's space. | |
| 1636 gfx::Rect clip_rect_of_target_surface_in_target_space; | |
| 1637 | |
| 1638 float accumulated_draw_opacity = layer->opacity(); | |
| 1639 bool animating_opacity_to_target = layer->OpacityIsAnimating(); | |
| 1640 bool animating_opacity_to_screen = animating_opacity_to_target; | |
| 1641 if (layer->parent()) { | |
| 1642 accumulated_draw_opacity *= layer->parent()->draw_opacity(); | |
| 1643 animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating(); | |
| 1644 animating_opacity_to_screen |= | |
| 1645 layer->parent()->screen_space_opacity_is_animating(); | |
| 1646 } | |
| 1647 | |
| 1648 bool animating_transform_to_target = layer->TransformIsAnimating(); | |
| 1649 bool animating_transform_to_screen = animating_transform_to_target; | |
| 1650 if (layer->parent()) { | |
| 1651 animating_transform_to_target |= | |
| 1652 layer->parent()->draw_transform_is_animating(); | |
| 1653 animating_transform_to_screen |= | |
| 1654 layer->parent()->screen_space_transform_is_animating(); | |
| 1655 } | |
| 1656 gfx::Point3F transform_origin = layer->transform_origin(); | |
| 1657 gfx::ScrollOffset scroll_offset = GetEffectiveCurrentScrollOffset(layer); | |
| 1658 gfx::PointF position = | |
| 1659 layer->position() - ScrollOffsetToVector2dF(scroll_offset); | |
| 1660 gfx::Transform combined_transform = data_from_ancestor.parent_matrix; | |
| 1661 if (!layer->transform().IsIdentity()) { | |
| 1662 // LT = Tr[origin] * Tr[origin2transformOrigin] | |
| 1663 combined_transform.Translate3d(position.x() + transform_origin.x(), | |
| 1664 position.y() + transform_origin.y(), | |
| 1665 transform_origin.z()); | |
| 1666 // LT = Tr[origin] * Tr[origin2origin] * M[layer] | |
| 1667 combined_transform.PreconcatTransform(layer->transform()); | |
| 1668 // LT = Tr[origin] * Tr[origin2origin] * M[layer] * | |
| 1669 // Tr[transformOrigin2origin] | |
| 1670 combined_transform.Translate3d( | |
| 1671 -transform_origin.x(), -transform_origin.y(), -transform_origin.z()); | |
| 1672 } else { | |
| 1673 combined_transform.Translate(position.x(), position.y()); | |
| 1674 } | |
| 1675 | |
| 1676 gfx::Vector2dF effective_scroll_delta = GetEffectiveScrollDelta(layer); | |
| 1677 if (!animating_transform_to_target && layer->scrollable() && | |
| 1678 combined_transform.IsScaleOrTranslation()) { | |
| 1679 // Align the scrollable layer's position to screen space pixels to avoid | |
| 1680 // blurriness. To avoid side-effects, do this only if the transform is | |
| 1681 // simple. | |
| 1682 gfx::Vector2dF previous_translation = combined_transform.To2dTranslation(); | |
| 1683 combined_transform.RoundTranslationComponents(); | |
| 1684 gfx::Vector2dF current_translation = combined_transform.To2dTranslation(); | |
| 1685 | |
| 1686 // This rounding changes the scroll delta, and so must be included | |
| 1687 // in the scroll compensation matrix. The scaling converts from physical | |
| 1688 // coordinates to the scroll delta's CSS coordinates (using the parent | |
| 1689 // matrix instead of combined transform since scrolling is applied before | |
| 1690 // the layer's transform). For example, if we have a total scale factor of | |
| 1691 // 3.0, then 1 physical pixel is only 1/3 of a CSS pixel. | |
| 1692 gfx::Vector2dF parent_scales = MathUtil::ComputeTransform2dScaleComponents( | |
| 1693 data_from_ancestor.parent_matrix, 1.f); | |
| 1694 effective_scroll_delta -= | |
| 1695 gfx::ScaleVector2d(current_translation - previous_translation, | |
| 1696 1.f / parent_scales.x(), | |
| 1697 1.f / parent_scales.y()); | |
| 1698 } | |
| 1699 | |
| 1700 // Apply adjustment from position constraints. | |
| 1701 ApplyPositionAdjustment(layer, data_from_ancestor.fixed_container, | |
| 1702 data_from_ancestor.scroll_compensation_matrix, &combined_transform); | |
| 1703 | |
| 1704 bool combined_is_animating_scale = false; | |
| 1705 float combined_maximum_animation_contents_scale = 0.f; | |
| 1706 if (globals.can_adjust_raster_scales) { | |
| 1707 CalculateAnimationContentsScale( | |
| 1708 layer, | |
| 1709 data_from_ancestor.ancestor_is_animating_scale, | |
| 1710 data_from_ancestor.maximum_animation_contents_scale, | |
| 1711 data_from_ancestor.parent_matrix, | |
| 1712 combined_transform, | |
| 1713 &combined_is_animating_scale, | |
| 1714 &combined_maximum_animation_contents_scale); | |
| 1715 } | |
| 1716 data_for_children.ancestor_is_animating_scale = combined_is_animating_scale; | |
| 1717 data_for_children.maximum_animation_contents_scale = | |
| 1718 combined_maximum_animation_contents_scale; | |
| 1719 | |
| 1720 // Compute the 2d scale components of the transform hierarchy up to the target | |
| 1721 // surface. From there, we can decide on a contents scale for the layer. | |
| 1722 float layer_scale_factors = globals.device_scale_factor; | |
| 1723 if (data_from_ancestor.in_subtree_of_page_scale_application_layer) | |
| 1724 layer_scale_factors *= globals.page_scale_factor; | |
| 1725 gfx::Vector2dF combined_transform_scales = | |
| 1726 MathUtil::ComputeTransform2dScaleComponents( | |
| 1727 combined_transform, | |
| 1728 layer_scale_factors); | |
| 1729 | |
| 1730 float ideal_contents_scale = | |
| 1731 globals.can_adjust_raster_scales | |
| 1732 ? std::max(combined_transform_scales.x(), | |
| 1733 combined_transform_scales.y()) | |
| 1734 : layer_scale_factors; | |
| 1735 UpdateLayerContentsScale( | |
| 1736 layer, | |
| 1737 globals.can_adjust_raster_scales, | |
| 1738 ideal_contents_scale, | |
| 1739 globals.device_scale_factor, | |
| 1740 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
| 1741 ? globals.page_scale_factor | |
| 1742 : 1.f, | |
| 1743 animating_transform_to_screen); | |
| 1744 | |
| 1745 UpdateLayerScaleDrawProperties( | |
| 1746 layer, | |
| 1747 ideal_contents_scale, | |
| 1748 combined_maximum_animation_contents_scale, | |
| 1749 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
| 1750 ? globals.page_scale_factor | |
| 1751 : 1.f, | |
| 1752 globals.device_scale_factor); | |
| 1753 | |
| 1754 LayerType* mask_layer = layer->mask_layer(); | |
| 1755 if (mask_layer) { | |
| 1756 UpdateLayerScaleDrawProperties( | |
| 1757 mask_layer, | |
| 1758 ideal_contents_scale, | |
| 1759 combined_maximum_animation_contents_scale, | |
| 1760 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
| 1761 ? globals.page_scale_factor | |
| 1762 : 1.f, | |
| 1763 globals.device_scale_factor); | |
| 1764 } | |
| 1765 | |
| 1766 LayerType* replica_mask_layer = | |
| 1767 layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL; | |
| 1768 if (replica_mask_layer) { | |
| 1769 UpdateLayerScaleDrawProperties( | |
| 1770 replica_mask_layer, | |
| 1771 ideal_contents_scale, | |
| 1772 combined_maximum_animation_contents_scale, | |
| 1773 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
| 1774 ? globals.page_scale_factor | |
| 1775 : 1.f, | |
| 1776 globals.device_scale_factor); | |
| 1777 } | |
| 1778 | |
| 1779 // The draw_transform that gets computed below is effectively the layer's | |
| 1780 // draw_transform, unless the layer itself creates a render_surface. In that | |
| 1781 // case, the render_surface re-parents the transforms. | |
| 1782 layer_draw_properties.target_space_transform = combined_transform; | |
| 1783 // M[draw] = M[parent] * LT * S[layer2content] | |
| 1784 layer_draw_properties.target_space_transform.Scale( | |
| 1785 SK_MScalar1 / layer->contents_scale_x(), | |
| 1786 SK_MScalar1 / layer->contents_scale_y()); | |
| 1787 | |
| 1788 // The layer's screen_space_transform represents the transform between root | |
| 1789 // layer's "screen space" and local content space. | |
| 1790 layer_draw_properties.screen_space_transform = | |
| 1791 data_from_ancestor.full_hierarchy_matrix; | |
| 1792 layer_draw_properties.screen_space_transform.PreconcatTransform | |
| 1793 (layer_draw_properties.target_space_transform); | |
| 1794 | |
| 1795 // Adjusting text AA method during animation may cause repaints, which in-turn | |
| 1796 // causes jank. | |
| 1797 bool adjust_text_aa = | |
| 1798 !animating_opacity_to_screen && !animating_transform_to_screen; | |
| 1799 bool layer_can_use_lcd_text = true; | |
| 1800 bool subtree_can_use_lcd_text = true; | |
| 1801 if (!globals.layers_always_allowed_lcd_text) { | |
| 1802 // To avoid color fringing, LCD text should only be used on opaque layers | |
| 1803 // with just integral translation. | |
| 1804 subtree_can_use_lcd_text = data_from_ancestor.subtree_can_use_lcd_text && | |
| 1805 accumulated_draw_opacity == 1.f && | |
| 1806 layer_draw_properties.target_space_transform | |
| 1807 .IsIdentityOrIntegerTranslation(); | |
| 1808 // Also disable LCD text locally for non-opaque content. | |
| 1809 layer_can_use_lcd_text = subtree_can_use_lcd_text && | |
| 1810 layer->contents_opaque(); | |
| 1811 } | |
| 1812 | |
| 1813 // full_hierarchy_matrix is the matrix that transforms objects between screen | |
| 1814 // space (except projection matrix) and the most recent RenderSurfaceImpl's | |
| 1815 // space. next_hierarchy_matrix will only change if this layer uses a new | |
| 1816 // RenderSurfaceImpl, otherwise remains the same. | |
| 1817 data_for_children.full_hierarchy_matrix = | |
| 1818 data_from_ancestor.full_hierarchy_matrix; | |
| 1819 | |
| 1820 bool render_to_separate_surface = | |
| 1821 IsRootLayer(layer) || | |
| 1822 (globals.can_render_to_separate_surface && layer->render_surface()); | |
| 1823 | |
| 1824 if (render_to_separate_surface) { | |
| 1825 DCHECK(layer->render_surface()); | |
| 1826 // Check back-face visibility before continuing with this surface and its | |
| 1827 // subtree | |
| 1828 if (!layer->double_sided() && TransformToParentIsKnown(layer) && | |
| 1829 IsSurfaceBackFaceVisible(layer, combined_transform)) { | |
| 1830 layer->ClearRenderSurfaceLayerList(); | |
| 1831 layer->draw_properties().render_target = nullptr; | |
| 1832 return; | |
| 1833 } | |
| 1834 | |
| 1835 typename LayerType::RenderSurfaceType* render_surface = | |
| 1836 layer->render_surface(); | |
| 1837 layer->ClearRenderSurfaceLayerList(); | |
| 1838 | |
| 1839 layer_draw_properties.render_target = layer; | |
| 1840 if (IsRootLayer(layer)) { | |
| 1841 // The root layer's render surface size is predetermined and so the root | |
| 1842 // layer can't directly support non-identity transforms. It should just | |
| 1843 // forward top-level transforms to the rest of the tree. | |
| 1844 data_for_children.parent_matrix = combined_transform; | |
| 1845 | |
| 1846 // The root surface does not contribute to any other surface, it has no | |
| 1847 // target. | |
| 1848 layer->render_surface()->set_contributes_to_drawn_surface(false); | |
| 1849 } else { | |
| 1850 // The owning layer's draw transform has a scale from content to layer | |
| 1851 // space which we do not want; so here we use the combined_transform | |
| 1852 // instead of the draw_transform. However, we do need to add a different | |
| 1853 // scale factor that accounts for the surface's pixel dimensions. | |
| 1854 // Remove the combined_transform scale from the draw transform. | |
| 1855 gfx::Transform draw_transform = combined_transform; | |
| 1856 draw_transform.Scale(1.0 / combined_transform_scales.x(), | |
| 1857 1.0 / combined_transform_scales.y()); | |
| 1858 render_surface->SetDrawTransform(draw_transform); | |
| 1859 | |
| 1860 // The owning layer's transform was re-parented by the surface, so the | |
| 1861 // layer's new draw_transform only needs to scale the layer to surface | |
| 1862 // space. | |
| 1863 layer_draw_properties.target_space_transform.MakeIdentity(); | |
| 1864 layer_draw_properties.target_space_transform.Scale( | |
| 1865 combined_transform_scales.x() / layer->contents_scale_x(), | |
| 1866 combined_transform_scales.y() / layer->contents_scale_y()); | |
| 1867 | |
| 1868 // Inside the surface's subtree, we scale everything to the owning layer's | |
| 1869 // scale. The sublayer matrix transforms layer rects into target surface | |
| 1870 // content space. Conceptually, all layers in the subtree inherit the | |
| 1871 // scale at the point of the render surface in the transform hierarchy, | |
| 1872 // but we apply it explicitly to the owning layer and the remainder of the | |
| 1873 // subtree independently. | |
| 1874 DCHECK(data_for_children.parent_matrix.IsIdentity()); | |
| 1875 data_for_children.parent_matrix.Scale(combined_transform_scales.x(), | |
| 1876 combined_transform_scales.y()); | |
| 1877 | |
| 1878 // Even if the |layer_is_drawn|, it only contributes to a drawn surface | |
| 1879 // when the |layer_is_visible|. | |
| 1880 layer->render_surface()->set_contributes_to_drawn_surface( | |
| 1881 layer_is_visible); | |
| 1882 } | |
| 1883 | |
| 1884 // The opacity value is moved from the layer to its surface, so that the | |
| 1885 // entire subtree properly inherits opacity. | |
| 1886 render_surface->SetDrawOpacity(accumulated_draw_opacity); | |
| 1887 render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target); | |
| 1888 animating_opacity_to_target = false; | |
| 1889 layer_draw_properties.opacity = 1.f; | |
| 1890 layer_draw_properties.blend_mode = SkXfermode::kSrcOver_Mode; | |
| 1891 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; | |
| 1892 layer_draw_properties.screen_space_opacity_is_animating = | |
| 1893 animating_opacity_to_screen; | |
| 1894 | |
| 1895 render_surface->SetTargetSurfaceTransformsAreAnimating( | |
| 1896 animating_transform_to_target); | |
| 1897 render_surface->SetScreenSpaceTransformsAreAnimating( | |
| 1898 animating_transform_to_screen); | |
| 1899 animating_transform_to_target = false; | |
| 1900 layer_draw_properties.target_space_transform_is_animating = | |
| 1901 animating_transform_to_target; | |
| 1902 layer_draw_properties.screen_space_transform_is_animating = | |
| 1903 animating_transform_to_screen; | |
| 1904 | |
| 1905 // Update the aggregate hierarchy matrix to include the transform of the | |
| 1906 // newly created RenderSurfaceImpl. | |
| 1907 data_for_children.full_hierarchy_matrix.PreconcatTransform( | |
| 1908 render_surface->draw_transform()); | |
| 1909 | |
| 1910 // A render surface inherently acts as a flattening point for the content of | |
| 1911 // its descendants. | |
| 1912 data_for_children.full_hierarchy_matrix.FlattenTo2d(); | |
| 1913 | |
| 1914 if (layer->mask_layer()) { | |
| 1915 DrawProperties<LayerType>& mask_layer_draw_properties = | |
| 1916 layer->mask_layer()->draw_properties(); | |
| 1917 mask_layer_draw_properties.render_target = layer; | |
| 1918 mask_layer_draw_properties.visible_content_rect = | |
| 1919 gfx::Rect(layer->content_bounds()); | |
| 1920 } | |
| 1921 | |
| 1922 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { | |
| 1923 DrawProperties<LayerType>& replica_mask_draw_properties = | |
| 1924 layer->replica_layer()->mask_layer()->draw_properties(); | |
| 1925 replica_mask_draw_properties.render_target = layer; | |
| 1926 replica_mask_draw_properties.visible_content_rect = | |
| 1927 gfx::Rect(layer->content_bounds()); | |
| 1928 } | |
| 1929 | |
| 1930 // Ignore occlusion from outside the surface when surface contents need to | |
| 1931 // be fully drawn. Layers with copy-request need to be complete. | |
| 1932 // We could be smarter about layers with replica and exclude regions | |
| 1933 // where both layer and the replica are occluded, but this seems like an | |
| 1934 // overkill. The same is true for layers with filters that move pixels. | |
| 1935 // TODO(senorblanco): make this smarter for the SkImageFilter case (check | |
| 1936 // for pixel-moving filters) | |
| 1937 if (layer->HasCopyRequest() || | |
| 1938 layer->has_replica() || | |
| 1939 layer->filters().HasReferenceFilter() || | |
| 1940 layer->filters().HasFilterThatMovesPixels()) { | |
| 1941 nearest_occlusion_immune_ancestor_surface = render_surface; | |
| 1942 } | |
| 1943 render_surface->SetNearestOcclusionImmuneAncestor( | |
| 1944 nearest_occlusion_immune_ancestor_surface); | |
| 1945 | |
| 1946 layer_or_ancestor_clips_descendants = false; | |
| 1947 bool subtree_is_clipped_by_surface_bounds = false; | |
| 1948 if (ancestor_clips_subtree) { | |
| 1949 // It may be the layer or the surface doing the clipping of the subtree, | |
| 1950 // but in either case, we'll be clipping to the projected clip rect of our | |
| 1951 // ancestor. | |
| 1952 gfx::Transform inverse_surface_draw_transform( | |
| 1953 gfx::Transform::kSkipInitialization); | |
| 1954 if (!render_surface->draw_transform().GetInverse( | |
| 1955 &inverse_surface_draw_transform)) { | |
| 1956 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
| 1957 // here, or DCHECK that the transform is invertible. | |
| 1958 } | |
| 1959 | |
| 1960 gfx::Rect surface_clip_rect_in_target_space = gfx::IntersectRects( | |
| 1961 data_from_ancestor.clip_rect_of_target_surface_in_target_space, | |
| 1962 ancestor_clip_rect_in_target_space); | |
| 1963 gfx::Rect projected_surface_rect = MathUtil::ProjectEnclosingClippedRect( | |
| 1964 inverse_surface_draw_transform, surface_clip_rect_in_target_space); | |
| 1965 | |
| 1966 if (layer_draw_properties.num_unclipped_descendants > 0) { | |
| 1967 // If we have unclipped descendants, we cannot count on the render | |
| 1968 // surface's bounds clipping our subtree: the unclipped descendants | |
| 1969 // could cause us to expand our bounds. In this case, we must rely on | |
| 1970 // layer clipping for correctess. NB: since we can only encounter | |
| 1971 // translations between a clip child and its clip parent, clipping is | |
| 1972 // guaranteed to be exact in this case. | |
| 1973 layer_or_ancestor_clips_descendants = true; | |
| 1974 clip_rect_in_target_space = projected_surface_rect; | |
| 1975 } else { | |
| 1976 // The new render_surface here will correctly clip the entire subtree. | |
| 1977 // So, we do not need to continue propagating the clipping state further | |
| 1978 // down the tree. This way, we can avoid transforming clip rects from | |
| 1979 // ancestor target surface space to current target surface space that | |
| 1980 // could cause more w < 0 headaches. The render surface clip rect is | |
| 1981 // expressed in the space where this surface draws, i.e. the same space | |
| 1982 // as clip_rect_from_ancestor_in_ancestor_target_space. | |
| 1983 render_surface->SetClipRect(ancestor_clip_rect_in_target_space); | |
| 1984 clip_rect_of_target_surface_in_target_space = projected_surface_rect; | |
| 1985 subtree_is_clipped_by_surface_bounds = true; | |
| 1986 } | |
| 1987 } | |
| 1988 | |
| 1989 DCHECK(layer->render_surface()); | |
| 1990 DCHECK(!layer->parent() || layer->parent()->render_target() == | |
| 1991 accumulated_surface_state->back().render_target); | |
| 1992 | |
| 1993 accumulated_surface_state->push_back( | |
| 1994 AccumulatedSurfaceState<LayerType>(layer)); | |
| 1995 | |
| 1996 render_surface->SetIsClipped(subtree_is_clipped_by_surface_bounds); | |
| 1997 if (!subtree_is_clipped_by_surface_bounds) { | |
| 1998 render_surface->SetClipRect(gfx::Rect()); | |
| 1999 clip_rect_of_target_surface_in_target_space = | |
| 2000 data_from_ancestor.clip_rect_of_target_surface_in_target_space; | |
| 2001 } | |
| 2002 | |
| 2003 // If the new render surface is drawn translucent or with a non-integral | |
| 2004 // translation then the subtree that gets drawn on this render surface | |
| 2005 // cannot use LCD text. | |
| 2006 data_for_children.subtree_can_use_lcd_text = subtree_can_use_lcd_text; | |
| 2007 | |
| 2008 render_surface_layer_list->push_back(layer); | |
| 2009 } else { | |
| 2010 DCHECK(layer->parent()); | |
| 2011 | |
| 2012 // Note: layer_draw_properties.target_space_transform is computed above, | |
| 2013 // before this if-else statement. | |
| 2014 layer_draw_properties.target_space_transform_is_animating = | |
| 2015 animating_transform_to_target; | |
| 2016 layer_draw_properties.screen_space_transform_is_animating = | |
| 2017 animating_transform_to_screen; | |
| 2018 layer_draw_properties.opacity = accumulated_draw_opacity; | |
| 2019 layer_draw_properties.blend_mode = layer->blend_mode(); | |
| 2020 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; | |
| 2021 layer_draw_properties.screen_space_opacity_is_animating = | |
| 2022 animating_opacity_to_screen; | |
| 2023 data_for_children.parent_matrix = combined_transform; | |
| 2024 | |
| 2025 // Layers without render_surfaces directly inherit the ancestor's clip | |
| 2026 // status. | |
| 2027 layer_or_ancestor_clips_descendants = ancestor_clips_subtree; | |
| 2028 if (ancestor_clips_subtree) { | |
| 2029 clip_rect_in_target_space = | |
| 2030 ancestor_clip_rect_in_target_space; | |
| 2031 } | |
| 2032 | |
| 2033 // The surface's cached clip rect value propagates regardless of what | |
| 2034 // clipping goes on between layers here. | |
| 2035 clip_rect_of_target_surface_in_target_space = | |
| 2036 data_from_ancestor.clip_rect_of_target_surface_in_target_space; | |
| 2037 | |
| 2038 // Layers that are not their own render_target will render into the target | |
| 2039 // of their nearest ancestor. | |
| 2040 layer_draw_properties.render_target = layer->parent()->render_target(); | |
| 2041 } | |
| 2042 | |
| 2043 if (adjust_text_aa) | |
| 2044 layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text; | |
| 2045 | |
| 2046 gfx::Size content_size_affected_by_delta(layer->content_bounds()); | |
| 2047 | |
| 2048 // Non-zero BoundsDelta imply the contents_scale of 1.0 | |
| 2049 // because BoundsDela is only set on Android where | |
| 2050 // ContentScalingLayer is never used. | |
| 2051 DCHECK_IMPLIES(!BoundsDelta(layer).IsZero(), | |
| 2052 (layer->contents_scale_x() == 1.0 && | |
| 2053 layer->contents_scale_y() == 1.0)); | |
| 2054 | |
| 2055 // Thus we can omit contents scale in the following calculation. | |
| 2056 gfx::Vector2d bounds_delta = BoundsDelta(layer); | |
| 2057 content_size_affected_by_delta.Enlarge(bounds_delta.x(), bounds_delta.y()); | |
| 2058 | |
| 2059 gfx::Rect rect_in_target_space = MathUtil::MapEnclosingClippedRect( | |
| 2060 layer->draw_transform(), | |
| 2061 gfx::Rect(content_size_affected_by_delta)); | |
| 2062 | |
| 2063 if (LayerClipsSubtree(layer)) { | |
| 2064 layer_or_ancestor_clips_descendants = true; | |
| 2065 if (ancestor_clips_subtree && !render_to_separate_surface) { | |
| 2066 // A layer without render surface shares the same target as its ancestor. | |
| 2067 clip_rect_in_target_space = | |
| 2068 ancestor_clip_rect_in_target_space; | |
| 2069 clip_rect_in_target_space.Intersect(rect_in_target_space); | |
| 2070 } else { | |
| 2071 clip_rect_in_target_space = rect_in_target_space; | |
| 2072 } | |
| 2073 } | |
| 2074 | |
| 2075 // Tell the layer the rect that it's clipped by. In theory we could use a | |
| 2076 // tighter clip rect here (drawable_content_rect), but that actually does not | |
| 2077 // reduce how much would be drawn, and instead it would create unnecessary | |
| 2078 // changes to scissor state affecting GPU performance. Our clip information | |
| 2079 // is used in the recursion below, so we must set it beforehand. | |
| 2080 layer_draw_properties.is_clipped = layer_or_ancestor_clips_descendants; | |
| 2081 if (layer_or_ancestor_clips_descendants) { | |
| 2082 layer_draw_properties.clip_rect = clip_rect_in_target_space; | |
| 2083 } else { | |
| 2084 // Initialize the clip rect to a safe value that will not clip the | |
| 2085 // layer, just in case clipping is still accidentally used. | |
| 2086 layer_draw_properties.clip_rect = rect_in_target_space; | |
| 2087 } | |
| 2088 | |
| 2089 typename LayerType::LayerListType& descendants = | |
| 2090 (render_to_separate_surface ? layer->render_surface()->layer_list() | |
| 2091 : *layer_list); | |
| 2092 | |
| 2093 // Any layers that are appended after this point are in the layer's subtree | |
| 2094 // and should be included in the sorting process. | |
| 2095 size_t sorting_start_index = descendants.size(); | |
| 2096 | |
| 2097 if (!LayerShouldBeSkipped(layer, layer_is_drawn)) { | |
| 2098 MarkLayerWithRenderSurfaceLayerListId(layer, | |
| 2099 current_render_surface_layer_list_id); | |
| 2100 descendants.push_back(layer); | |
| 2101 } | |
| 2102 | |
| 2103 // Any layers that are appended after this point may need to be sorted if we | |
| 2104 // visit the children out of order. | |
| 2105 size_t render_surface_layer_list_child_sorting_start_index = | |
| 2106 render_surface_layer_list->size(); | |
| 2107 size_t layer_list_child_sorting_start_index = descendants.size(); | |
| 2108 | |
| 2109 if (!layer->children().empty()) { | |
| 2110 if (layer == globals.page_scale_application_layer) { | |
| 2111 data_for_children.parent_matrix.Scale( | |
| 2112 globals.page_scale_factor, | |
| 2113 globals.page_scale_factor); | |
| 2114 data_for_children.in_subtree_of_page_scale_application_layer = true; | |
| 2115 } | |
| 2116 if (layer == globals.elastic_overscroll_application_layer) { | |
| 2117 data_for_children.parent_matrix.Translate( | |
| 2118 -globals.elastic_overscroll.x(), -globals.elastic_overscroll.y()); | |
| 2119 } | |
| 2120 | |
| 2121 // Flatten to 2D if the layer doesn't preserve 3D. | |
| 2122 if (layer->should_flatten_transform()) | |
| 2123 data_for_children.parent_matrix.FlattenTo2d(); | |
| 2124 | |
| 2125 data_for_children.scroll_compensation_matrix = | |
| 2126 ComputeScrollCompensationMatrixForChildren( | |
| 2127 layer, | |
| 2128 data_from_ancestor.parent_matrix, | |
| 2129 data_from_ancestor.scroll_compensation_matrix, | |
| 2130 effective_scroll_delta); | |
| 2131 data_for_children.fixed_container = | |
| 2132 layer->IsContainerForFixedPositionLayers() ? | |
| 2133 layer : data_from_ancestor.fixed_container; | |
| 2134 | |
| 2135 data_for_children.clip_rect_in_target_space = clip_rect_in_target_space; | |
| 2136 data_for_children.clip_rect_of_target_surface_in_target_space = | |
| 2137 clip_rect_of_target_surface_in_target_space; | |
| 2138 data_for_children.ancestor_clips_subtree = | |
| 2139 layer_or_ancestor_clips_descendants; | |
| 2140 data_for_children.nearest_occlusion_immune_ancestor_surface = | |
| 2141 nearest_occlusion_immune_ancestor_surface; | |
| 2142 data_for_children.subtree_is_visible_from_ancestor = layer_is_drawn; | |
| 2143 } | |
| 2144 | |
| 2145 std::vector<LayerType*> sorted_children; | |
| 2146 bool child_order_changed = false; | |
| 2147 if (layer_draw_properties.has_child_with_a_scroll_parent) | |
| 2148 child_order_changed = SortChildrenForRecursion(&sorted_children, *layer); | |
| 2149 | |
| 2150 for (size_t i = 0; i < layer->children().size(); ++i) { | |
| 2151 // If one of layer's children has a scroll parent, then we may have to | |
| 2152 // visit the children out of order. The new order is stored in | |
| 2153 // sorted_children. Otherwise, we'll grab the child directly from the | |
| 2154 // layer's list of children. | |
| 2155 LayerType* child = | |
| 2156 layer_draw_properties.has_child_with_a_scroll_parent | |
| 2157 ? sorted_children[i] | |
| 2158 : LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i); | |
| 2159 | |
| 2160 child->draw_properties().index_of_first_descendants_addition = | |
| 2161 descendants.size(); | |
| 2162 child->draw_properties().index_of_first_render_surface_layer_list_addition = | |
| 2163 render_surface_layer_list->size(); | |
| 2164 | |
| 2165 CalculateDrawPropertiesInternal<LayerType>( | |
| 2166 child, | |
| 2167 globals, | |
| 2168 data_for_children, | |
| 2169 render_surface_layer_list, | |
| 2170 &descendants, | |
| 2171 accumulated_surface_state, | |
| 2172 current_render_surface_layer_list_id); | |
| 2173 // If the child is its own render target, then it has a render surface. | |
| 2174 if (child->render_target() == child && | |
| 2175 !child->render_surface()->layer_list().empty() && | |
| 2176 !child->render_surface()->content_rect().IsEmpty()) { | |
| 2177 // This child will contribute its render surface, which means | |
| 2178 // we need to mark just the mask layer (and replica mask layer) | |
| 2179 // with the id. | |
| 2180 MarkMasksWithRenderSurfaceLayerListId( | |
| 2181 child, current_render_surface_layer_list_id); | |
| 2182 descendants.push_back(child); | |
| 2183 } | |
| 2184 | |
| 2185 child->draw_properties().num_descendants_added = | |
| 2186 descendants.size() - | |
| 2187 child->draw_properties().index_of_first_descendants_addition; | |
| 2188 child->draw_properties().num_render_surfaces_added = | |
| 2189 render_surface_layer_list->size() - | |
| 2190 child->draw_properties() | |
| 2191 .index_of_first_render_surface_layer_list_addition; | |
| 2192 layer_draw_properties.layer_or_descendant_is_drawn |= | |
| 2193 child->draw_properties().layer_or_descendant_is_drawn; | |
| 2194 } | |
| 2195 | |
| 2196 // Add the unsorted layer list contributions, if necessary. | |
| 2197 if (child_order_changed) { | |
| 2198 SortLayerListContributions( | |
| 2199 *layer, | |
| 2200 GetLayerListForSorting(render_surface_layer_list), | |
| 2201 render_surface_layer_list_child_sorting_start_index, | |
| 2202 &GetNewRenderSurfacesStartIndexAndCount<LayerType>); | |
| 2203 | |
| 2204 SortLayerListContributions( | |
| 2205 *layer, | |
| 2206 &descendants, | |
| 2207 layer_list_child_sorting_start_index, | |
| 2208 &GetNewDescendantsStartIndexAndCount<LayerType>); | |
| 2209 } | |
| 2210 | |
| 2211 // Compute the total drawable_content_rect for this subtree (the rect is in | |
| 2212 // target surface space). | |
| 2213 gfx::Rect local_drawable_content_rect_of_subtree = | |
| 2214 accumulated_surface_state->back().drawable_content_rect; | |
| 2215 if (render_to_separate_surface) { | |
| 2216 DCHECK(accumulated_surface_state->back().render_target == layer); | |
| 2217 accumulated_surface_state->pop_back(); | |
| 2218 } | |
| 2219 | |
| 2220 if (render_to_separate_surface && !IsRootLayer(layer) && | |
| 2221 layer->render_surface()->layer_list().empty()) { | |
| 2222 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); | |
| 2223 return; | |
| 2224 } | |
| 2225 | |
| 2226 // Compute the layer's drawable content rect (the rect is in target surface | |
| 2227 // space). | |
| 2228 layer_draw_properties.drawable_content_rect = rect_in_target_space; | |
| 2229 if (layer_or_ancestor_clips_descendants) { | |
| 2230 layer_draw_properties.drawable_content_rect.Intersect( | |
| 2231 clip_rect_in_target_space); | |
| 2232 } | |
| 2233 if (layer->DrawsContent()) { | |
| 2234 local_drawable_content_rect_of_subtree.Union( | |
| 2235 layer_draw_properties.drawable_content_rect); | |
| 2236 } | |
| 2237 | |
| 2238 // Compute the layer's visible content rect (the rect is in content space). | |
| 2239 layer_draw_properties.visible_content_rect = CalculateVisibleContentRect( | |
| 2240 layer, clip_rect_of_target_surface_in_target_space, rect_in_target_space); | |
| 2241 | |
| 2242 // Compute the remaining properties for the render surface, if the layer has | |
| 2243 // one. | |
| 2244 if (IsRootLayer(layer)) { | |
| 2245 // The root layer's surface's content_rect is always the entire viewport. | |
| 2246 DCHECK(render_to_separate_surface); | |
| 2247 layer->render_surface()->SetContentRect( | |
| 2248 ancestor_clip_rect_in_target_space); | |
| 2249 } else if (render_to_separate_surface) { | |
| 2250 typename LayerType::RenderSurfaceType* render_surface = | |
| 2251 layer->render_surface(); | |
| 2252 gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree; | |
| 2253 | |
| 2254 // Don't clip if the layer is reflected as the reflection shouldn't be | |
| 2255 // clipped. If the layer is animating, then the surface's transform to | |
| 2256 // its target is not known on the main thread, and we should not use it | |
| 2257 // to clip. | |
| 2258 if (!layer->replica_layer() && TransformToParentIsKnown(layer)) { | |
| 2259 // Note, it is correct to use data_from_ancestor.ancestor_clips_subtree | |
| 2260 // here, because we are looking at this layer's render_surface, not the | |
| 2261 // layer itself. | |
| 2262 if (render_surface->is_clipped() && !clipped_content_rect.IsEmpty()) { | |
| 2263 gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect( | |
| 2264 render_surface->clip_rect(), | |
| 2265 clipped_content_rect, | |
| 2266 render_surface->draw_transform()); | |
| 2267 clipped_content_rect.Intersect(surface_clip_rect); | |
| 2268 } | |
| 2269 } | |
| 2270 | |
| 2271 // The RenderSurfaceImpl backing texture cannot exceed the maximum supported | |
| 2272 // texture size. | |
| 2273 clipped_content_rect.set_width( | |
| 2274 std::min(clipped_content_rect.width(), globals.max_texture_size)); | |
| 2275 clipped_content_rect.set_height( | |
| 2276 std::min(clipped_content_rect.height(), globals.max_texture_size)); | |
| 2277 | |
| 2278 if (clipped_content_rect.IsEmpty()) { | |
| 2279 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); | |
| 2280 return; | |
| 2281 } | |
| 2282 | |
| 2283 // Layers having a non-default blend mode will blend with the content | |
| 2284 // inside its parent's render target. This render target should be | |
| 2285 // either root_for_isolated_group, or the root of the layer tree. | |
| 2286 // Otherwise, this layer will use an incomplete backdrop, limited to its | |
| 2287 // render target and the blending result will be incorrect. | |
| 2288 DCHECK(layer->uses_default_blend_mode() || IsRootLayer(layer) || | |
| 2289 !layer->parent()->render_target() || | |
| 2290 IsRootLayer(layer->parent()->render_target()) || | |
| 2291 layer->parent()->render_target()->is_root_for_isolated_group()); | |
| 2292 | |
| 2293 render_surface->SetContentRect(clipped_content_rect); | |
| 2294 | |
| 2295 // The owning layer's screen_space_transform has a scale from content to | |
| 2296 // layer space which we need to undo and replace with a scale from the | |
| 2297 // surface's subtree into layer space. | |
| 2298 gfx::Transform screen_space_transform = layer->screen_space_transform(); | |
| 2299 screen_space_transform.Scale( | |
| 2300 layer->contents_scale_x() / combined_transform_scales.x(), | |
| 2301 layer->contents_scale_y() / combined_transform_scales.y()); | |
| 2302 render_surface->SetScreenSpaceTransform(screen_space_transform); | |
| 2303 | |
| 2304 if (layer->replica_layer()) { | |
| 2305 gfx::Transform surface_origin_to_replica_origin_transform; | |
| 2306 surface_origin_to_replica_origin_transform.Scale( | |
| 2307 combined_transform_scales.x(), combined_transform_scales.y()); | |
| 2308 surface_origin_to_replica_origin_transform.Translate( | |
| 2309 layer->replica_layer()->position().x() + | |
| 2310 layer->replica_layer()->transform_origin().x(), | |
| 2311 layer->replica_layer()->position().y() + | |
| 2312 layer->replica_layer()->transform_origin().y()); | |
| 2313 surface_origin_to_replica_origin_transform.PreconcatTransform( | |
| 2314 layer->replica_layer()->transform()); | |
| 2315 surface_origin_to_replica_origin_transform.Translate( | |
| 2316 -layer->replica_layer()->transform_origin().x(), | |
| 2317 -layer->replica_layer()->transform_origin().y()); | |
| 2318 surface_origin_to_replica_origin_transform.Scale( | |
| 2319 1.0 / combined_transform_scales.x(), | |
| 2320 1.0 / combined_transform_scales.y()); | |
| 2321 | |
| 2322 // Compute the replica's "originTransform" that maps from the replica's | |
| 2323 // origin space to the target surface origin space. | |
| 2324 gfx::Transform replica_origin_transform = | |
| 2325 layer->render_surface()->draw_transform() * | |
| 2326 surface_origin_to_replica_origin_transform; | |
| 2327 render_surface->SetReplicaDrawTransform(replica_origin_transform); | |
| 2328 | |
| 2329 // Compute the replica's "screen_space_transform" that maps from the | |
| 2330 // replica's origin space to the screen's origin space. | |
| 2331 gfx::Transform replica_screen_space_transform = | |
| 2332 layer->render_surface()->screen_space_transform() * | |
| 2333 surface_origin_to_replica_origin_transform; | |
| 2334 render_surface->SetReplicaScreenSpaceTransform( | |
| 2335 replica_screen_space_transform); | |
| 2336 } | |
| 2337 } | |
| 2338 | |
| 2339 SavePaintPropertiesLayer(layer); | |
| 2340 | |
| 2341 // If neither this layer nor any of its children were added, early out. | |
| 2342 if (sorting_start_index == descendants.size()) { | |
| 2343 DCHECK(!render_to_separate_surface || IsRootLayer(layer)); | |
| 2344 return; | |
| 2345 } | |
| 2346 | |
| 2347 UpdateAccumulatedSurfaceState<LayerType>( | |
| 2348 layer, local_drawable_content_rect_of_subtree, accumulated_surface_state); | |
| 2349 | |
| 2350 if (layer->HasContributingDelegatedRenderPasses()) { | |
| 2351 layer->render_target()->render_surface()-> | |
| 2352 AddContributingDelegatedRenderPassLayer(layer); | |
| 2353 } | |
| 2354 } // NOLINT(readability/fn_size) | |
| 2355 | |
| 2356 template <typename LayerType, typename RenderSurfaceLayerListType> | |
| 2357 static void ProcessCalcDrawPropsInputs( | |
| 2358 const LayerTreeHostCommon::CalcDrawPropsInputs<LayerType, | |
| 2359 RenderSurfaceLayerListType>& | |
| 2360 inputs, | |
| 2361 SubtreeGlobals<LayerType>* globals, | |
| 2362 DataForRecursion<LayerType>* data_for_recursion) { | |
| 2363 DCHECK(inputs.root_layer); | |
| 2364 DCHECK(IsRootLayer(inputs.root_layer)); | |
| 2365 DCHECK(inputs.render_surface_layer_list); | |
| 2366 | |
| 2367 gfx::Transform identity_matrix; | |
| 2368 | |
| 2369 // The root layer's render_surface should receive the device viewport as the | |
| 2370 // initial clip rect. | |
| 2371 gfx::Rect device_viewport_rect(inputs.device_viewport_size); | |
| 2372 | |
| 2373 gfx::Vector2dF device_transform_scale_components = | |
| 2374 MathUtil::ComputeTransform2dScaleComponents(inputs.device_transform, 1.f); | |
| 2375 // Not handling the rare case of different x and y device scale. | |
| 2376 float device_transform_scale = | |
| 2377 std::max(device_transform_scale_components.x(), | |
| 2378 device_transform_scale_components.y()); | |
| 2379 | |
| 2380 gfx::Transform scaled_device_transform = inputs.device_transform; | |
| 2381 scaled_device_transform.Scale(inputs.device_scale_factor, | |
| 2382 inputs.device_scale_factor); | |
| 2383 | |
| 2384 globals->max_texture_size = inputs.max_texture_size; | |
| 2385 globals->device_scale_factor = | |
| 2386 inputs.device_scale_factor * device_transform_scale; | |
| 2387 globals->page_scale_factor = inputs.page_scale_factor; | |
| 2388 globals->page_scale_application_layer = inputs.page_scale_application_layer; | |
| 2389 globals->elastic_overscroll = inputs.elastic_overscroll; | |
| 2390 globals->elastic_overscroll_application_layer = | |
| 2391 inputs.elastic_overscroll_application_layer; | |
| 2392 globals->can_render_to_separate_surface = | |
| 2393 inputs.can_render_to_separate_surface; | |
| 2394 globals->can_adjust_raster_scales = inputs.can_adjust_raster_scales; | |
| 2395 globals->layers_always_allowed_lcd_text = | |
| 2396 inputs.layers_always_allowed_lcd_text; | |
| 2397 | |
| 2398 data_for_recursion->parent_matrix = scaled_device_transform; | |
| 2399 data_for_recursion->full_hierarchy_matrix = identity_matrix; | |
| 2400 data_for_recursion->scroll_compensation_matrix = identity_matrix; | |
| 2401 data_for_recursion->fixed_container = inputs.root_layer; | |
| 2402 data_for_recursion->clip_rect_in_target_space = device_viewport_rect; | |
| 2403 data_for_recursion->clip_rect_of_target_surface_in_target_space = | |
| 2404 device_viewport_rect; | |
| 2405 data_for_recursion->maximum_animation_contents_scale = 0.f; | |
| 2406 data_for_recursion->ancestor_is_animating_scale = false; | |
| 2407 data_for_recursion->ancestor_clips_subtree = true; | |
| 2408 data_for_recursion->nearest_occlusion_immune_ancestor_surface = NULL; | |
| 2409 data_for_recursion->in_subtree_of_page_scale_application_layer = false; | |
| 2410 data_for_recursion->subtree_can_use_lcd_text = inputs.can_use_lcd_text; | |
| 2411 data_for_recursion->subtree_is_visible_from_ancestor = true; | |
| 2412 } | |
| 2413 | |
| 2414 void LayerTreeHostCommon::UpdateRenderSurface( | |
| 2415 Layer* layer, | |
| 2416 bool can_render_to_separate_surface, | |
| 2417 gfx::Transform* transform, | |
| 2418 bool* draw_transform_is_axis_aligned) { | |
| 2419 bool preserves_2d_axis_alignment = | |
| 2420 transform->Preserves2dAxisAlignment() && *draw_transform_is_axis_aligned; | |
| 2421 if (IsRootLayer(layer) || (can_render_to_separate_surface && | |
| 2422 SubtreeShouldRenderToSeparateSurface( | |
| 2423 layer, preserves_2d_axis_alignment))) { | |
| 2424 // We reset the transform here so that any axis-changing transforms | |
| 2425 // will now be relative to this RenderSurface. | |
| 2426 transform->MakeIdentity(); | |
| 2427 *draw_transform_is_axis_aligned = true; | |
| 2428 if (!layer->render_surface()) { | |
| 2429 layer->CreateRenderSurface(); | |
| 2430 } | |
| 2431 layer->SetHasRenderSurface(true); | |
| 2432 return; | |
| 2433 } | |
| 2434 layer->SetHasRenderSurface(false); | |
| 2435 if (layer->render_surface()) | |
| 2436 layer->ClearRenderSurface(); | |
| 2437 } | |
| 2438 | |
| 2439 void LayerTreeHostCommon::UpdateRenderSurfaces( | |
| 2440 Layer* layer, | |
| 2441 bool can_render_to_separate_surface, | |
| 2442 const gfx::Transform& parent_transform, | |
| 2443 bool draw_transform_is_axis_aligned) { | |
| 2444 gfx::Transform transform_for_children = layer->transform(); | |
| 2445 transform_for_children *= parent_transform; | |
| 2446 draw_transform_is_axis_aligned &= layer->AnimationsPreserveAxisAlignment(); | |
| 2447 UpdateRenderSurface(layer, can_render_to_separate_surface, | |
| 2448 &transform_for_children, &draw_transform_is_axis_aligned); | |
| 2449 | |
| 2450 for (size_t i = 0; i < layer->children().size(); ++i) { | |
| 2451 UpdateRenderSurfaces(layer->children()[i].get(), | |
| 2452 can_render_to_separate_surface, transform_for_children, | |
| 2453 draw_transform_is_axis_aligned); | |
| 2454 } | |
| 2455 } | |
| 2456 | |
| 2457 static bool ApproximatelyEqual(const gfx::Rect& r1, const gfx::Rect& r2) { | |
| 2458 static const int tolerance = 1; | |
| 2459 return std::abs(r1.x() - r2.x()) <= tolerance && | |
| 2460 std::abs(r1.y() - r2.y()) <= tolerance && | |
| 2461 std::abs(r1.width() - r2.width()) <= tolerance && | |
| 2462 std::abs(r1.height() - r2.height()) <= tolerance; | |
| 2463 } | |
| 2464 | |
| 2465 void LayerTreeHostCommon::CalculateDrawProperties( | |
| 2466 CalcDrawPropsMainInputs* inputs) { | |
| 2467 UpdateRenderSurfaces(inputs->root_layer, | |
| 2468 inputs->can_render_to_separate_surface, gfx::Transform(), | |
| 2469 false); | |
| 2470 LayerList dummy_layer_list; | |
| 2471 SubtreeGlobals<Layer> globals; | |
| 2472 DataForRecursion<Layer> data_for_recursion; | |
| 2473 ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion); | |
| 2474 | |
| 2475 PreCalculateMetaInformationRecursiveData recursive_data; | |
| 2476 | |
| 2477 if (!inputs->verify_property_trees) { | |
| 2478 PreCalculateMetaInformation(inputs->root_layer, &recursive_data); | |
| 2479 std::vector<AccumulatedSurfaceState<Layer>> accumulated_surface_state; | |
| 2480 CalculateDrawPropertiesInternal<Layer>( | |
| 2481 inputs->root_layer, globals, data_for_recursion, | |
| 2482 inputs->render_surface_layer_list, &dummy_layer_list, | |
| 2483 &accumulated_surface_state, | |
| 2484 inputs->current_render_surface_layer_list_id); | |
| 2485 } else { | |
| 2486 { | |
| 2487 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"), | |
| 2488 "LayerTreeHostCommon::CalculateDrawProperties"); | |
| 2489 PreCalculateMetaInformation(inputs->root_layer, &recursive_data); | |
| 2490 std::vector<AccumulatedSurfaceState<Layer>> accumulated_surface_state; | |
| 2491 CalculateDrawPropertiesInternal<Layer>( | |
| 2492 inputs->root_layer, globals, data_for_recursion, | |
| 2493 inputs->render_surface_layer_list, &dummy_layer_list, | |
| 2494 &accumulated_surface_state, | |
| 2495 inputs->current_render_surface_layer_list_id); | |
| 2496 } | |
| 2497 | |
| 2498 // The translation from layer to property trees is an intermediate state. We | |
| 2499 // will eventually get these data passed directly to the compositor. | |
| 2500 TransformTree transform_tree; | |
| 2501 ClipTree clip_tree; | |
| 2502 OpacityTree opacity_tree; | |
| 2503 { | |
| 2504 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"), | |
| 2505 "LayerTreeHostCommon::ComputeVisibleRectsWithPropertyTrees"); | |
| 2506 ComputeVisibleRectsUsingPropertyTrees( | |
| 2507 inputs->root_layer, inputs->page_scale_application_layer, | |
| 2508 inputs->page_scale_factor, inputs->device_scale_factor, | |
| 2509 gfx::Rect(inputs->device_viewport_size), inputs->device_transform, | |
| 2510 &transform_tree, &clip_tree, &opacity_tree); | |
| 2511 } | |
| 2512 | |
| 2513 LayerIterator<Layer> it, end; | |
| 2514 for (it = LayerIterator<Layer>::Begin(inputs->render_surface_layer_list), | |
| 2515 end = LayerIterator<Layer>::End(inputs->render_surface_layer_list); | |
| 2516 it != end; ++it) { | |
| 2517 Layer* current_layer = *it; | |
| 2518 if (!it.represents_itself() || !current_layer->DrawsContent()) | |
| 2519 continue; | |
| 2520 | |
| 2521 const bool visible_rects_match = | |
| 2522 ApproximatelyEqual(current_layer->visible_content_rect(), | |
| 2523 current_layer->visible_rect_from_property_trees()); | |
| 2524 CHECK(visible_rects_match); | |
| 2525 | |
| 2526 const bool draw_opacities_match = | |
| 2527 current_layer->draw_opacity() == | |
| 2528 current_layer->DrawOpacityFromPropertyTrees(opacity_tree); | |
| 2529 CHECK(draw_opacities_match); | |
| 2530 } | |
| 2531 } | |
| 2532 | |
| 2533 // The dummy layer list should not have been used. | |
| 2534 DCHECK_EQ(0u, dummy_layer_list.size()); | |
| 2535 // A root layer render_surface should always exist after | |
| 2536 // CalculateDrawProperties. | |
| 2537 DCHECK(inputs->root_layer->render_surface()); | |
| 2538 } | |
| 2539 | |
| 2540 void LayerTreeHostCommon::CalculateDrawProperties( | |
| 2541 CalcDrawPropsImplInputs* inputs) { | |
| 2542 LayerImplList dummy_layer_list; | |
| 2543 SubtreeGlobals<LayerImpl> globals; | |
| 2544 DataForRecursion<LayerImpl> data_for_recursion; | |
| 2545 ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion); | |
| 2546 | |
| 2547 PreCalculateMetaInformationRecursiveData recursive_data; | |
| 2548 PreCalculateMetaInformation(inputs->root_layer, &recursive_data); | |
| 2549 std::vector<AccumulatedSurfaceState<LayerImpl>> accumulated_surface_state; | |
| 2550 CalculateDrawPropertiesInternal<LayerImpl>( | |
| 2551 inputs->root_layer, | |
| 2552 globals, | |
| 2553 data_for_recursion, | |
| 2554 inputs->render_surface_layer_list, | |
| 2555 &dummy_layer_list, | |
| 2556 &accumulated_surface_state, | |
| 2557 inputs->current_render_surface_layer_list_id); | |
| 2558 | |
| 2559 // The dummy layer list should not have been used. | |
| 2560 DCHECK_EQ(0u, dummy_layer_list.size()); | |
| 2561 // A root layer render_surface should always exist after | |
| 2562 // CalculateDrawProperties. | |
| 2563 DCHECK(inputs->root_layer->render_surface()); | |
| 2564 } | |
| 2565 | |
| 2566 } // namespace cc | |
| OLD | NEW |