OLD | NEW |
| (Empty) |
1 // Copyright 2011 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/trees/layer_tree_host_common.h" | |
6 | |
7 #include <algorithm> | |
8 | |
9 #include "base/trace_event/trace_event.h" | |
10 #include "cc/base/math_util.h" | |
11 #include "cc/layers/heads_up_display_layer_impl.h" | |
12 #include "cc/layers/layer.h" | |
13 #include "cc/layers/layer_impl.h" | |
14 #include "cc/layers/layer_iterator.h" | |
15 #include "cc/layers/render_surface.h" | |
16 #include "cc/layers/render_surface_impl.h" | |
17 #include "cc/trees/draw_property_utils.h" | |
18 #include "cc/trees/layer_tree_host.h" | |
19 #include "cc/trees/layer_tree_impl.h" | |
20 #include "ui/gfx/geometry/rect_conversions.h" | |
21 #include "ui/gfx/geometry/vector2d_conversions.h" | |
22 #include "ui/gfx/transform.h" | |
23 #include "ui/gfx/transform_util.h" | |
24 | |
25 namespace cc { | |
26 | |
27 ScrollAndScaleSet::ScrollAndScaleSet() | |
28 : page_scale_delta(1.f), top_controls_delta(0.f) { | |
29 } | |
30 | |
31 ScrollAndScaleSet::~ScrollAndScaleSet() {} | |
32 | |
33 template <typename LayerType> | |
34 static gfx::Vector2dF GetEffectiveScrollDelta(LayerType* layer) { | |
35 // Layer's scroll offset can have an integer part and fractional part. | |
36 // Due to Blink's limitation, it only counter-scrolls the position-fixed | |
37 // layer using the integer part of Layer's scroll offset. | |
38 // CC scrolls the layer using the full scroll offset, so we have to | |
39 // add the ScrollCompensationAdjustment (fractional part of the scroll | |
40 // offset) to the effective scroll delta which is used to counter-scroll | |
41 // the position-fixed layer. | |
42 gfx::Vector2dF scroll_delta = | |
43 layer->ScrollDelta() + layer->ScrollCompensationAdjustment(); | |
44 // The scroll parent's scroll delta is the amount we've scrolled on the | |
45 // compositor thread since the commit for this layer tree's source frame. | |
46 // we last reported to the main thread. I.e., it's the discrepancy between | |
47 // a scroll parent's scroll delta and offset, so we must add it here. | |
48 if (layer->scroll_parent()) | |
49 scroll_delta += layer->scroll_parent()->ScrollDelta() + | |
50 layer->ScrollCompensationAdjustment(); | |
51 return scroll_delta; | |
52 } | |
53 | |
54 template <typename LayerType> | |
55 static gfx::ScrollOffset GetEffectiveCurrentScrollOffset(LayerType* layer) { | |
56 gfx::ScrollOffset offset = layer->CurrentScrollOffset(); | |
57 // The scroll parent's total scroll offset (scroll offset + scroll delta) | |
58 // can't be used because its scroll offset has already been applied to the | |
59 // scroll children's positions by the main thread layer positioning code. | |
60 if (layer->scroll_parent()) | |
61 offset += gfx::ScrollOffset(layer->scroll_parent()->ScrollDelta()); | |
62 return offset; | |
63 } | |
64 | |
65 inline gfx::Rect CalculateVisibleRectWithCachedLayerRect( | |
66 const gfx::Rect& target_surface_rect, | |
67 const gfx::Rect& layer_bound_rect, | |
68 const gfx::Rect& layer_rect_in_target_space, | |
69 const gfx::Transform& transform) { | |
70 if (layer_rect_in_target_space.IsEmpty()) | |
71 return gfx::Rect(); | |
72 | |
73 // Is this layer fully contained within the target surface? | |
74 if (target_surface_rect.Contains(layer_rect_in_target_space)) | |
75 return layer_bound_rect; | |
76 | |
77 // If the layer doesn't fill up the entire surface, then find the part of | |
78 // the surface rect where the layer could be visible. This avoids trying to | |
79 // project surface rect points that are behind the projection point. | |
80 gfx::Rect minimal_surface_rect = target_surface_rect; | |
81 minimal_surface_rect.Intersect(layer_rect_in_target_space); | |
82 | |
83 if (minimal_surface_rect.IsEmpty()) | |
84 return gfx::Rect(); | |
85 | |
86 // Project the corners of the target surface rect into the layer space. | |
87 // This bounding rectangle may be larger than it needs to be (being | |
88 // axis-aligned), but is a reasonable filter on the space to consider. | |
89 // Non-invertible transforms will create an empty rect here. | |
90 | |
91 gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization); | |
92 if (!transform.GetInverse(&surface_to_layer)) { | |
93 // Because we cannot use the surface bounds to determine what portion of | |
94 // the layer is visible, we must conservatively assume the full layer is | |
95 // visible. | |
96 return layer_bound_rect; | |
97 } | |
98 | |
99 gfx::Rect layer_rect = MathUtil::ProjectEnclosingClippedRect( | |
100 surface_to_layer, minimal_surface_rect); | |
101 layer_rect.Intersect(layer_bound_rect); | |
102 return layer_rect; | |
103 } | |
104 | |
105 gfx::Rect LayerTreeHostCommon::CalculateVisibleRect( | |
106 const gfx::Rect& target_surface_rect, | |
107 const gfx::Rect& layer_bound_rect, | |
108 const gfx::Transform& transform) { | |
109 gfx::Rect layer_in_surface_space = | |
110 MathUtil::MapEnclosingClippedRect(transform, layer_bound_rect); | |
111 return CalculateVisibleRectWithCachedLayerRect( | |
112 target_surface_rect, layer_bound_rect, layer_in_surface_space, transform); | |
113 } | |
114 | |
115 template <typename LayerType> | |
116 static LayerType* NextTargetSurface(LayerType* layer) { | |
117 return layer->parent() ? layer->parent()->render_target() : 0; | |
118 } | |
119 | |
120 // Given two layers, this function finds their respective render targets and, | |
121 // computes a change of basis translation. It does this by accumulating the | |
122 // translation components of the draw transforms of each target between the | |
123 // ancestor and descendant. These transforms must be 2D translations, and this | |
124 // requirement is enforced at every step. | |
125 template <typename LayerType> | |
126 static gfx::Vector2dF ComputeChangeOfBasisTranslation( | |
127 const LayerType& ancestor_layer, | |
128 const LayerType& descendant_layer) { | |
129 DCHECK(descendant_layer.HasAncestor(&ancestor_layer)); | |
130 const LayerType* descendant_target = descendant_layer.render_target(); | |
131 DCHECK(descendant_target); | |
132 const LayerType* ancestor_target = ancestor_layer.render_target(); | |
133 DCHECK(ancestor_target); | |
134 | |
135 gfx::Vector2dF translation; | |
136 for (const LayerType* target = descendant_target; target != ancestor_target; | |
137 target = NextTargetSurface(target)) { | |
138 const gfx::Transform& trans = target->render_surface()->draw_transform(); | |
139 // Ensure that this translation is truly 2d. | |
140 DCHECK(trans.IsIdentityOrTranslation()); | |
141 DCHECK_EQ(0.f, trans.matrix().get(2, 3)); | |
142 translation += trans.To2dTranslation(); | |
143 } | |
144 | |
145 return translation; | |
146 } | |
147 | |
148 enum TranslateRectDirection { | |
149 TRANSLATE_RECT_DIRECTION_TO_ANCESTOR, | |
150 TRANSLATE_RECT_DIRECTION_TO_DESCENDANT | |
151 }; | |
152 | |
153 template <typename LayerType> | |
154 static gfx::Rect TranslateRectToTargetSpace(const LayerType& ancestor_layer, | |
155 const LayerType& descendant_layer, | |
156 const gfx::Rect& rect, | |
157 TranslateRectDirection direction) { | |
158 gfx::Vector2dF translation = ComputeChangeOfBasisTranslation<LayerType>( | |
159 ancestor_layer, descendant_layer); | |
160 if (direction == TRANSLATE_RECT_DIRECTION_TO_DESCENDANT) | |
161 translation.Scale(-1.f); | |
162 return gfx::ToEnclosingRect( | |
163 gfx::RectF(rect.origin() + translation, rect.size())); | |
164 } | |
165 | |
166 // Attempts to update the clip rects for the given layer. If the layer has a | |
167 // clip_parent, it may not inherit its immediate ancestor's clip. | |
168 template <typename LayerType> | |
169 static void UpdateClipRectsForClipChild( | |
170 const LayerType* layer, | |
171 gfx::Rect* clip_rect_in_parent_target_space, | |
172 bool* subtree_should_be_clipped) { | |
173 // If the layer has no clip_parent, or the ancestor is the same as its actual | |
174 // parent, then we don't need special clip rects. Bail now and leave the out | |
175 // parameters untouched. | |
176 const LayerType* clip_parent = layer->scroll_parent(); | |
177 | |
178 if (!clip_parent) | |
179 clip_parent = layer->clip_parent(); | |
180 | |
181 if (!clip_parent || clip_parent == layer->parent()) | |
182 return; | |
183 | |
184 // The root layer is never a clip child. | |
185 DCHECK(layer->parent()); | |
186 | |
187 // Grab the cached values. | |
188 *clip_rect_in_parent_target_space = clip_parent->clip_rect(); | |
189 *subtree_should_be_clipped = clip_parent->is_clipped(); | |
190 | |
191 // We may have to project the clip rect into our parent's target space. Note, | |
192 // it must be our parent's target space, not ours. For one, we haven't | |
193 // computed our transforms, so we couldn't put it in our space yet even if we | |
194 // wanted to. But more importantly, this matches the expectations of | |
195 // CalculateDrawPropertiesInternal. If we, say, create a render surface, these | |
196 // clip rects will want to be in its target space, not ours. | |
197 if (clip_parent == layer->clip_parent()) { | |
198 *clip_rect_in_parent_target_space = TranslateRectToTargetSpace<LayerType>( | |
199 *clip_parent, *layer->parent(), *clip_rect_in_parent_target_space, | |
200 TRANSLATE_RECT_DIRECTION_TO_DESCENDANT); | |
201 } else { | |
202 // If we're being clipped by our scroll parent, we must translate through | |
203 // our common ancestor. This happens to be our parent, so it is sufficent to | |
204 // translate from our clip parent's space to the space of its ancestor (our | |
205 // parent). | |
206 *clip_rect_in_parent_target_space = TranslateRectToTargetSpace<LayerType>( | |
207 *layer->parent(), *clip_parent, *clip_rect_in_parent_target_space, | |
208 TRANSLATE_RECT_DIRECTION_TO_ANCESTOR); | |
209 } | |
210 } | |
211 | |
212 // We collect an accumulated drawable content rect per render surface. | |
213 // Typically, a layer will contribute to only one surface, the surface | |
214 // associated with its render target. Clip children, however, may affect | |
215 // several surfaces since there may be several surfaces between the clip child | |
216 // and its parent. | |
217 // | |
218 // NB: we accumulate the layer's *clipped* drawable content rect. | |
219 template <typename LayerType> | |
220 struct AccumulatedSurfaceState { | |
221 explicit AccumulatedSurfaceState(LayerType* render_target) | |
222 : render_target(render_target) {} | |
223 | |
224 // The accumulated drawable content rect for the surface associated with the | |
225 // given |render_target|. | |
226 gfx::Rect drawable_content_rect; | |
227 | |
228 // The target owning the surface. (We hang onto the target rather than the | |
229 // surface so that we can DCHECK that the surface's draw transform is simply | |
230 // a translation when |render_target| reports that it has no unclipped | |
231 // descendants). | |
232 LayerType* render_target; | |
233 }; | |
234 | |
235 template <typename LayerType> | |
236 void UpdateAccumulatedSurfaceState( | |
237 LayerType* layer, | |
238 const gfx::Rect& drawable_content_rect, | |
239 std::vector<AccumulatedSurfaceState<LayerType>>* | |
240 accumulated_surface_state) { | |
241 if (IsRootLayer(layer)) | |
242 return; | |
243 | |
244 // We will apply our drawable content rect to the accumulated rects for all | |
245 // surfaces between us and |render_target| (inclusive). This is either our | |
246 // clip parent's target if we are a clip child, or else simply our parent's | |
247 // target. We use our parent's target because we're either the owner of a | |
248 // render surface and we'll want to add our rect to our *surface's* target, or | |
249 // we're not and our target is the same as our parent's. In both cases, the | |
250 // parent's target gives us what we want. | |
251 LayerType* render_target = layer->clip_parent() | |
252 ? layer->clip_parent()->render_target() | |
253 : layer->parent()->render_target(); | |
254 | |
255 // If the layer owns a surface, then the content rect is in the wrong space. | |
256 // Instead, we will use the surface's DrawableContentRect which is in target | |
257 // space as required. | |
258 gfx::Rect target_rect = drawable_content_rect; | |
259 if (layer->render_surface()) { | |
260 target_rect = | |
261 gfx::ToEnclosedRect(layer->render_surface()->DrawableContentRect()); | |
262 } | |
263 | |
264 if (render_target->is_clipped()) { | |
265 gfx::Rect clip_rect = render_target->clip_rect(); | |
266 // If the layer has a clip parent, the clip rect may be in the wrong space, | |
267 // so we'll need to transform it before it is applied. | |
268 if (layer->clip_parent()) { | |
269 clip_rect = TranslateRectToTargetSpace<LayerType>( | |
270 *layer->clip_parent(), *layer, clip_rect, | |
271 TRANSLATE_RECT_DIRECTION_TO_DESCENDANT); | |
272 } | |
273 target_rect.Intersect(clip_rect); | |
274 } | |
275 | |
276 // We must have at least one entry in the vector for the root. | |
277 DCHECK_LT(0ul, accumulated_surface_state->size()); | |
278 | |
279 typedef typename std::vector<AccumulatedSurfaceState<LayerType>> | |
280 AccumulatedSurfaceStateVector; | |
281 typedef typename AccumulatedSurfaceStateVector::reverse_iterator | |
282 AccumulatedSurfaceStateIterator; | |
283 AccumulatedSurfaceStateIterator current_state = | |
284 accumulated_surface_state->rbegin(); | |
285 | |
286 // Add this rect to the accumulated content rect for all surfaces until we | |
287 // reach the target surface. | |
288 bool found_render_target = false; | |
289 for (; current_state != accumulated_surface_state->rend(); ++current_state) { | |
290 current_state->drawable_content_rect.Union(target_rect); | |
291 | |
292 // If we've reached |render_target| our work is done and we can bail. | |
293 if (current_state->render_target == render_target) { | |
294 found_render_target = true; | |
295 break; | |
296 } | |
297 | |
298 // Transform rect from the current target's space to the next. | |
299 LayerType* current_target = current_state->render_target; | |
300 DCHECK(current_target->render_surface()); | |
301 const gfx::Transform& current_draw_transform = | |
302 current_target->render_surface()->draw_transform(); | |
303 | |
304 // If we have unclipped descendants, the draw transform is a translation. | |
305 DCHECK(current_target->num_unclipped_descendants() == 0 || | |
306 current_draw_transform.IsIdentityOrTranslation()); | |
307 | |
308 target_rect = gfx::ToEnclosingRect( | |
309 MathUtil::MapClippedRect(current_draw_transform, target_rect)); | |
310 } | |
311 | |
312 // It is an error to not reach |render_target|. If this happens, it means that | |
313 // either the clip parent is not an ancestor of the clip child or the surface | |
314 // state vector is empty, both of which should be impossible. | |
315 DCHECK(found_render_target); | |
316 } | |
317 | |
318 template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) { | |
319 return !layer->parent(); | |
320 } | |
321 | |
322 template <typename LayerType> | |
323 static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) { | |
324 return layer->Is3dSorted() && layer->parent() && | |
325 layer->parent()->Is3dSorted() && | |
326 (layer->parent()->sorting_context_id() == layer->sorting_context_id()); | |
327 } | |
328 | |
329 template <typename LayerType> | |
330 static bool IsRootLayerOfNewRenderingContext(LayerType* layer) { | |
331 if (layer->parent()) | |
332 return !layer->parent()->Is3dSorted() && layer->Is3dSorted(); | |
333 | |
334 return layer->Is3dSorted(); | |
335 } | |
336 | |
337 template <typename LayerType> | |
338 static bool IsLayerBackFaceVisible(LayerType* layer) { | |
339 // The current W3C spec on CSS transforms says that backface visibility should | |
340 // be determined differently depending on whether the layer is in a "3d | |
341 // rendering context" or not. For Chromium code, we can determine whether we | |
342 // are in a 3d rendering context by checking if the parent preserves 3d. | |
343 | |
344 if (LayerIsInExisting3DRenderingContext(layer)) | |
345 return layer->draw_transform().IsBackFaceVisible(); | |
346 | |
347 // In this case, either the layer establishes a new 3d rendering context, or | |
348 // is not in a 3d rendering context at all. | |
349 return layer->transform().IsBackFaceVisible(); | |
350 } | |
351 | |
352 template <typename LayerType> | |
353 static bool IsSurfaceBackFaceVisible(LayerType* layer, | |
354 const gfx::Transform& draw_transform) { | |
355 if (LayerIsInExisting3DRenderingContext(layer)) | |
356 return draw_transform.IsBackFaceVisible(); | |
357 | |
358 if (IsRootLayerOfNewRenderingContext(layer)) | |
359 return layer->transform().IsBackFaceVisible(); | |
360 | |
361 // If the render_surface is not part of a new or existing rendering context, | |
362 // then the layers that contribute to this surface will decide back-face | |
363 // visibility for themselves. | |
364 return false; | |
365 } | |
366 | |
367 template <typename LayerType> | |
368 static inline bool LayerClipsSubtree(LayerType* layer) { | |
369 return layer->masks_to_bounds() || layer->mask_layer(); | |
370 } | |
371 | |
372 template <typename LayerType> | |
373 static gfx::Rect CalculateVisibleContentRect( | |
374 LayerType* layer, | |
375 const gfx::Rect& clip_rect_of_target_surface_in_target_space, | |
376 const gfx::Rect& layer_rect_in_target_space) { | |
377 DCHECK(layer->render_target()); | |
378 | |
379 // Nothing is visible if the layer bounds are empty. | |
380 if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || | |
381 layer->drawable_content_rect().IsEmpty()) | |
382 return gfx::Rect(); | |
383 | |
384 // Compute visible bounds in target surface space. | |
385 gfx::Rect visible_rect_in_target_surface_space = | |
386 layer->drawable_content_rect(); | |
387 | |
388 if (layer->render_target()->render_surface()->is_clipped()) { | |
389 // The |layer| L has a target T which owns a surface Ts. The surface Ts | |
390 // has a target TsT. | |
391 // | |
392 // In this case the target surface Ts does clip the layer L that contributes | |
393 // to it. So, we have to convert the clip rect of Ts from the target space | |
394 // of Ts (that is the space of TsT), to the current render target's space | |
395 // (that is the space of T). This conversion is done outside this function | |
396 // so that it can be cached instead of computing it redundantly for every | |
397 // layer. | |
398 visible_rect_in_target_surface_space.Intersect( | |
399 clip_rect_of_target_surface_in_target_space); | |
400 } | |
401 | |
402 if (visible_rect_in_target_surface_space.IsEmpty()) | |
403 return gfx::Rect(); | |
404 | |
405 return CalculateVisibleRectWithCachedLayerRect( | |
406 visible_rect_in_target_surface_space, | |
407 gfx::Rect(layer->content_bounds()), | |
408 layer_rect_in_target_space, | |
409 layer->draw_transform()); | |
410 } | |
411 | |
412 static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; } | |
413 | |
414 static inline bool TransformToParentIsKnown(Layer* layer) { | |
415 return !layer->TransformIsAnimating(); | |
416 } | |
417 | |
418 static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; } | |
419 | |
420 static inline bool TransformToScreenIsKnown(Layer* layer) { | |
421 return !layer->screen_space_transform_is_animating(); | |
422 } | |
423 | |
424 template <typename LayerType> | |
425 static bool LayerShouldBeSkipped(LayerType* layer, bool layer_is_drawn) { | |
426 // Layers can be skipped if any of these conditions are met. | |
427 // - is not drawn due to it or one of its ancestors being hidden (or having | |
428 // no copy requests). | |
429 // - does not draw content. | |
430 // - is transparent. | |
431 // - has empty bounds | |
432 // - the layer is not double-sided, but its back face is visible. | |
433 // | |
434 // Some additional conditions need to be computed at a later point after the | |
435 // recursion is finished. | |
436 // - the intersection of render_surface content and layer clip_rect is empty | |
437 // - the visible_content_rect is empty | |
438 // | |
439 // Note, if the layer should not have been drawn due to being fully | |
440 // transparent, we would have skipped the entire subtree and never made it | |
441 // into this function, so it is safe to omit this check here. | |
442 | |
443 if (!layer_is_drawn) | |
444 return true; | |
445 | |
446 if (!layer->DrawsContent() || layer->bounds().IsEmpty()) | |
447 return true; | |
448 | |
449 LayerType* backface_test_layer = layer; | |
450 if (layer->use_parent_backface_visibility()) { | |
451 DCHECK(layer->parent()); | |
452 DCHECK(!layer->parent()->use_parent_backface_visibility()); | |
453 backface_test_layer = layer->parent(); | |
454 } | |
455 | |
456 // The layer should not be drawn if (1) it is not double-sided and (2) the | |
457 // back of the layer is known to be facing the screen. | |
458 if (!backface_test_layer->double_sided() && | |
459 TransformToScreenIsKnown(backface_test_layer) && | |
460 IsLayerBackFaceVisible(backface_test_layer)) | |
461 return true; | |
462 | |
463 return false; | |
464 } | |
465 | |
466 template <typename LayerType> | |
467 static bool HasInvertibleOrAnimatedTransform(LayerType* layer) { | |
468 return layer->transform_is_invertible() || layer->TransformIsAnimating(); | |
469 } | |
470 | |
471 static inline bool SubtreeShouldBeSkipped(LayerImpl* layer, | |
472 bool layer_is_drawn) { | |
473 // If the layer transform is not invertible, it should not be drawn. | |
474 // TODO(ajuma): Correctly process subtrees with singular transform for the | |
475 // case where we may animate to a non-singular transform and wish to | |
476 // pre-raster. | |
477 if (!HasInvertibleOrAnimatedTransform(layer)) | |
478 return true; | |
479 | |
480 // When we need to do a readback/copy of a layer's output, we can not skip | |
481 // it or any of its ancestors. | |
482 if (layer->draw_properties().layer_or_descendant_has_copy_request) | |
483 return false; | |
484 | |
485 // We cannot skip the the subtree if a descendant has a wheel or touch handler | |
486 // or the hit testing code will break (it requires fresh transforms, etc). | |
487 if (layer->draw_properties().layer_or_descendant_has_input_handler) | |
488 return false; | |
489 | |
490 // If the layer is not drawn, then skip it and its subtree. | |
491 if (!layer_is_drawn) | |
492 return true; | |
493 | |
494 // If layer is on the pending tree and opacity is being animated then | |
495 // this subtree can't be skipped as we need to create, prioritize and | |
496 // include tiles for this layer when deciding if tree can be activated. | |
497 if (layer->layer_tree_impl()->IsPendingTree() && layer->OpacityIsAnimating()) | |
498 return false; | |
499 | |
500 // The opacity of a layer always applies to its children (either implicitly | |
501 // via a render surface or explicitly if the parent preserves 3D), so the | |
502 // entire subtree can be skipped if this layer is fully transparent. | |
503 return !layer->opacity(); | |
504 } | |
505 | |
506 static inline bool SubtreeShouldBeSkipped(Layer* layer, bool layer_is_drawn) { | |
507 // If the layer transform is not invertible, it should not be drawn. | |
508 if (!layer->transform_is_invertible() && !layer->TransformIsAnimating()) | |
509 return true; | |
510 | |
511 // When we need to do a readback/copy of a layer's output, we can not skip | |
512 // it or any of its ancestors. | |
513 if (layer->draw_properties().layer_or_descendant_has_copy_request) | |
514 return false; | |
515 | |
516 // We cannot skip the the subtree if a descendant has a wheel or touch handler | |
517 // or the hit testing code will break (it requires fresh transforms, etc). | |
518 if (layer->draw_properties().layer_or_descendant_has_input_handler) | |
519 return false; | |
520 | |
521 // If the layer is not drawn, then skip it and its subtree. | |
522 if (!layer_is_drawn) | |
523 return true; | |
524 | |
525 // If the opacity is being animated then the opacity on the main thread is | |
526 // unreliable (since the impl thread may be using a different opacity), so it | |
527 // should not be trusted. | |
528 // In particular, it should not cause the subtree to be skipped. | |
529 // Similarly, for layers that might animate opacity using an impl-only | |
530 // animation, their subtree should also not be skipped. | |
531 return !layer->opacity() && !layer->OpacityIsAnimating() && | |
532 !layer->OpacityCanAnimateOnImplThread(); | |
533 } | |
534 | |
535 static inline void SavePaintPropertiesLayer(LayerImpl* layer) {} | |
536 | |
537 static inline void SavePaintPropertiesLayer(Layer* layer) { | |
538 layer->SavePaintProperties(); | |
539 | |
540 if (layer->mask_layer()) | |
541 layer->mask_layer()->SavePaintProperties(); | |
542 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) | |
543 layer->replica_layer()->mask_layer()->SavePaintProperties(); | |
544 } | |
545 | |
546 static bool SubtreeShouldRenderToSeparateSurface( | |
547 Layer* layer, | |
548 bool axis_aligned_with_respect_to_parent) { | |
549 // | |
550 // A layer and its descendants should render onto a new RenderSurfaceImpl if | |
551 // any of these rules hold: | |
552 // | |
553 | |
554 // The root layer owns a render surface, but it never acts as a contributing | |
555 // surface to another render target. Compositor features that are applied via | |
556 // a contributing surface can not be applied to the root layer. In order to | |
557 // use these effects, another child of the root would need to be introduced | |
558 // in order to act as a contributing surface to the root layer's surface. | |
559 bool is_root = IsRootLayer(layer); | |
560 | |
561 // If the layer uses a mask. | |
562 if (layer->mask_layer()) { | |
563 DCHECK(!is_root); | |
564 return true; | |
565 } | |
566 | |
567 // If the layer has a reflection. | |
568 if (layer->replica_layer()) { | |
569 DCHECK(!is_root); | |
570 return true; | |
571 } | |
572 | |
573 // If the layer uses a CSS filter. | |
574 if (!layer->filters().IsEmpty() || !layer->background_filters().IsEmpty()) { | |
575 DCHECK(!is_root); | |
576 return true; | |
577 } | |
578 | |
579 // If the layer will use a CSS filter. In this case, the animation | |
580 // will start and add a filter to this layer, so it needs a surface. | |
581 if (layer->FilterIsAnimating()) { | |
582 DCHECK(!is_root); | |
583 return true; | |
584 } | |
585 | |
586 int num_descendants_that_draw_content = | |
587 layer->NumDescendantsThatDrawContent(); | |
588 | |
589 // If the layer flattens its subtree, but it is treated as a 3D object by its | |
590 // parent (i.e. parent participates in a 3D rendering context). | |
591 if (LayerIsInExisting3DRenderingContext(layer) && | |
592 layer->should_flatten_transform() && | |
593 num_descendants_that_draw_content > 0) { | |
594 TRACE_EVENT_INSTANT0( | |
595 "cc", | |
596 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening", | |
597 TRACE_EVENT_SCOPE_THREAD); | |
598 DCHECK(!is_root); | |
599 return true; | |
600 } | |
601 | |
602 // If the layer has blending. | |
603 // TODO(rosca): this is temporary, until blending is implemented for other | |
604 // types of quads than RenderPassDrawQuad. Layers having descendants that draw | |
605 // content will still create a separate rendering surface. | |
606 if (!layer->uses_default_blend_mode()) { | |
607 TRACE_EVENT_INSTANT0( | |
608 "cc", | |
609 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface blending", | |
610 TRACE_EVENT_SCOPE_THREAD); | |
611 DCHECK(!is_root); | |
612 return true; | |
613 } | |
614 | |
615 // If the layer clips its descendants but it is not axis-aligned with respect | |
616 // to its parent. | |
617 bool layer_clips_external_content = | |
618 LayerClipsSubtree(layer) || layer->HasDelegatedContent(); | |
619 if (layer_clips_external_content && !axis_aligned_with_respect_to_parent && | |
620 num_descendants_that_draw_content > 0) { | |
621 TRACE_EVENT_INSTANT0( | |
622 "cc", | |
623 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping", | |
624 TRACE_EVENT_SCOPE_THREAD); | |
625 DCHECK(!is_root); | |
626 return true; | |
627 } | |
628 | |
629 // If the layer has some translucency and does not have a preserves-3d | |
630 // transform style. This condition only needs a render surface if two or more | |
631 // layers in the subtree overlap. But checking layer overlaps is unnecessarily | |
632 // costly so instead we conservatively create a surface whenever at least two | |
633 // layers draw content for this subtree. | |
634 bool at_least_two_layers_in_subtree_draw_content = | |
635 num_descendants_that_draw_content > 0 && | |
636 (layer->DrawsContent() || num_descendants_that_draw_content > 1); | |
637 | |
638 if (layer->opacity() != 1.f && layer->should_flatten_transform() && | |
639 at_least_two_layers_in_subtree_draw_content) { | |
640 TRACE_EVENT_INSTANT0( | |
641 "cc", | |
642 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity", | |
643 TRACE_EVENT_SCOPE_THREAD); | |
644 DCHECK(!is_root); | |
645 return true; | |
646 } | |
647 | |
648 // The root layer should always have a render_surface. | |
649 if (is_root) | |
650 return true; | |
651 | |
652 // | |
653 // These are allowed on the root surface, as they don't require the surface to | |
654 // be used as a contributing surface in order to apply correctly. | |
655 // | |
656 | |
657 // If the layer has isolation. | |
658 // TODO(rosca): to be optimized - create separate rendering surface only when | |
659 // the blending descendants might have access to the content behind this layer | |
660 // (layer has transparent background or descendants overflow). | |
661 // https://code.google.com/p/chromium/issues/detail?id=301738 | |
662 if (layer->is_root_for_isolated_group()) { | |
663 TRACE_EVENT_INSTANT0( | |
664 "cc", | |
665 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface isolation", | |
666 TRACE_EVENT_SCOPE_THREAD); | |
667 return true; | |
668 } | |
669 | |
670 // If we force it. | |
671 if (layer->force_render_surface()) | |
672 return true; | |
673 | |
674 // If we'll make a copy of the layer's contents. | |
675 if (layer->HasCopyRequest()) | |
676 return true; | |
677 | |
678 return false; | |
679 } | |
680 | |
681 // This function returns a translation matrix that can be applied on a vector | |
682 // that's in the layer's target surface coordinate, while the position offset is | |
683 // specified in some ancestor layer's coordinate. | |
684 template <typename LayerType> | |
685 gfx::Transform ComputeSizeDeltaCompensation( | |
686 LayerType* layer, | |
687 LayerType* container, | |
688 const gfx::Vector2dF& position_offset) { | |
689 gfx::Transform result_transform; | |
690 | |
691 // To apply a translate in the container's layer space, | |
692 // the following steps need to be done: | |
693 // Step 1a. transform from target surface space to the container's target | |
694 // surface space | |
695 // Step 1b. transform from container's target surface space to the | |
696 // container's layer space | |
697 // Step 2. apply the compensation | |
698 // Step 3. transform back to target surface space | |
699 | |
700 gfx::Transform target_surface_space_to_container_layer_space; | |
701 // Calculate step 1a | |
702 LayerType* container_target_surface = container->render_target(); | |
703 for (LayerType* current_target_surface = NextTargetSurface(layer); | |
704 current_target_surface && | |
705 current_target_surface != container_target_surface; | |
706 current_target_surface = NextTargetSurface(current_target_surface)) { | |
707 // Note: Concat is used here to convert the result coordinate space from | |
708 // current render surface to the next render surface. | |
709 target_surface_space_to_container_layer_space.ConcatTransform( | |
710 current_target_surface->render_surface()->draw_transform()); | |
711 } | |
712 // Calculate step 1b | |
713 gfx::Transform container_layer_space_to_container_target_surface_space = | |
714 container->draw_transform(); | |
715 container_layer_space_to_container_target_surface_space.Scale( | |
716 container->contents_scale_x(), container->contents_scale_y()); | |
717 | |
718 gfx::Transform container_target_surface_space_to_container_layer_space; | |
719 if (container_layer_space_to_container_target_surface_space.GetInverse( | |
720 &container_target_surface_space_to_container_layer_space)) { | |
721 // Note: Again, Concat is used to conver the result coordinate space from | |
722 // the container render surface to the container layer. | |
723 target_surface_space_to_container_layer_space.ConcatTransform( | |
724 container_target_surface_space_to_container_layer_space); | |
725 } | |
726 | |
727 // Apply step 3 | |
728 gfx::Transform container_layer_space_to_target_surface_space; | |
729 if (target_surface_space_to_container_layer_space.GetInverse( | |
730 &container_layer_space_to_target_surface_space)) { | |
731 result_transform.PreconcatTransform( | |
732 container_layer_space_to_target_surface_space); | |
733 } else { | |
734 // TODO(shawnsingh): A non-invertible matrix could still make meaningful | |
735 // projection. For example ScaleZ(0) is non-invertible but the layer is | |
736 // still visible. | |
737 return gfx::Transform(); | |
738 } | |
739 | |
740 // Apply step 2 | |
741 result_transform.Translate(position_offset.x(), position_offset.y()); | |
742 | |
743 // Apply step 1 | |
744 result_transform.PreconcatTransform( | |
745 target_surface_space_to_container_layer_space); | |
746 | |
747 return result_transform; | |
748 } | |
749 | |
750 template <typename LayerType> | |
751 void ApplyPositionAdjustment( | |
752 LayerType* layer, | |
753 LayerType* container, | |
754 const gfx::Transform& scroll_compensation, | |
755 gfx::Transform* combined_transform) { | |
756 if (!layer->position_constraint().is_fixed_position()) | |
757 return; | |
758 | |
759 // Special case: this layer is a composited fixed-position layer; we need to | |
760 // explicitly compensate for all ancestors' nonzero scroll_deltas to keep | |
761 // this layer fixed correctly. | |
762 // Note carefully: this is Concat, not Preconcat | |
763 // (current_scroll_compensation * combined_transform). | |
764 combined_transform->ConcatTransform(scroll_compensation); | |
765 | |
766 // For right-edge or bottom-edge anchored fixed position layers, | |
767 // the layer should relocate itself if the container changes its size. | |
768 bool fixed_to_right_edge = | |
769 layer->position_constraint().is_fixed_to_right_edge(); | |
770 bool fixed_to_bottom_edge = | |
771 layer->position_constraint().is_fixed_to_bottom_edge(); | |
772 gfx::Vector2dF position_offset = container->FixedContainerSizeDelta(); | |
773 position_offset.set_x(fixed_to_right_edge ? position_offset.x() : 0); | |
774 position_offset.set_y(fixed_to_bottom_edge ? position_offset.y() : 0); | |
775 if (position_offset.IsZero()) | |
776 return; | |
777 | |
778 // Note: Again, this is Concat. The compensation matrix will be applied on | |
779 // the vector in target surface space. | |
780 combined_transform->ConcatTransform( | |
781 ComputeSizeDeltaCompensation(layer, container, position_offset)); | |
782 } | |
783 | |
784 template <typename LayerType> | |
785 gfx::Transform ComputeScrollCompensationForThisLayer( | |
786 LayerType* scrolling_layer, | |
787 const gfx::Transform& parent_matrix, | |
788 const gfx::Vector2dF& scroll_delta) { | |
789 // For every layer that has non-zero scroll_delta, we have to compute a | |
790 // transform that can undo the scroll_delta translation. In particular, we | |
791 // want this matrix to premultiply a fixed-position layer's parent_matrix, so | |
792 // we design this transform in three steps as follows. The steps described | |
793 // here apply from right-to-left, so Step 1 would be the right-most matrix: | |
794 // | |
795 // Step 1. transform from target surface space to the exact space where | |
796 // scroll_delta is actually applied. | |
797 // -- this is inverse of parent_matrix | |
798 // Step 2. undo the scroll_delta | |
799 // -- this is just a translation by scroll_delta. | |
800 // Step 3. transform back to target surface space. | |
801 // -- this transform is the parent_matrix | |
802 // | |
803 // These steps create a matrix that both start and end in target surface | |
804 // space. So this matrix can pre-multiply any fixed-position layer's | |
805 // draw_transform to undo the scroll_deltas -- as long as that fixed position | |
806 // layer is fixed onto the same render_target as this scrolling_layer. | |
807 // | |
808 | |
809 gfx::Transform scroll_compensation_for_this_layer = parent_matrix; // Step 3 | |
810 scroll_compensation_for_this_layer.Translate( | |
811 scroll_delta.x(), | |
812 scroll_delta.y()); // Step 2 | |
813 | |
814 gfx::Transform inverse_parent_matrix(gfx::Transform::kSkipInitialization); | |
815 if (!parent_matrix.GetInverse(&inverse_parent_matrix)) { | |
816 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
817 // here, or DCHECK that the transform is invertible. | |
818 } | |
819 scroll_compensation_for_this_layer.PreconcatTransform( | |
820 inverse_parent_matrix); // Step 1 | |
821 return scroll_compensation_for_this_layer; | |
822 } | |
823 | |
824 template <typename LayerType> | |
825 gfx::Transform ComputeScrollCompensationMatrixForChildren( | |
826 LayerType* layer, | |
827 const gfx::Transform& parent_matrix, | |
828 const gfx::Transform& current_scroll_compensation_matrix, | |
829 const gfx::Vector2dF& scroll_delta) { | |
830 // "Total scroll compensation" is the transform needed to cancel out all | |
831 // scroll_delta translations that occurred since the nearest container layer, | |
832 // even if there are render_surfaces in-between. | |
833 // | |
834 // There are some edge cases to be aware of, that are not explicit in the | |
835 // code: | |
836 // - A layer that is both a fixed-position and container should not be its | |
837 // own container, instead, that means it is fixed to an ancestor, and is a | |
838 // container for any fixed-position descendants. | |
839 // - A layer that is a fixed-position container and has a render_surface | |
840 // should behave the same as a container without a render_surface, the | |
841 // render_surface is irrelevant in that case. | |
842 // - A layer that does not have an explicit container is simply fixed to the | |
843 // viewport. (i.e. the root render_surface.) | |
844 // - If the fixed-position layer has its own render_surface, then the | |
845 // render_surface is the one who gets fixed. | |
846 // | |
847 // This function needs to be called AFTER layers create their own | |
848 // render_surfaces. | |
849 // | |
850 | |
851 // Scroll compensation restarts from identity under two possible conditions: | |
852 // - the current layer is a container for fixed-position descendants | |
853 // - the current layer is fixed-position itself, so any fixed-position | |
854 // descendants are positioned with respect to this layer. Thus, any | |
855 // fixed position descendants only need to compensate for scrollDeltas | |
856 // that occur below this layer. | |
857 bool current_layer_resets_scroll_compensation_for_descendants = | |
858 layer->IsContainerForFixedPositionLayers() || | |
859 layer->position_constraint().is_fixed_position(); | |
860 | |
861 // Avoid the overheads (including stack allocation and matrix | |
862 // initialization/copy) if we know that the scroll compensation doesn't need | |
863 // to be reset or adjusted. | |
864 if (!current_layer_resets_scroll_compensation_for_descendants && | |
865 scroll_delta.IsZero() && !layer->render_surface()) | |
866 return current_scroll_compensation_matrix; | |
867 | |
868 // Start as identity matrix. | |
869 gfx::Transform next_scroll_compensation_matrix; | |
870 | |
871 // If this layer does not reset scroll compensation, then it inherits the | |
872 // existing scroll compensations. | |
873 if (!current_layer_resets_scroll_compensation_for_descendants) | |
874 next_scroll_compensation_matrix = current_scroll_compensation_matrix; | |
875 | |
876 // If the current layer has a non-zero scroll_delta, then we should compute | |
877 // its local scroll compensation and accumulate it to the | |
878 // next_scroll_compensation_matrix. | |
879 if (!scroll_delta.IsZero()) { | |
880 gfx::Transform scroll_compensation_for_this_layer = | |
881 ComputeScrollCompensationForThisLayer( | |
882 layer, parent_matrix, scroll_delta); | |
883 next_scroll_compensation_matrix.PreconcatTransform( | |
884 scroll_compensation_for_this_layer); | |
885 } | |
886 | |
887 // If the layer created its own render_surface, we have to adjust | |
888 // next_scroll_compensation_matrix. The adjustment allows us to continue | |
889 // using the scroll compensation on the next surface. | |
890 // Step 1 (right-most in the math): transform from the new surface to the | |
891 // original ancestor surface | |
892 // Step 2: apply the scroll compensation | |
893 // Step 3: transform back to the new surface. | |
894 if (layer->render_surface() && | |
895 !next_scroll_compensation_matrix.IsIdentity()) { | |
896 gfx::Transform inverse_surface_draw_transform( | |
897 gfx::Transform::kSkipInitialization); | |
898 if (!layer->render_surface()->draw_transform().GetInverse( | |
899 &inverse_surface_draw_transform)) { | |
900 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
901 // here, or DCHECK that the transform is invertible. | |
902 } | |
903 next_scroll_compensation_matrix = | |
904 inverse_surface_draw_transform * next_scroll_compensation_matrix * | |
905 layer->render_surface()->draw_transform(); | |
906 } | |
907 | |
908 return next_scroll_compensation_matrix; | |
909 } | |
910 | |
911 template <typename LayerType> | |
912 static inline void UpdateLayerScaleDrawProperties( | |
913 LayerType* layer, | |
914 float ideal_contents_scale, | |
915 float maximum_animation_contents_scale, | |
916 float page_scale_factor, | |
917 float device_scale_factor) { | |
918 layer->draw_properties().ideal_contents_scale = ideal_contents_scale; | |
919 layer->draw_properties().maximum_animation_contents_scale = | |
920 maximum_animation_contents_scale; | |
921 layer->draw_properties().page_scale_factor = page_scale_factor; | |
922 layer->draw_properties().device_scale_factor = device_scale_factor; | |
923 } | |
924 | |
925 static inline void CalculateContentsScale(LayerImpl* layer, | |
926 float contents_scale) { | |
927 // LayerImpl has all of its content scales and bounds pushed from the Main | |
928 // thread during commit and just uses those values as-is. | |
929 } | |
930 | |
931 static inline void CalculateContentsScale(Layer* layer, float contents_scale) { | |
932 layer->CalculateContentsScale(contents_scale, | |
933 &layer->draw_properties().contents_scale_x, | |
934 &layer->draw_properties().contents_scale_y, | |
935 &layer->draw_properties().content_bounds); | |
936 | |
937 Layer* mask_layer = layer->mask_layer(); | |
938 if (mask_layer) { | |
939 mask_layer->CalculateContentsScale( | |
940 contents_scale, | |
941 &mask_layer->draw_properties().contents_scale_x, | |
942 &mask_layer->draw_properties().contents_scale_y, | |
943 &mask_layer->draw_properties().content_bounds); | |
944 } | |
945 | |
946 Layer* replica_mask_layer = | |
947 layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL; | |
948 if (replica_mask_layer) { | |
949 replica_mask_layer->CalculateContentsScale( | |
950 contents_scale, | |
951 &replica_mask_layer->draw_properties().contents_scale_x, | |
952 &replica_mask_layer->draw_properties().contents_scale_y, | |
953 &replica_mask_layer->draw_properties().content_bounds); | |
954 } | |
955 } | |
956 | |
957 static inline void UpdateLayerContentsScale( | |
958 LayerImpl* layer, | |
959 bool can_adjust_raster_scale, | |
960 float ideal_contents_scale, | |
961 float device_scale_factor, | |
962 float page_scale_factor, | |
963 bool animating_transform_to_screen) { | |
964 CalculateContentsScale(layer, ideal_contents_scale); | |
965 } | |
966 | |
967 static inline void UpdateLayerContentsScale( | |
968 Layer* layer, | |
969 bool can_adjust_raster_scale, | |
970 float ideal_contents_scale, | |
971 float device_scale_factor, | |
972 float page_scale_factor, | |
973 bool animating_transform_to_screen) { | |
974 if (can_adjust_raster_scale) { | |
975 float ideal_raster_scale = | |
976 ideal_contents_scale / (device_scale_factor * page_scale_factor); | |
977 | |
978 bool need_to_set_raster_scale = layer->raster_scale_is_unknown(); | |
979 | |
980 // If we've previously saved a raster_scale but the ideal changes, things | |
981 // are unpredictable and we should just use 1. | |
982 if (!need_to_set_raster_scale && layer->raster_scale() != 1.f && | |
983 ideal_raster_scale != layer->raster_scale()) { | |
984 ideal_raster_scale = 1.f; | |
985 need_to_set_raster_scale = true; | |
986 } | |
987 | |
988 if (need_to_set_raster_scale) { | |
989 bool use_and_save_ideal_scale = | |
990 ideal_raster_scale >= 1.f && !animating_transform_to_screen; | |
991 if (use_and_save_ideal_scale) | |
992 layer->set_raster_scale(ideal_raster_scale); | |
993 } | |
994 } | |
995 | |
996 float raster_scale = 1.f; | |
997 if (!layer->raster_scale_is_unknown()) | |
998 raster_scale = layer->raster_scale(); | |
999 | |
1000 gfx::Size old_content_bounds = layer->content_bounds(); | |
1001 float old_contents_scale_x = layer->contents_scale_x(); | |
1002 float old_contents_scale_y = layer->contents_scale_y(); | |
1003 | |
1004 float contents_scale = raster_scale * device_scale_factor * page_scale_factor; | |
1005 CalculateContentsScale(layer, contents_scale); | |
1006 | |
1007 if (layer->content_bounds() != old_content_bounds || | |
1008 layer->contents_scale_x() != old_contents_scale_x || | |
1009 layer->contents_scale_y() != old_contents_scale_y) | |
1010 layer->SetNeedsPushProperties(); | |
1011 } | |
1012 | |
1013 static inline void CalculateAnimationContentsScale( | |
1014 Layer* layer, | |
1015 bool ancestor_is_animating_scale, | |
1016 float ancestor_maximum_animation_contents_scale, | |
1017 const gfx::Transform& parent_transform, | |
1018 const gfx::Transform& combined_transform, | |
1019 bool* combined_is_animating_scale, | |
1020 float* combined_maximum_animation_contents_scale) { | |
1021 *combined_is_animating_scale = false; | |
1022 *combined_maximum_animation_contents_scale = 0.f; | |
1023 } | |
1024 | |
1025 static inline void CalculateAnimationContentsScale( | |
1026 LayerImpl* layer, | |
1027 bool ancestor_is_animating_scale, | |
1028 float ancestor_maximum_animation_contents_scale, | |
1029 const gfx::Transform& ancestor_transform, | |
1030 const gfx::Transform& combined_transform, | |
1031 bool* combined_is_animating_scale, | |
1032 float* combined_maximum_animation_contents_scale) { | |
1033 if (ancestor_is_animating_scale && | |
1034 ancestor_maximum_animation_contents_scale == 0.f) { | |
1035 // We've already failed to compute a maximum animated scale at an | |
1036 // ancestor, so we'll continue to fail. | |
1037 *combined_maximum_animation_contents_scale = 0.f; | |
1038 *combined_is_animating_scale = true; | |
1039 return; | |
1040 } | |
1041 | |
1042 if (!combined_transform.IsScaleOrTranslation()) { | |
1043 // Computing maximum animated scale in the presence of | |
1044 // non-scale/translation transforms isn't supported. | |
1045 *combined_maximum_animation_contents_scale = 0.f; | |
1046 *combined_is_animating_scale = true; | |
1047 return; | |
1048 } | |
1049 | |
1050 // We currently only support computing maximum scale for combinations of | |
1051 // scales and translations. We treat all non-translations as potentially | |
1052 // affecting scale. Animations that include non-translation/scale components | |
1053 // will cause the computation of MaximumScale below to fail. | |
1054 bool layer_is_animating_scale = | |
1055 !layer->layer_animation_controller()->HasOnlyTranslationTransforms(); | |
1056 | |
1057 if (!layer_is_animating_scale && !ancestor_is_animating_scale) { | |
1058 *combined_maximum_animation_contents_scale = 0.f; | |
1059 *combined_is_animating_scale = false; | |
1060 return; | |
1061 } | |
1062 | |
1063 // We don't attempt to accumulate animation scale from multiple nodes, | |
1064 // because of the risk of significant overestimation. For example, one node | |
1065 // may be increasing scale from 1 to 10 at the same time as a descendant is | |
1066 // decreasing scale from 10 to 1. Naively combining these scales would produce | |
1067 // a scale of 100. | |
1068 if (layer_is_animating_scale && ancestor_is_animating_scale) { | |
1069 *combined_maximum_animation_contents_scale = 0.f; | |
1070 *combined_is_animating_scale = true; | |
1071 return; | |
1072 } | |
1073 | |
1074 // At this point, we know either the layer or an ancestor, but not both, | |
1075 // is animating scale. | |
1076 *combined_is_animating_scale = true; | |
1077 if (!layer_is_animating_scale) { | |
1078 gfx::Vector2dF layer_transform_scales = | |
1079 MathUtil::ComputeTransform2dScaleComponents(layer->transform(), 0.f); | |
1080 *combined_maximum_animation_contents_scale = | |
1081 ancestor_maximum_animation_contents_scale * | |
1082 std::max(layer_transform_scales.x(), layer_transform_scales.y()); | |
1083 return; | |
1084 } | |
1085 | |
1086 float layer_maximum_animated_scale = 0.f; | |
1087 if (!layer->layer_animation_controller()->MaximumTargetScale( | |
1088 &layer_maximum_animated_scale)) { | |
1089 *combined_maximum_animation_contents_scale = 0.f; | |
1090 return; | |
1091 } | |
1092 gfx::Vector2dF ancestor_transform_scales = | |
1093 MathUtil::ComputeTransform2dScaleComponents(ancestor_transform, 0.f); | |
1094 *combined_maximum_animation_contents_scale = | |
1095 layer_maximum_animated_scale * | |
1096 std::max(ancestor_transform_scales.x(), ancestor_transform_scales.y()); | |
1097 } | |
1098 | |
1099 template <typename LayerTypePtr> | |
1100 static inline void MarkLayerWithRenderSurfaceLayerListId( | |
1101 LayerTypePtr layer, | |
1102 int current_render_surface_layer_list_id) { | |
1103 layer->draw_properties().last_drawn_render_surface_layer_list_id = | |
1104 current_render_surface_layer_list_id; | |
1105 layer->draw_properties().layer_or_descendant_is_drawn = | |
1106 !!current_render_surface_layer_list_id; | |
1107 } | |
1108 | |
1109 template <typename LayerTypePtr> | |
1110 static inline void MarkMasksWithRenderSurfaceLayerListId( | |
1111 LayerTypePtr layer, | |
1112 int current_render_surface_layer_list_id) { | |
1113 if (layer->mask_layer()) { | |
1114 MarkLayerWithRenderSurfaceLayerListId(layer->mask_layer(), | |
1115 current_render_surface_layer_list_id); | |
1116 } | |
1117 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { | |
1118 MarkLayerWithRenderSurfaceLayerListId(layer->replica_layer()->mask_layer(), | |
1119 current_render_surface_layer_list_id); | |
1120 } | |
1121 } | |
1122 | |
1123 template <typename LayerListType> | |
1124 static inline void MarkLayerListWithRenderSurfaceLayerListId( | |
1125 LayerListType* layer_list, | |
1126 int current_render_surface_layer_list_id) { | |
1127 for (typename LayerListType::iterator it = layer_list->begin(); | |
1128 it != layer_list->end(); | |
1129 ++it) { | |
1130 MarkLayerWithRenderSurfaceLayerListId(*it, | |
1131 current_render_surface_layer_list_id); | |
1132 MarkMasksWithRenderSurfaceLayerListId(*it, | |
1133 current_render_surface_layer_list_id); | |
1134 } | |
1135 } | |
1136 | |
1137 template <typename LayerType> | |
1138 static inline void RemoveSurfaceForEarlyExit( | |
1139 LayerType* layer_to_remove, | |
1140 typename LayerType::RenderSurfaceListType* render_surface_layer_list) { | |
1141 DCHECK(layer_to_remove->render_surface()); | |
1142 // Technically, we know that the layer we want to remove should be | |
1143 // at the back of the render_surface_layer_list. However, we have had | |
1144 // bugs before that added unnecessary layers here | |
1145 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes | |
1146 // things to crash. So here we proactively remove any additional | |
1147 // layers from the end of the list. | |
1148 while (render_surface_layer_list->back() != layer_to_remove) { | |
1149 MarkLayerListWithRenderSurfaceLayerListId( | |
1150 &render_surface_layer_list->back()->render_surface()->layer_list(), 0); | |
1151 MarkLayerWithRenderSurfaceLayerListId(render_surface_layer_list->back(), 0); | |
1152 | |
1153 render_surface_layer_list->back()->ClearRenderSurfaceLayerList(); | |
1154 render_surface_layer_list->pop_back(); | |
1155 } | |
1156 DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove); | |
1157 MarkLayerListWithRenderSurfaceLayerListId( | |
1158 &layer_to_remove->render_surface()->layer_list(), 0); | |
1159 MarkLayerWithRenderSurfaceLayerListId(layer_to_remove, 0); | |
1160 render_surface_layer_list->pop_back(); | |
1161 layer_to_remove->ClearRenderSurfaceLayerList(); | |
1162 } | |
1163 | |
1164 struct PreCalculateMetaInformationRecursiveData { | |
1165 bool layer_or_descendant_has_copy_request; | |
1166 bool layer_or_descendant_has_input_handler; | |
1167 int num_unclipped_descendants; | |
1168 | |
1169 PreCalculateMetaInformationRecursiveData() | |
1170 : layer_or_descendant_has_copy_request(false), | |
1171 layer_or_descendant_has_input_handler(false), | |
1172 num_unclipped_descendants(0) {} | |
1173 | |
1174 void Merge(const PreCalculateMetaInformationRecursiveData& data) { | |
1175 layer_or_descendant_has_copy_request |= | |
1176 data.layer_or_descendant_has_copy_request; | |
1177 layer_or_descendant_has_input_handler |= | |
1178 data.layer_or_descendant_has_input_handler; | |
1179 num_unclipped_descendants += data.num_unclipped_descendants; | |
1180 } | |
1181 }; | |
1182 | |
1183 static void ValidateRenderSurface(LayerImpl* layer) { | |
1184 // This test verifies that there are no cases where a LayerImpl needs | |
1185 // a render surface, but doesn't have one. | |
1186 if (layer->render_surface()) | |
1187 return; | |
1188 | |
1189 DCHECK(layer->filters().IsEmpty()) << "layer: " << layer->id(); | |
1190 DCHECK(layer->background_filters().IsEmpty()) << "layer: " << layer->id(); | |
1191 DCHECK(!layer->mask_layer()) << "layer: " << layer->id(); | |
1192 DCHECK(!layer->replica_layer()) << "layer: " << layer->id(); | |
1193 DCHECK(!IsRootLayer(layer)) << "layer: " << layer->id(); | |
1194 DCHECK(!layer->is_root_for_isolated_group()) << "layer: " << layer->id(); | |
1195 DCHECK(!layer->HasCopyRequest()) << "layer: " << layer->id(); | |
1196 } | |
1197 | |
1198 static void ValidateRenderSurface(Layer* layer) { | |
1199 } | |
1200 | |
1201 // Recursively walks the layer tree to compute any information that is needed | |
1202 // before doing the main recursion. | |
1203 template <typename LayerType> | |
1204 static void PreCalculateMetaInformation( | |
1205 LayerType* layer, | |
1206 PreCalculateMetaInformationRecursiveData* recursive_data) { | |
1207 ValidateRenderSurface(layer); | |
1208 | |
1209 layer->draw_properties().sorted_for_recursion = false; | |
1210 layer->draw_properties().has_child_with_a_scroll_parent = false; | |
1211 layer->draw_properties().layer_or_descendant_is_drawn = false; | |
1212 layer->draw_properties().visited = false; | |
1213 | |
1214 if (!HasInvertibleOrAnimatedTransform(layer)) { | |
1215 // Layers with singular transforms should not be drawn, the whole subtree | |
1216 // can be skipped. | |
1217 return; | |
1218 } | |
1219 | |
1220 if (layer->clip_parent()) | |
1221 recursive_data->num_unclipped_descendants++; | |
1222 | |
1223 for (size_t i = 0; i < layer->children().size(); ++i) { | |
1224 LayerType* child_layer = | |
1225 LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i); | |
1226 | |
1227 PreCalculateMetaInformationRecursiveData data_for_child; | |
1228 PreCalculateMetaInformation(child_layer, &data_for_child); | |
1229 | |
1230 if (child_layer->scroll_parent()) | |
1231 layer->draw_properties().has_child_with_a_scroll_parent = true; | |
1232 recursive_data->Merge(data_for_child); | |
1233 } | |
1234 | |
1235 if (layer->clip_children()) { | |
1236 int num_clip_children = layer->clip_children()->size(); | |
1237 DCHECK_GE(recursive_data->num_unclipped_descendants, num_clip_children); | |
1238 recursive_data->num_unclipped_descendants -= num_clip_children; | |
1239 } | |
1240 | |
1241 if (layer->HasCopyRequest()) | |
1242 recursive_data->layer_or_descendant_has_copy_request = true; | |
1243 | |
1244 if (!layer->touch_event_handler_region().IsEmpty() || | |
1245 layer->have_wheel_event_handlers()) | |
1246 recursive_data->layer_or_descendant_has_input_handler = true; | |
1247 | |
1248 layer->draw_properties().num_unclipped_descendants = | |
1249 recursive_data->num_unclipped_descendants; | |
1250 layer->draw_properties().layer_or_descendant_has_copy_request = | |
1251 recursive_data->layer_or_descendant_has_copy_request; | |
1252 layer->draw_properties().layer_or_descendant_has_input_handler = | |
1253 recursive_data->layer_or_descendant_has_input_handler; | |
1254 } | |
1255 | |
1256 template <typename LayerType> | |
1257 struct SubtreeGlobals { | |
1258 int max_texture_size; | |
1259 float device_scale_factor; | |
1260 float page_scale_factor; | |
1261 const LayerType* page_scale_application_layer; | |
1262 gfx::Vector2dF elastic_overscroll; | |
1263 const LayerType* elastic_overscroll_application_layer; | |
1264 bool can_adjust_raster_scales; | |
1265 bool can_render_to_separate_surface; | |
1266 bool layers_always_allowed_lcd_text; | |
1267 }; | |
1268 | |
1269 template<typename LayerType> | |
1270 struct DataForRecursion { | |
1271 // The accumulated sequence of transforms a layer will use to determine its | |
1272 // own draw transform. | |
1273 gfx::Transform parent_matrix; | |
1274 | |
1275 // The accumulated sequence of transforms a layer will use to determine its | |
1276 // own screen-space transform. | |
1277 gfx::Transform full_hierarchy_matrix; | |
1278 | |
1279 // The transform that removes all scrolling that may have occurred between a | |
1280 // fixed-position layer and its container, so that the layer actually does | |
1281 // remain fixed. | |
1282 gfx::Transform scroll_compensation_matrix; | |
1283 | |
1284 // The ancestor that would be the container for any fixed-position / sticky | |
1285 // layers. | |
1286 LayerType* fixed_container; | |
1287 | |
1288 // This is the normal clip rect that is propagated from parent to child. | |
1289 gfx::Rect clip_rect_in_target_space; | |
1290 | |
1291 // When the layer's children want to compute their visible content rect, they | |
1292 // want to know what their target surface's clip rect will be. BUT - they | |
1293 // want to know this clip rect represented in their own target space. This | |
1294 // requires inverse-projecting the surface's clip rect from the surface's | |
1295 // render target space down to the surface's own space. Instead of computing | |
1296 // this value redundantly for each child layer, it is computed only once | |
1297 // while dealing with the parent layer, and then this precomputed value is | |
1298 // passed down the recursion to the children that actually use it. | |
1299 gfx::Rect clip_rect_of_target_surface_in_target_space; | |
1300 | |
1301 // The maximum amount by which this layer will be scaled during the lifetime | |
1302 // of currently running animations. | |
1303 float maximum_animation_contents_scale; | |
1304 | |
1305 bool ancestor_is_animating_scale; | |
1306 bool ancestor_clips_subtree; | |
1307 typename LayerType::RenderSurfaceType* | |
1308 nearest_occlusion_immune_ancestor_surface; | |
1309 bool in_subtree_of_page_scale_application_layer; | |
1310 bool subtree_can_use_lcd_text; | |
1311 bool subtree_is_visible_from_ancestor; | |
1312 }; | |
1313 | |
1314 template <typename LayerType> | |
1315 static LayerType* GetChildContainingLayer(const LayerType& parent, | |
1316 LayerType* layer) { | |
1317 for (LayerType* ancestor = layer; ancestor; ancestor = ancestor->parent()) { | |
1318 if (ancestor->parent() == &parent) | |
1319 return ancestor; | |
1320 } | |
1321 NOTREACHED(); | |
1322 return 0; | |
1323 } | |
1324 | |
1325 template <typename LayerType> | |
1326 static void AddScrollParentChain(std::vector<LayerType*>* out, | |
1327 const LayerType& parent, | |
1328 LayerType* layer) { | |
1329 // At a high level, this function walks up the chain of scroll parents | |
1330 // recursively, and once we reach the end of the chain, we add the child | |
1331 // of |parent| containing each scroll ancestor as we unwind. The result is | |
1332 // an ordering of parent's children that ensures that scroll parents are | |
1333 // visited before their descendants. | |
1334 // Take for example this layer tree: | |
1335 // | |
1336 // + stacking_context | |
1337 // + scroll_child (1) | |
1338 // + scroll_parent_graphics_layer (*) | |
1339 // | + scroll_parent_scrolling_layer | |
1340 // | + scroll_parent_scrolling_content_layer (2) | |
1341 // + scroll_grandparent_graphics_layer (**) | |
1342 // + scroll_grandparent_scrolling_layer | |
1343 // + scroll_grandparent_scrolling_content_layer (3) | |
1344 // | |
1345 // The scroll child is (1), its scroll parent is (2) and its scroll | |
1346 // grandparent is (3). Note, this doesn't mean that (2)'s scroll parent is | |
1347 // (3), it means that (*)'s scroll parent is (3). We don't want our list to | |
1348 // look like [ (3), (2), (1) ], even though that does have the ancestor chain | |
1349 // in the right order. Instead, we want [ (**), (*), (1) ]. That is, only want | |
1350 // (1)'s siblings in the list, but we want them to appear in such an order | |
1351 // that the scroll ancestors get visited in the correct order. | |
1352 // | |
1353 // So our first task at this step of the recursion is to determine the layer | |
1354 // that we will potentionally add to the list. That is, the child of parent | |
1355 // containing |layer|. | |
1356 LayerType* child = GetChildContainingLayer(parent, layer); | |
1357 if (child->draw_properties().sorted_for_recursion) | |
1358 return; | |
1359 | |
1360 if (LayerType* scroll_parent = child->scroll_parent()) | |
1361 AddScrollParentChain(out, parent, scroll_parent); | |
1362 | |
1363 out->push_back(child); | |
1364 child->draw_properties().sorted_for_recursion = true; | |
1365 } | |
1366 | |
1367 template <typename LayerType> | |
1368 static bool SortChildrenForRecursion(std::vector<LayerType*>* out, | |
1369 const LayerType& parent) { | |
1370 out->reserve(parent.children().size()); | |
1371 bool order_changed = false; | |
1372 for (size_t i = 0; i < parent.children().size(); ++i) { | |
1373 LayerType* current = | |
1374 LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i); | |
1375 | |
1376 if (current->draw_properties().sorted_for_recursion) { | |
1377 order_changed = true; | |
1378 continue; | |
1379 } | |
1380 | |
1381 AddScrollParentChain(out, parent, current); | |
1382 } | |
1383 | |
1384 DCHECK_EQ(parent.children().size(), out->size()); | |
1385 return order_changed; | |
1386 } | |
1387 | |
1388 template <typename LayerType> | |
1389 static void GetNewDescendantsStartIndexAndCount(LayerType* layer, | |
1390 size_t* start_index, | |
1391 size_t* count) { | |
1392 *start_index = layer->draw_properties().index_of_first_descendants_addition; | |
1393 *count = layer->draw_properties().num_descendants_added; | |
1394 } | |
1395 | |
1396 template <typename LayerType> | |
1397 static void GetNewRenderSurfacesStartIndexAndCount(LayerType* layer, | |
1398 size_t* start_index, | |
1399 size_t* count) { | |
1400 *start_index = layer->draw_properties() | |
1401 .index_of_first_render_surface_layer_list_addition; | |
1402 *count = layer->draw_properties().num_render_surfaces_added; | |
1403 } | |
1404 | |
1405 // We need to extract a list from the the two flavors of RenderSurfaceListType | |
1406 // for use in the sorting function below. | |
1407 static LayerList* GetLayerListForSorting(RenderSurfaceLayerList* rsll) { | |
1408 return &rsll->AsLayerList(); | |
1409 } | |
1410 | |
1411 static LayerImplList* GetLayerListForSorting(LayerImplList* layer_list) { | |
1412 return layer_list; | |
1413 } | |
1414 | |
1415 static inline gfx::Vector2d BoundsDelta(Layer* layer) { | |
1416 return gfx::Vector2d(); | |
1417 } | |
1418 | |
1419 static inline gfx::Vector2d BoundsDelta(LayerImpl* layer) { | |
1420 return gfx::ToCeiledVector2d(layer->bounds_delta()); | |
1421 } | |
1422 | |
1423 template <typename LayerType, typename GetIndexAndCountType> | |
1424 static void SortLayerListContributions( | |
1425 const LayerType& parent, | |
1426 typename LayerType::LayerListType* unsorted, | |
1427 size_t start_index_for_all_contributions, | |
1428 GetIndexAndCountType get_index_and_count) { | |
1429 typename LayerType::LayerListType buffer; | |
1430 for (size_t i = 0; i < parent.children().size(); ++i) { | |
1431 LayerType* child = | |
1432 LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i); | |
1433 | |
1434 size_t start_index = 0; | |
1435 size_t count = 0; | |
1436 get_index_and_count(child, &start_index, &count); | |
1437 for (size_t j = start_index; j < start_index + count; ++j) | |
1438 buffer.push_back(unsorted->at(j)); | |
1439 } | |
1440 | |
1441 DCHECK_EQ(buffer.size(), | |
1442 unsorted->size() - start_index_for_all_contributions); | |
1443 | |
1444 for (size_t i = 0; i < buffer.size(); ++i) | |
1445 (*unsorted)[i + start_index_for_all_contributions] = buffer[i]; | |
1446 } | |
1447 | |
1448 // Recursively walks the layer tree starting at the given node and computes all | |
1449 // the necessary transformations, clip rects, render surfaces, etc. | |
1450 template <typename LayerType> | |
1451 static void CalculateDrawPropertiesInternal( | |
1452 LayerType* layer, | |
1453 const SubtreeGlobals<LayerType>& globals, | |
1454 const DataForRecursion<LayerType>& data_from_ancestor, | |
1455 typename LayerType::RenderSurfaceListType* render_surface_layer_list, | |
1456 typename LayerType::LayerListType* layer_list, | |
1457 std::vector<AccumulatedSurfaceState<LayerType>>* accumulated_surface_state, | |
1458 int current_render_surface_layer_list_id) { | |
1459 // This function computes the new matrix transformations recursively for this | |
1460 // layer and all its descendants. It also computes the appropriate render | |
1461 // surfaces. | |
1462 // Some important points to remember: | |
1463 // | |
1464 // 0. Here, transforms are notated in Matrix x Vector order, and in words we | |
1465 // describe what the transform does from left to right. | |
1466 // | |
1467 // 1. In our terminology, the "layer origin" refers to the top-left corner of | |
1468 // a layer, and the positive Y-axis points downwards. This interpretation is | |
1469 // valid because the orthographic projection applied at draw time flips the Y | |
1470 // axis appropriately. | |
1471 // | |
1472 // 2. The anchor point, when given as a PointF object, is specified in "unit | |
1473 // layer space", where the bounds of the layer map to [0, 1]. However, as a | |
1474 // Transform object, the transform to the anchor point is specified in "layer | |
1475 // space", where the bounds of the layer map to [bounds.width(), | |
1476 // bounds.height()]. | |
1477 // | |
1478 // 3. Definition of various transforms used: | |
1479 // M[parent] is the parent matrix, with respect to the nearest render | |
1480 // surface, passed down recursively. | |
1481 // | |
1482 // M[root] is the full hierarchy, with respect to the root, passed down | |
1483 // recursively. | |
1484 // | |
1485 // Tr[origin] is the translation matrix from the parent's origin to | |
1486 // this layer's origin. | |
1487 // | |
1488 // Tr[origin2anchor] is the translation from the layer's origin to its | |
1489 // anchor point | |
1490 // | |
1491 // Tr[origin2center] is the translation from the layer's origin to its | |
1492 // center | |
1493 // | |
1494 // M[layer] is the layer's matrix (applied at the anchor point) | |
1495 // | |
1496 // S[layer2content] is the ratio of a layer's content_bounds() to its | |
1497 // Bounds(). | |
1498 // | |
1499 // Some composite transforms can help in understanding the sequence of | |
1500 // transforms: | |
1501 // composite_layer_transform = Tr[origin2anchor] * M[layer] * | |
1502 // Tr[origin2anchor].inverse() | |
1503 // | |
1504 // 4. When a layer (or render surface) is drawn, it is drawn into a "target | |
1505 // render surface". Therefore the draw transform does not necessarily | |
1506 // transform from screen space to local layer space. Instead, the draw | |
1507 // transform is the transform between the "target render surface space" and | |
1508 // local layer space. Note that render surfaces, except for the root, also | |
1509 // draw themselves into a different target render surface, and so their draw | |
1510 // transform and origin transforms are also described with respect to the | |
1511 // target. | |
1512 // | |
1513 // Using these definitions, then: | |
1514 // | |
1515 // The draw transform for the layer is: | |
1516 // M[draw] = M[parent] * Tr[origin] * composite_layer_transform * | |
1517 // S[layer2content] = M[parent] * Tr[layer->position() + anchor] * | |
1518 // M[layer] * Tr[anchor2origin] * S[layer2content] | |
1519 // | |
1520 // Interpreting the math left-to-right, this transforms from the | |
1521 // layer's render surface to the origin of the layer in content space. | |
1522 // | |
1523 // The screen space transform is: | |
1524 // M[screenspace] = M[root] * Tr[origin] * composite_layer_transform * | |
1525 // S[layer2content] | |
1526 // = M[root] * Tr[layer->position() + anchor] * M[layer] | |
1527 // * Tr[anchor2origin] * S[layer2content] | |
1528 // | |
1529 // Interpreting the math left-to-right, this transforms from the root | |
1530 // render surface's content space to the origin of the layer in content | |
1531 // space. | |
1532 // | |
1533 // The transform hierarchy that is passed on to children (i.e. the child's | |
1534 // parent_matrix) is: | |
1535 // M[parent]_for_child = M[parent] * Tr[origin] * | |
1536 // composite_layer_transform | |
1537 // = M[parent] * Tr[layer->position() + anchor] * | |
1538 // M[layer] * Tr[anchor2origin] | |
1539 // | |
1540 // and a similar matrix for the full hierarchy with respect to the | |
1541 // root. | |
1542 // | |
1543 // Finally, note that the final matrix used by the shader for the layer is P * | |
1544 // M[draw] * S . This final product is computed in drawTexturedQuad(), where: | |
1545 // P is the projection matrix | |
1546 // S is the scale adjustment (to scale up a canonical quad to the | |
1547 // layer's size) | |
1548 // | |
1549 // When a render surface has a replica layer, that layer's transform is used | |
1550 // to draw a second copy of the surface. gfx::Transforms named here are | |
1551 // relative to the surface, unless they specify they are relative to the | |
1552 // replica layer. | |
1553 // | |
1554 // We will denote a scale by device scale S[deviceScale] | |
1555 // | |
1556 // The render surface draw transform to its target surface origin is: | |
1557 // M[surfaceDraw] = M[owningLayer->Draw] | |
1558 // | |
1559 // The render surface origin transform to its the root (screen space) origin | |
1560 // is: | |
1561 // M[surface2root] = M[owningLayer->screenspace] * | |
1562 // S[deviceScale].inverse() | |
1563 // | |
1564 // The replica draw transform to its target surface origin is: | |
1565 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * | |
1566 // Tr[replica->position() + replica->anchor()] * Tr[replica] * | |
1567 // Tr[origin2anchor].inverse() * S[contents_scale].inverse() | |
1568 // | |
1569 // The replica draw transform to the root (screen space) origin is: | |
1570 // M[replica2root] = M[surface2root] * Tr[replica->position()] * | |
1571 // Tr[replica] * Tr[origin2anchor].inverse() | |
1572 // | |
1573 | |
1574 // It makes no sense to have a non-unit page_scale_factor without specifying | |
1575 // which layer roots the subtree the scale is applied to. | |
1576 DCHECK(globals.page_scale_application_layer || | |
1577 (globals.page_scale_factor == 1.f)); | |
1578 | |
1579 CHECK(!layer->draw_properties().visited); | |
1580 layer->draw_properties().visited = true; | |
1581 | |
1582 DataForRecursion<LayerType> data_for_children; | |
1583 typename LayerType::RenderSurfaceType* | |
1584 nearest_occlusion_immune_ancestor_surface = | |
1585 data_from_ancestor.nearest_occlusion_immune_ancestor_surface; | |
1586 data_for_children.in_subtree_of_page_scale_application_layer = | |
1587 data_from_ancestor.in_subtree_of_page_scale_application_layer; | |
1588 data_for_children.subtree_can_use_lcd_text = | |
1589 data_from_ancestor.subtree_can_use_lcd_text; | |
1590 | |
1591 // Layers that are marked as hidden will hide themselves and their subtree. | |
1592 // Exception: Layers with copy requests, whether hidden or not, must be drawn | |
1593 // anyway. In this case, we will inform their subtree they are visible to get | |
1594 // the right results. | |
1595 const bool layer_is_visible = | |
1596 data_from_ancestor.subtree_is_visible_from_ancestor && | |
1597 !layer->hide_layer_and_subtree(); | |
1598 const bool layer_is_drawn = layer_is_visible || layer->HasCopyRequest(); | |
1599 | |
1600 // The root layer cannot skip CalcDrawProperties. | |
1601 if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_drawn)) { | |
1602 if (layer->render_surface()) | |
1603 layer->ClearRenderSurfaceLayerList(); | |
1604 layer->draw_properties().render_target = nullptr; | |
1605 return; | |
1606 } | |
1607 | |
1608 // We need to circumvent the normal recursive flow of information for clip | |
1609 // children (they don't inherit their direct ancestor's clip information). | |
1610 // This is unfortunate, and would be unnecessary if we were to formally | |
1611 // separate the clipping hierarchy from the layer hierarchy. | |
1612 bool ancestor_clips_subtree = data_from_ancestor.ancestor_clips_subtree; | |
1613 gfx::Rect ancestor_clip_rect_in_target_space = | |
1614 data_from_ancestor.clip_rect_in_target_space; | |
1615 | |
1616 // Update our clipping state. If we have a clip parent we will need to pull | |
1617 // from the clip state cache rather than using the clip state passed from our | |
1618 // immediate ancestor. | |
1619 UpdateClipRectsForClipChild<LayerType>( | |
1620 layer, &ancestor_clip_rect_in_target_space, &ancestor_clips_subtree); | |
1621 | |
1622 // As this function proceeds, these are the properties for the current | |
1623 // layer that actually get computed. To avoid unnecessary copies | |
1624 // (particularly for matrices), we do computations directly on these values | |
1625 // when possible. | |
1626 DrawProperties<LayerType>& layer_draw_properties = layer->draw_properties(); | |
1627 | |
1628 gfx::Rect clip_rect_in_target_space; | |
1629 bool layer_or_ancestor_clips_descendants = false; | |
1630 | |
1631 // This value is cached on the stack so that we don't have to inverse-project | |
1632 // the surface's clip rect redundantly for every layer. This value is the | |
1633 // same as the target surface's clip rect, except that instead of being | |
1634 // described in the target surface's target's space, it is described in the | |
1635 // current render target's space. | |
1636 gfx::Rect clip_rect_of_target_surface_in_target_space; | |
1637 | |
1638 float accumulated_draw_opacity = layer->opacity(); | |
1639 bool animating_opacity_to_target = layer->OpacityIsAnimating(); | |
1640 bool animating_opacity_to_screen = animating_opacity_to_target; | |
1641 if (layer->parent()) { | |
1642 accumulated_draw_opacity *= layer->parent()->draw_opacity(); | |
1643 animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating(); | |
1644 animating_opacity_to_screen |= | |
1645 layer->parent()->screen_space_opacity_is_animating(); | |
1646 } | |
1647 | |
1648 bool animating_transform_to_target = layer->TransformIsAnimating(); | |
1649 bool animating_transform_to_screen = animating_transform_to_target; | |
1650 if (layer->parent()) { | |
1651 animating_transform_to_target |= | |
1652 layer->parent()->draw_transform_is_animating(); | |
1653 animating_transform_to_screen |= | |
1654 layer->parent()->screen_space_transform_is_animating(); | |
1655 } | |
1656 gfx::Point3F transform_origin = layer->transform_origin(); | |
1657 gfx::ScrollOffset scroll_offset = GetEffectiveCurrentScrollOffset(layer); | |
1658 gfx::PointF position = | |
1659 layer->position() - ScrollOffsetToVector2dF(scroll_offset); | |
1660 gfx::Transform combined_transform = data_from_ancestor.parent_matrix; | |
1661 if (!layer->transform().IsIdentity()) { | |
1662 // LT = Tr[origin] * Tr[origin2transformOrigin] | |
1663 combined_transform.Translate3d(position.x() + transform_origin.x(), | |
1664 position.y() + transform_origin.y(), | |
1665 transform_origin.z()); | |
1666 // LT = Tr[origin] * Tr[origin2origin] * M[layer] | |
1667 combined_transform.PreconcatTransform(layer->transform()); | |
1668 // LT = Tr[origin] * Tr[origin2origin] * M[layer] * | |
1669 // Tr[transformOrigin2origin] | |
1670 combined_transform.Translate3d( | |
1671 -transform_origin.x(), -transform_origin.y(), -transform_origin.z()); | |
1672 } else { | |
1673 combined_transform.Translate(position.x(), position.y()); | |
1674 } | |
1675 | |
1676 gfx::Vector2dF effective_scroll_delta = GetEffectiveScrollDelta(layer); | |
1677 if (!animating_transform_to_target && layer->scrollable() && | |
1678 combined_transform.IsScaleOrTranslation()) { | |
1679 // Align the scrollable layer's position to screen space pixels to avoid | |
1680 // blurriness. To avoid side-effects, do this only if the transform is | |
1681 // simple. | |
1682 gfx::Vector2dF previous_translation = combined_transform.To2dTranslation(); | |
1683 combined_transform.RoundTranslationComponents(); | |
1684 gfx::Vector2dF current_translation = combined_transform.To2dTranslation(); | |
1685 | |
1686 // This rounding changes the scroll delta, and so must be included | |
1687 // in the scroll compensation matrix. The scaling converts from physical | |
1688 // coordinates to the scroll delta's CSS coordinates (using the parent | |
1689 // matrix instead of combined transform since scrolling is applied before | |
1690 // the layer's transform). For example, if we have a total scale factor of | |
1691 // 3.0, then 1 physical pixel is only 1/3 of a CSS pixel. | |
1692 gfx::Vector2dF parent_scales = MathUtil::ComputeTransform2dScaleComponents( | |
1693 data_from_ancestor.parent_matrix, 1.f); | |
1694 effective_scroll_delta -= | |
1695 gfx::ScaleVector2d(current_translation - previous_translation, | |
1696 1.f / parent_scales.x(), | |
1697 1.f / parent_scales.y()); | |
1698 } | |
1699 | |
1700 // Apply adjustment from position constraints. | |
1701 ApplyPositionAdjustment(layer, data_from_ancestor.fixed_container, | |
1702 data_from_ancestor.scroll_compensation_matrix, &combined_transform); | |
1703 | |
1704 bool combined_is_animating_scale = false; | |
1705 float combined_maximum_animation_contents_scale = 0.f; | |
1706 if (globals.can_adjust_raster_scales) { | |
1707 CalculateAnimationContentsScale( | |
1708 layer, | |
1709 data_from_ancestor.ancestor_is_animating_scale, | |
1710 data_from_ancestor.maximum_animation_contents_scale, | |
1711 data_from_ancestor.parent_matrix, | |
1712 combined_transform, | |
1713 &combined_is_animating_scale, | |
1714 &combined_maximum_animation_contents_scale); | |
1715 } | |
1716 data_for_children.ancestor_is_animating_scale = combined_is_animating_scale; | |
1717 data_for_children.maximum_animation_contents_scale = | |
1718 combined_maximum_animation_contents_scale; | |
1719 | |
1720 // Compute the 2d scale components of the transform hierarchy up to the target | |
1721 // surface. From there, we can decide on a contents scale for the layer. | |
1722 float layer_scale_factors = globals.device_scale_factor; | |
1723 if (data_from_ancestor.in_subtree_of_page_scale_application_layer) | |
1724 layer_scale_factors *= globals.page_scale_factor; | |
1725 gfx::Vector2dF combined_transform_scales = | |
1726 MathUtil::ComputeTransform2dScaleComponents( | |
1727 combined_transform, | |
1728 layer_scale_factors); | |
1729 | |
1730 float ideal_contents_scale = | |
1731 globals.can_adjust_raster_scales | |
1732 ? std::max(combined_transform_scales.x(), | |
1733 combined_transform_scales.y()) | |
1734 : layer_scale_factors; | |
1735 UpdateLayerContentsScale( | |
1736 layer, | |
1737 globals.can_adjust_raster_scales, | |
1738 ideal_contents_scale, | |
1739 globals.device_scale_factor, | |
1740 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
1741 ? globals.page_scale_factor | |
1742 : 1.f, | |
1743 animating_transform_to_screen); | |
1744 | |
1745 UpdateLayerScaleDrawProperties( | |
1746 layer, | |
1747 ideal_contents_scale, | |
1748 combined_maximum_animation_contents_scale, | |
1749 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
1750 ? globals.page_scale_factor | |
1751 : 1.f, | |
1752 globals.device_scale_factor); | |
1753 | |
1754 LayerType* mask_layer = layer->mask_layer(); | |
1755 if (mask_layer) { | |
1756 UpdateLayerScaleDrawProperties( | |
1757 mask_layer, | |
1758 ideal_contents_scale, | |
1759 combined_maximum_animation_contents_scale, | |
1760 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
1761 ? globals.page_scale_factor | |
1762 : 1.f, | |
1763 globals.device_scale_factor); | |
1764 } | |
1765 | |
1766 LayerType* replica_mask_layer = | |
1767 layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL; | |
1768 if (replica_mask_layer) { | |
1769 UpdateLayerScaleDrawProperties( | |
1770 replica_mask_layer, | |
1771 ideal_contents_scale, | |
1772 combined_maximum_animation_contents_scale, | |
1773 data_from_ancestor.in_subtree_of_page_scale_application_layer | |
1774 ? globals.page_scale_factor | |
1775 : 1.f, | |
1776 globals.device_scale_factor); | |
1777 } | |
1778 | |
1779 // The draw_transform that gets computed below is effectively the layer's | |
1780 // draw_transform, unless the layer itself creates a render_surface. In that | |
1781 // case, the render_surface re-parents the transforms. | |
1782 layer_draw_properties.target_space_transform = combined_transform; | |
1783 // M[draw] = M[parent] * LT * S[layer2content] | |
1784 layer_draw_properties.target_space_transform.Scale( | |
1785 SK_MScalar1 / layer->contents_scale_x(), | |
1786 SK_MScalar1 / layer->contents_scale_y()); | |
1787 | |
1788 // The layer's screen_space_transform represents the transform between root | |
1789 // layer's "screen space" and local content space. | |
1790 layer_draw_properties.screen_space_transform = | |
1791 data_from_ancestor.full_hierarchy_matrix; | |
1792 layer_draw_properties.screen_space_transform.PreconcatTransform | |
1793 (layer_draw_properties.target_space_transform); | |
1794 | |
1795 // Adjusting text AA method during animation may cause repaints, which in-turn | |
1796 // causes jank. | |
1797 bool adjust_text_aa = | |
1798 !animating_opacity_to_screen && !animating_transform_to_screen; | |
1799 bool layer_can_use_lcd_text = true; | |
1800 bool subtree_can_use_lcd_text = true; | |
1801 if (!globals.layers_always_allowed_lcd_text) { | |
1802 // To avoid color fringing, LCD text should only be used on opaque layers | |
1803 // with just integral translation. | |
1804 subtree_can_use_lcd_text = data_from_ancestor.subtree_can_use_lcd_text && | |
1805 accumulated_draw_opacity == 1.f && | |
1806 layer_draw_properties.target_space_transform | |
1807 .IsIdentityOrIntegerTranslation(); | |
1808 // Also disable LCD text locally for non-opaque content. | |
1809 layer_can_use_lcd_text = subtree_can_use_lcd_text && | |
1810 layer->contents_opaque(); | |
1811 } | |
1812 | |
1813 // full_hierarchy_matrix is the matrix that transforms objects between screen | |
1814 // space (except projection matrix) and the most recent RenderSurfaceImpl's | |
1815 // space. next_hierarchy_matrix will only change if this layer uses a new | |
1816 // RenderSurfaceImpl, otherwise remains the same. | |
1817 data_for_children.full_hierarchy_matrix = | |
1818 data_from_ancestor.full_hierarchy_matrix; | |
1819 | |
1820 bool render_to_separate_surface = | |
1821 IsRootLayer(layer) || | |
1822 (globals.can_render_to_separate_surface && layer->render_surface()); | |
1823 | |
1824 if (render_to_separate_surface) { | |
1825 DCHECK(layer->render_surface()); | |
1826 // Check back-face visibility before continuing with this surface and its | |
1827 // subtree | |
1828 if (!layer->double_sided() && TransformToParentIsKnown(layer) && | |
1829 IsSurfaceBackFaceVisible(layer, combined_transform)) { | |
1830 layer->ClearRenderSurfaceLayerList(); | |
1831 layer->draw_properties().render_target = nullptr; | |
1832 return; | |
1833 } | |
1834 | |
1835 typename LayerType::RenderSurfaceType* render_surface = | |
1836 layer->render_surface(); | |
1837 layer->ClearRenderSurfaceLayerList(); | |
1838 | |
1839 layer_draw_properties.render_target = layer; | |
1840 if (IsRootLayer(layer)) { | |
1841 // The root layer's render surface size is predetermined and so the root | |
1842 // layer can't directly support non-identity transforms. It should just | |
1843 // forward top-level transforms to the rest of the tree. | |
1844 data_for_children.parent_matrix = combined_transform; | |
1845 | |
1846 // The root surface does not contribute to any other surface, it has no | |
1847 // target. | |
1848 layer->render_surface()->set_contributes_to_drawn_surface(false); | |
1849 } else { | |
1850 // The owning layer's draw transform has a scale from content to layer | |
1851 // space which we do not want; so here we use the combined_transform | |
1852 // instead of the draw_transform. However, we do need to add a different | |
1853 // scale factor that accounts for the surface's pixel dimensions. | |
1854 // Remove the combined_transform scale from the draw transform. | |
1855 gfx::Transform draw_transform = combined_transform; | |
1856 draw_transform.Scale(1.0 / combined_transform_scales.x(), | |
1857 1.0 / combined_transform_scales.y()); | |
1858 render_surface->SetDrawTransform(draw_transform); | |
1859 | |
1860 // The owning layer's transform was re-parented by the surface, so the | |
1861 // layer's new draw_transform only needs to scale the layer to surface | |
1862 // space. | |
1863 layer_draw_properties.target_space_transform.MakeIdentity(); | |
1864 layer_draw_properties.target_space_transform.Scale( | |
1865 combined_transform_scales.x() / layer->contents_scale_x(), | |
1866 combined_transform_scales.y() / layer->contents_scale_y()); | |
1867 | |
1868 // Inside the surface's subtree, we scale everything to the owning layer's | |
1869 // scale. The sublayer matrix transforms layer rects into target surface | |
1870 // content space. Conceptually, all layers in the subtree inherit the | |
1871 // scale at the point of the render surface in the transform hierarchy, | |
1872 // but we apply it explicitly to the owning layer and the remainder of the | |
1873 // subtree independently. | |
1874 DCHECK(data_for_children.parent_matrix.IsIdentity()); | |
1875 data_for_children.parent_matrix.Scale(combined_transform_scales.x(), | |
1876 combined_transform_scales.y()); | |
1877 | |
1878 // Even if the |layer_is_drawn|, it only contributes to a drawn surface | |
1879 // when the |layer_is_visible|. | |
1880 layer->render_surface()->set_contributes_to_drawn_surface( | |
1881 layer_is_visible); | |
1882 } | |
1883 | |
1884 // The opacity value is moved from the layer to its surface, so that the | |
1885 // entire subtree properly inherits opacity. | |
1886 render_surface->SetDrawOpacity(accumulated_draw_opacity); | |
1887 render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target); | |
1888 animating_opacity_to_target = false; | |
1889 layer_draw_properties.opacity = 1.f; | |
1890 layer_draw_properties.blend_mode = SkXfermode::kSrcOver_Mode; | |
1891 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; | |
1892 layer_draw_properties.screen_space_opacity_is_animating = | |
1893 animating_opacity_to_screen; | |
1894 | |
1895 render_surface->SetTargetSurfaceTransformsAreAnimating( | |
1896 animating_transform_to_target); | |
1897 render_surface->SetScreenSpaceTransformsAreAnimating( | |
1898 animating_transform_to_screen); | |
1899 animating_transform_to_target = false; | |
1900 layer_draw_properties.target_space_transform_is_animating = | |
1901 animating_transform_to_target; | |
1902 layer_draw_properties.screen_space_transform_is_animating = | |
1903 animating_transform_to_screen; | |
1904 | |
1905 // Update the aggregate hierarchy matrix to include the transform of the | |
1906 // newly created RenderSurfaceImpl. | |
1907 data_for_children.full_hierarchy_matrix.PreconcatTransform( | |
1908 render_surface->draw_transform()); | |
1909 | |
1910 // A render surface inherently acts as a flattening point for the content of | |
1911 // its descendants. | |
1912 data_for_children.full_hierarchy_matrix.FlattenTo2d(); | |
1913 | |
1914 if (layer->mask_layer()) { | |
1915 DrawProperties<LayerType>& mask_layer_draw_properties = | |
1916 layer->mask_layer()->draw_properties(); | |
1917 mask_layer_draw_properties.render_target = layer; | |
1918 mask_layer_draw_properties.visible_content_rect = | |
1919 gfx::Rect(layer->content_bounds()); | |
1920 } | |
1921 | |
1922 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { | |
1923 DrawProperties<LayerType>& replica_mask_draw_properties = | |
1924 layer->replica_layer()->mask_layer()->draw_properties(); | |
1925 replica_mask_draw_properties.render_target = layer; | |
1926 replica_mask_draw_properties.visible_content_rect = | |
1927 gfx::Rect(layer->content_bounds()); | |
1928 } | |
1929 | |
1930 // Ignore occlusion from outside the surface when surface contents need to | |
1931 // be fully drawn. Layers with copy-request need to be complete. | |
1932 // We could be smarter about layers with replica and exclude regions | |
1933 // where both layer and the replica are occluded, but this seems like an | |
1934 // overkill. The same is true for layers with filters that move pixels. | |
1935 // TODO(senorblanco): make this smarter for the SkImageFilter case (check | |
1936 // for pixel-moving filters) | |
1937 if (layer->HasCopyRequest() || | |
1938 layer->has_replica() || | |
1939 layer->filters().HasReferenceFilter() || | |
1940 layer->filters().HasFilterThatMovesPixels()) { | |
1941 nearest_occlusion_immune_ancestor_surface = render_surface; | |
1942 } | |
1943 render_surface->SetNearestOcclusionImmuneAncestor( | |
1944 nearest_occlusion_immune_ancestor_surface); | |
1945 | |
1946 layer_or_ancestor_clips_descendants = false; | |
1947 bool subtree_is_clipped_by_surface_bounds = false; | |
1948 if (ancestor_clips_subtree) { | |
1949 // It may be the layer or the surface doing the clipping of the subtree, | |
1950 // but in either case, we'll be clipping to the projected clip rect of our | |
1951 // ancestor. | |
1952 gfx::Transform inverse_surface_draw_transform( | |
1953 gfx::Transform::kSkipInitialization); | |
1954 if (!render_surface->draw_transform().GetInverse( | |
1955 &inverse_surface_draw_transform)) { | |
1956 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
1957 // here, or DCHECK that the transform is invertible. | |
1958 } | |
1959 | |
1960 gfx::Rect surface_clip_rect_in_target_space = gfx::IntersectRects( | |
1961 data_from_ancestor.clip_rect_of_target_surface_in_target_space, | |
1962 ancestor_clip_rect_in_target_space); | |
1963 gfx::Rect projected_surface_rect = MathUtil::ProjectEnclosingClippedRect( | |
1964 inverse_surface_draw_transform, surface_clip_rect_in_target_space); | |
1965 | |
1966 if (layer_draw_properties.num_unclipped_descendants > 0) { | |
1967 // If we have unclipped descendants, we cannot count on the render | |
1968 // surface's bounds clipping our subtree: the unclipped descendants | |
1969 // could cause us to expand our bounds. In this case, we must rely on | |
1970 // layer clipping for correctess. NB: since we can only encounter | |
1971 // translations between a clip child and its clip parent, clipping is | |
1972 // guaranteed to be exact in this case. | |
1973 layer_or_ancestor_clips_descendants = true; | |
1974 clip_rect_in_target_space = projected_surface_rect; | |
1975 } else { | |
1976 // The new render_surface here will correctly clip the entire subtree. | |
1977 // So, we do not need to continue propagating the clipping state further | |
1978 // down the tree. This way, we can avoid transforming clip rects from | |
1979 // ancestor target surface space to current target surface space that | |
1980 // could cause more w < 0 headaches. The render surface clip rect is | |
1981 // expressed in the space where this surface draws, i.e. the same space | |
1982 // as clip_rect_from_ancestor_in_ancestor_target_space. | |
1983 render_surface->SetClipRect(ancestor_clip_rect_in_target_space); | |
1984 clip_rect_of_target_surface_in_target_space = projected_surface_rect; | |
1985 subtree_is_clipped_by_surface_bounds = true; | |
1986 } | |
1987 } | |
1988 | |
1989 DCHECK(layer->render_surface()); | |
1990 DCHECK(!layer->parent() || layer->parent()->render_target() == | |
1991 accumulated_surface_state->back().render_target); | |
1992 | |
1993 accumulated_surface_state->push_back( | |
1994 AccumulatedSurfaceState<LayerType>(layer)); | |
1995 | |
1996 render_surface->SetIsClipped(subtree_is_clipped_by_surface_bounds); | |
1997 if (!subtree_is_clipped_by_surface_bounds) { | |
1998 render_surface->SetClipRect(gfx::Rect()); | |
1999 clip_rect_of_target_surface_in_target_space = | |
2000 data_from_ancestor.clip_rect_of_target_surface_in_target_space; | |
2001 } | |
2002 | |
2003 // If the new render surface is drawn translucent or with a non-integral | |
2004 // translation then the subtree that gets drawn on this render surface | |
2005 // cannot use LCD text. | |
2006 data_for_children.subtree_can_use_lcd_text = subtree_can_use_lcd_text; | |
2007 | |
2008 render_surface_layer_list->push_back(layer); | |
2009 } else { | |
2010 DCHECK(layer->parent()); | |
2011 | |
2012 // Note: layer_draw_properties.target_space_transform is computed above, | |
2013 // before this if-else statement. | |
2014 layer_draw_properties.target_space_transform_is_animating = | |
2015 animating_transform_to_target; | |
2016 layer_draw_properties.screen_space_transform_is_animating = | |
2017 animating_transform_to_screen; | |
2018 layer_draw_properties.opacity = accumulated_draw_opacity; | |
2019 layer_draw_properties.blend_mode = layer->blend_mode(); | |
2020 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; | |
2021 layer_draw_properties.screen_space_opacity_is_animating = | |
2022 animating_opacity_to_screen; | |
2023 data_for_children.parent_matrix = combined_transform; | |
2024 | |
2025 // Layers without render_surfaces directly inherit the ancestor's clip | |
2026 // status. | |
2027 layer_or_ancestor_clips_descendants = ancestor_clips_subtree; | |
2028 if (ancestor_clips_subtree) { | |
2029 clip_rect_in_target_space = | |
2030 ancestor_clip_rect_in_target_space; | |
2031 } | |
2032 | |
2033 // The surface's cached clip rect value propagates regardless of what | |
2034 // clipping goes on between layers here. | |
2035 clip_rect_of_target_surface_in_target_space = | |
2036 data_from_ancestor.clip_rect_of_target_surface_in_target_space; | |
2037 | |
2038 // Layers that are not their own render_target will render into the target | |
2039 // of their nearest ancestor. | |
2040 layer_draw_properties.render_target = layer->parent()->render_target(); | |
2041 } | |
2042 | |
2043 if (adjust_text_aa) | |
2044 layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text; | |
2045 | |
2046 gfx::Size content_size_affected_by_delta(layer->content_bounds()); | |
2047 | |
2048 // Non-zero BoundsDelta imply the contents_scale of 1.0 | |
2049 // because BoundsDela is only set on Android where | |
2050 // ContentScalingLayer is never used. | |
2051 DCHECK_IMPLIES(!BoundsDelta(layer).IsZero(), | |
2052 (layer->contents_scale_x() == 1.0 && | |
2053 layer->contents_scale_y() == 1.0)); | |
2054 | |
2055 // Thus we can omit contents scale in the following calculation. | |
2056 gfx::Vector2d bounds_delta = BoundsDelta(layer); | |
2057 content_size_affected_by_delta.Enlarge(bounds_delta.x(), bounds_delta.y()); | |
2058 | |
2059 gfx::Rect rect_in_target_space = MathUtil::MapEnclosingClippedRect( | |
2060 layer->draw_transform(), | |
2061 gfx::Rect(content_size_affected_by_delta)); | |
2062 | |
2063 if (LayerClipsSubtree(layer)) { | |
2064 layer_or_ancestor_clips_descendants = true; | |
2065 if (ancestor_clips_subtree && !render_to_separate_surface) { | |
2066 // A layer without render surface shares the same target as its ancestor. | |
2067 clip_rect_in_target_space = | |
2068 ancestor_clip_rect_in_target_space; | |
2069 clip_rect_in_target_space.Intersect(rect_in_target_space); | |
2070 } else { | |
2071 clip_rect_in_target_space = rect_in_target_space; | |
2072 } | |
2073 } | |
2074 | |
2075 // Tell the layer the rect that it's clipped by. In theory we could use a | |
2076 // tighter clip rect here (drawable_content_rect), but that actually does not | |
2077 // reduce how much would be drawn, and instead it would create unnecessary | |
2078 // changes to scissor state affecting GPU performance. Our clip information | |
2079 // is used in the recursion below, so we must set it beforehand. | |
2080 layer_draw_properties.is_clipped = layer_or_ancestor_clips_descendants; | |
2081 if (layer_or_ancestor_clips_descendants) { | |
2082 layer_draw_properties.clip_rect = clip_rect_in_target_space; | |
2083 } else { | |
2084 // Initialize the clip rect to a safe value that will not clip the | |
2085 // layer, just in case clipping is still accidentally used. | |
2086 layer_draw_properties.clip_rect = rect_in_target_space; | |
2087 } | |
2088 | |
2089 typename LayerType::LayerListType& descendants = | |
2090 (render_to_separate_surface ? layer->render_surface()->layer_list() | |
2091 : *layer_list); | |
2092 | |
2093 // Any layers that are appended after this point are in the layer's subtree | |
2094 // and should be included in the sorting process. | |
2095 size_t sorting_start_index = descendants.size(); | |
2096 | |
2097 if (!LayerShouldBeSkipped(layer, layer_is_drawn)) { | |
2098 MarkLayerWithRenderSurfaceLayerListId(layer, | |
2099 current_render_surface_layer_list_id); | |
2100 descendants.push_back(layer); | |
2101 } | |
2102 | |
2103 // Any layers that are appended after this point may need to be sorted if we | |
2104 // visit the children out of order. | |
2105 size_t render_surface_layer_list_child_sorting_start_index = | |
2106 render_surface_layer_list->size(); | |
2107 size_t layer_list_child_sorting_start_index = descendants.size(); | |
2108 | |
2109 if (!layer->children().empty()) { | |
2110 if (layer == globals.page_scale_application_layer) { | |
2111 data_for_children.parent_matrix.Scale( | |
2112 globals.page_scale_factor, | |
2113 globals.page_scale_factor); | |
2114 data_for_children.in_subtree_of_page_scale_application_layer = true; | |
2115 } | |
2116 if (layer == globals.elastic_overscroll_application_layer) { | |
2117 data_for_children.parent_matrix.Translate( | |
2118 -globals.elastic_overscroll.x(), -globals.elastic_overscroll.y()); | |
2119 } | |
2120 | |
2121 // Flatten to 2D if the layer doesn't preserve 3D. | |
2122 if (layer->should_flatten_transform()) | |
2123 data_for_children.parent_matrix.FlattenTo2d(); | |
2124 | |
2125 data_for_children.scroll_compensation_matrix = | |
2126 ComputeScrollCompensationMatrixForChildren( | |
2127 layer, | |
2128 data_from_ancestor.parent_matrix, | |
2129 data_from_ancestor.scroll_compensation_matrix, | |
2130 effective_scroll_delta); | |
2131 data_for_children.fixed_container = | |
2132 layer->IsContainerForFixedPositionLayers() ? | |
2133 layer : data_from_ancestor.fixed_container; | |
2134 | |
2135 data_for_children.clip_rect_in_target_space = clip_rect_in_target_space; | |
2136 data_for_children.clip_rect_of_target_surface_in_target_space = | |
2137 clip_rect_of_target_surface_in_target_space; | |
2138 data_for_children.ancestor_clips_subtree = | |
2139 layer_or_ancestor_clips_descendants; | |
2140 data_for_children.nearest_occlusion_immune_ancestor_surface = | |
2141 nearest_occlusion_immune_ancestor_surface; | |
2142 data_for_children.subtree_is_visible_from_ancestor = layer_is_drawn; | |
2143 } | |
2144 | |
2145 std::vector<LayerType*> sorted_children; | |
2146 bool child_order_changed = false; | |
2147 if (layer_draw_properties.has_child_with_a_scroll_parent) | |
2148 child_order_changed = SortChildrenForRecursion(&sorted_children, *layer); | |
2149 | |
2150 for (size_t i = 0; i < layer->children().size(); ++i) { | |
2151 // If one of layer's children has a scroll parent, then we may have to | |
2152 // visit the children out of order. The new order is stored in | |
2153 // sorted_children. Otherwise, we'll grab the child directly from the | |
2154 // layer's list of children. | |
2155 LayerType* child = | |
2156 layer_draw_properties.has_child_with_a_scroll_parent | |
2157 ? sorted_children[i] | |
2158 : LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i); | |
2159 | |
2160 child->draw_properties().index_of_first_descendants_addition = | |
2161 descendants.size(); | |
2162 child->draw_properties().index_of_first_render_surface_layer_list_addition = | |
2163 render_surface_layer_list->size(); | |
2164 | |
2165 CalculateDrawPropertiesInternal<LayerType>( | |
2166 child, | |
2167 globals, | |
2168 data_for_children, | |
2169 render_surface_layer_list, | |
2170 &descendants, | |
2171 accumulated_surface_state, | |
2172 current_render_surface_layer_list_id); | |
2173 // If the child is its own render target, then it has a render surface. | |
2174 if (child->render_target() == child && | |
2175 !child->render_surface()->layer_list().empty() && | |
2176 !child->render_surface()->content_rect().IsEmpty()) { | |
2177 // This child will contribute its render surface, which means | |
2178 // we need to mark just the mask layer (and replica mask layer) | |
2179 // with the id. | |
2180 MarkMasksWithRenderSurfaceLayerListId( | |
2181 child, current_render_surface_layer_list_id); | |
2182 descendants.push_back(child); | |
2183 } | |
2184 | |
2185 child->draw_properties().num_descendants_added = | |
2186 descendants.size() - | |
2187 child->draw_properties().index_of_first_descendants_addition; | |
2188 child->draw_properties().num_render_surfaces_added = | |
2189 render_surface_layer_list->size() - | |
2190 child->draw_properties() | |
2191 .index_of_first_render_surface_layer_list_addition; | |
2192 layer_draw_properties.layer_or_descendant_is_drawn |= | |
2193 child->draw_properties().layer_or_descendant_is_drawn; | |
2194 } | |
2195 | |
2196 // Add the unsorted layer list contributions, if necessary. | |
2197 if (child_order_changed) { | |
2198 SortLayerListContributions( | |
2199 *layer, | |
2200 GetLayerListForSorting(render_surface_layer_list), | |
2201 render_surface_layer_list_child_sorting_start_index, | |
2202 &GetNewRenderSurfacesStartIndexAndCount<LayerType>); | |
2203 | |
2204 SortLayerListContributions( | |
2205 *layer, | |
2206 &descendants, | |
2207 layer_list_child_sorting_start_index, | |
2208 &GetNewDescendantsStartIndexAndCount<LayerType>); | |
2209 } | |
2210 | |
2211 // Compute the total drawable_content_rect for this subtree (the rect is in | |
2212 // target surface space). | |
2213 gfx::Rect local_drawable_content_rect_of_subtree = | |
2214 accumulated_surface_state->back().drawable_content_rect; | |
2215 if (render_to_separate_surface) { | |
2216 DCHECK(accumulated_surface_state->back().render_target == layer); | |
2217 accumulated_surface_state->pop_back(); | |
2218 } | |
2219 | |
2220 if (render_to_separate_surface && !IsRootLayer(layer) && | |
2221 layer->render_surface()->layer_list().empty()) { | |
2222 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); | |
2223 return; | |
2224 } | |
2225 | |
2226 // Compute the layer's drawable content rect (the rect is in target surface | |
2227 // space). | |
2228 layer_draw_properties.drawable_content_rect = rect_in_target_space; | |
2229 if (layer_or_ancestor_clips_descendants) { | |
2230 layer_draw_properties.drawable_content_rect.Intersect( | |
2231 clip_rect_in_target_space); | |
2232 } | |
2233 if (layer->DrawsContent()) { | |
2234 local_drawable_content_rect_of_subtree.Union( | |
2235 layer_draw_properties.drawable_content_rect); | |
2236 } | |
2237 | |
2238 // Compute the layer's visible content rect (the rect is in content space). | |
2239 layer_draw_properties.visible_content_rect = CalculateVisibleContentRect( | |
2240 layer, clip_rect_of_target_surface_in_target_space, rect_in_target_space); | |
2241 | |
2242 // Compute the remaining properties for the render surface, if the layer has | |
2243 // one. | |
2244 if (IsRootLayer(layer)) { | |
2245 // The root layer's surface's content_rect is always the entire viewport. | |
2246 DCHECK(render_to_separate_surface); | |
2247 layer->render_surface()->SetContentRect( | |
2248 ancestor_clip_rect_in_target_space); | |
2249 } else if (render_to_separate_surface) { | |
2250 typename LayerType::RenderSurfaceType* render_surface = | |
2251 layer->render_surface(); | |
2252 gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree; | |
2253 | |
2254 // Don't clip if the layer is reflected as the reflection shouldn't be | |
2255 // clipped. If the layer is animating, then the surface's transform to | |
2256 // its target is not known on the main thread, and we should not use it | |
2257 // to clip. | |
2258 if (!layer->replica_layer() && TransformToParentIsKnown(layer)) { | |
2259 // Note, it is correct to use data_from_ancestor.ancestor_clips_subtree | |
2260 // here, because we are looking at this layer's render_surface, not the | |
2261 // layer itself. | |
2262 if (render_surface->is_clipped() && !clipped_content_rect.IsEmpty()) { | |
2263 gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect( | |
2264 render_surface->clip_rect(), | |
2265 clipped_content_rect, | |
2266 render_surface->draw_transform()); | |
2267 clipped_content_rect.Intersect(surface_clip_rect); | |
2268 } | |
2269 } | |
2270 | |
2271 // The RenderSurfaceImpl backing texture cannot exceed the maximum supported | |
2272 // texture size. | |
2273 clipped_content_rect.set_width( | |
2274 std::min(clipped_content_rect.width(), globals.max_texture_size)); | |
2275 clipped_content_rect.set_height( | |
2276 std::min(clipped_content_rect.height(), globals.max_texture_size)); | |
2277 | |
2278 if (clipped_content_rect.IsEmpty()) { | |
2279 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); | |
2280 return; | |
2281 } | |
2282 | |
2283 // Layers having a non-default blend mode will blend with the content | |
2284 // inside its parent's render target. This render target should be | |
2285 // either root_for_isolated_group, or the root of the layer tree. | |
2286 // Otherwise, this layer will use an incomplete backdrop, limited to its | |
2287 // render target and the blending result will be incorrect. | |
2288 DCHECK(layer->uses_default_blend_mode() || IsRootLayer(layer) || | |
2289 !layer->parent()->render_target() || | |
2290 IsRootLayer(layer->parent()->render_target()) || | |
2291 layer->parent()->render_target()->is_root_for_isolated_group()); | |
2292 | |
2293 render_surface->SetContentRect(clipped_content_rect); | |
2294 | |
2295 // The owning layer's screen_space_transform has a scale from content to | |
2296 // layer space which we need to undo and replace with a scale from the | |
2297 // surface's subtree into layer space. | |
2298 gfx::Transform screen_space_transform = layer->screen_space_transform(); | |
2299 screen_space_transform.Scale( | |
2300 layer->contents_scale_x() / combined_transform_scales.x(), | |
2301 layer->contents_scale_y() / combined_transform_scales.y()); | |
2302 render_surface->SetScreenSpaceTransform(screen_space_transform); | |
2303 | |
2304 if (layer->replica_layer()) { | |
2305 gfx::Transform surface_origin_to_replica_origin_transform; | |
2306 surface_origin_to_replica_origin_transform.Scale( | |
2307 combined_transform_scales.x(), combined_transform_scales.y()); | |
2308 surface_origin_to_replica_origin_transform.Translate( | |
2309 layer->replica_layer()->position().x() + | |
2310 layer->replica_layer()->transform_origin().x(), | |
2311 layer->replica_layer()->position().y() + | |
2312 layer->replica_layer()->transform_origin().y()); | |
2313 surface_origin_to_replica_origin_transform.PreconcatTransform( | |
2314 layer->replica_layer()->transform()); | |
2315 surface_origin_to_replica_origin_transform.Translate( | |
2316 -layer->replica_layer()->transform_origin().x(), | |
2317 -layer->replica_layer()->transform_origin().y()); | |
2318 surface_origin_to_replica_origin_transform.Scale( | |
2319 1.0 / combined_transform_scales.x(), | |
2320 1.0 / combined_transform_scales.y()); | |
2321 | |
2322 // Compute the replica's "originTransform" that maps from the replica's | |
2323 // origin space to the target surface origin space. | |
2324 gfx::Transform replica_origin_transform = | |
2325 layer->render_surface()->draw_transform() * | |
2326 surface_origin_to_replica_origin_transform; | |
2327 render_surface->SetReplicaDrawTransform(replica_origin_transform); | |
2328 | |
2329 // Compute the replica's "screen_space_transform" that maps from the | |
2330 // replica's origin space to the screen's origin space. | |
2331 gfx::Transform replica_screen_space_transform = | |
2332 layer->render_surface()->screen_space_transform() * | |
2333 surface_origin_to_replica_origin_transform; | |
2334 render_surface->SetReplicaScreenSpaceTransform( | |
2335 replica_screen_space_transform); | |
2336 } | |
2337 } | |
2338 | |
2339 SavePaintPropertiesLayer(layer); | |
2340 | |
2341 // If neither this layer nor any of its children were added, early out. | |
2342 if (sorting_start_index == descendants.size()) { | |
2343 DCHECK(!render_to_separate_surface || IsRootLayer(layer)); | |
2344 return; | |
2345 } | |
2346 | |
2347 UpdateAccumulatedSurfaceState<LayerType>( | |
2348 layer, local_drawable_content_rect_of_subtree, accumulated_surface_state); | |
2349 | |
2350 if (layer->HasContributingDelegatedRenderPasses()) { | |
2351 layer->render_target()->render_surface()-> | |
2352 AddContributingDelegatedRenderPassLayer(layer); | |
2353 } | |
2354 } // NOLINT(readability/fn_size) | |
2355 | |
2356 template <typename LayerType, typename RenderSurfaceLayerListType> | |
2357 static void ProcessCalcDrawPropsInputs( | |
2358 const LayerTreeHostCommon::CalcDrawPropsInputs<LayerType, | |
2359 RenderSurfaceLayerListType>& | |
2360 inputs, | |
2361 SubtreeGlobals<LayerType>* globals, | |
2362 DataForRecursion<LayerType>* data_for_recursion) { | |
2363 DCHECK(inputs.root_layer); | |
2364 DCHECK(IsRootLayer(inputs.root_layer)); | |
2365 DCHECK(inputs.render_surface_layer_list); | |
2366 | |
2367 gfx::Transform identity_matrix; | |
2368 | |
2369 // The root layer's render_surface should receive the device viewport as the | |
2370 // initial clip rect. | |
2371 gfx::Rect device_viewport_rect(inputs.device_viewport_size); | |
2372 | |
2373 gfx::Vector2dF device_transform_scale_components = | |
2374 MathUtil::ComputeTransform2dScaleComponents(inputs.device_transform, 1.f); | |
2375 // Not handling the rare case of different x and y device scale. | |
2376 float device_transform_scale = | |
2377 std::max(device_transform_scale_components.x(), | |
2378 device_transform_scale_components.y()); | |
2379 | |
2380 gfx::Transform scaled_device_transform = inputs.device_transform; | |
2381 scaled_device_transform.Scale(inputs.device_scale_factor, | |
2382 inputs.device_scale_factor); | |
2383 | |
2384 globals->max_texture_size = inputs.max_texture_size; | |
2385 globals->device_scale_factor = | |
2386 inputs.device_scale_factor * device_transform_scale; | |
2387 globals->page_scale_factor = inputs.page_scale_factor; | |
2388 globals->page_scale_application_layer = inputs.page_scale_application_layer; | |
2389 globals->elastic_overscroll = inputs.elastic_overscroll; | |
2390 globals->elastic_overscroll_application_layer = | |
2391 inputs.elastic_overscroll_application_layer; | |
2392 globals->can_render_to_separate_surface = | |
2393 inputs.can_render_to_separate_surface; | |
2394 globals->can_adjust_raster_scales = inputs.can_adjust_raster_scales; | |
2395 globals->layers_always_allowed_lcd_text = | |
2396 inputs.layers_always_allowed_lcd_text; | |
2397 | |
2398 data_for_recursion->parent_matrix = scaled_device_transform; | |
2399 data_for_recursion->full_hierarchy_matrix = identity_matrix; | |
2400 data_for_recursion->scroll_compensation_matrix = identity_matrix; | |
2401 data_for_recursion->fixed_container = inputs.root_layer; | |
2402 data_for_recursion->clip_rect_in_target_space = device_viewport_rect; | |
2403 data_for_recursion->clip_rect_of_target_surface_in_target_space = | |
2404 device_viewport_rect; | |
2405 data_for_recursion->maximum_animation_contents_scale = 0.f; | |
2406 data_for_recursion->ancestor_is_animating_scale = false; | |
2407 data_for_recursion->ancestor_clips_subtree = true; | |
2408 data_for_recursion->nearest_occlusion_immune_ancestor_surface = NULL; | |
2409 data_for_recursion->in_subtree_of_page_scale_application_layer = false; | |
2410 data_for_recursion->subtree_can_use_lcd_text = inputs.can_use_lcd_text; | |
2411 data_for_recursion->subtree_is_visible_from_ancestor = true; | |
2412 } | |
2413 | |
2414 void LayerTreeHostCommon::UpdateRenderSurface( | |
2415 Layer* layer, | |
2416 bool can_render_to_separate_surface, | |
2417 gfx::Transform* transform, | |
2418 bool* draw_transform_is_axis_aligned) { | |
2419 bool preserves_2d_axis_alignment = | |
2420 transform->Preserves2dAxisAlignment() && *draw_transform_is_axis_aligned; | |
2421 if (IsRootLayer(layer) || (can_render_to_separate_surface && | |
2422 SubtreeShouldRenderToSeparateSurface( | |
2423 layer, preserves_2d_axis_alignment))) { | |
2424 // We reset the transform here so that any axis-changing transforms | |
2425 // will now be relative to this RenderSurface. | |
2426 transform->MakeIdentity(); | |
2427 *draw_transform_is_axis_aligned = true; | |
2428 if (!layer->render_surface()) { | |
2429 layer->CreateRenderSurface(); | |
2430 } | |
2431 layer->SetHasRenderSurface(true); | |
2432 return; | |
2433 } | |
2434 layer->SetHasRenderSurface(false); | |
2435 if (layer->render_surface()) | |
2436 layer->ClearRenderSurface(); | |
2437 } | |
2438 | |
2439 void LayerTreeHostCommon::UpdateRenderSurfaces( | |
2440 Layer* layer, | |
2441 bool can_render_to_separate_surface, | |
2442 const gfx::Transform& parent_transform, | |
2443 bool draw_transform_is_axis_aligned) { | |
2444 gfx::Transform transform_for_children = layer->transform(); | |
2445 transform_for_children *= parent_transform; | |
2446 draw_transform_is_axis_aligned &= layer->AnimationsPreserveAxisAlignment(); | |
2447 UpdateRenderSurface(layer, can_render_to_separate_surface, | |
2448 &transform_for_children, &draw_transform_is_axis_aligned); | |
2449 | |
2450 for (size_t i = 0; i < layer->children().size(); ++i) { | |
2451 UpdateRenderSurfaces(layer->children()[i].get(), | |
2452 can_render_to_separate_surface, transform_for_children, | |
2453 draw_transform_is_axis_aligned); | |
2454 } | |
2455 } | |
2456 | |
2457 static bool ApproximatelyEqual(const gfx::Rect& r1, const gfx::Rect& r2) { | |
2458 static const int tolerance = 1; | |
2459 return std::abs(r1.x() - r2.x()) <= tolerance && | |
2460 std::abs(r1.y() - r2.y()) <= tolerance && | |
2461 std::abs(r1.width() - r2.width()) <= tolerance && | |
2462 std::abs(r1.height() - r2.height()) <= tolerance; | |
2463 } | |
2464 | |
2465 void LayerTreeHostCommon::CalculateDrawProperties( | |
2466 CalcDrawPropsMainInputs* inputs) { | |
2467 UpdateRenderSurfaces(inputs->root_layer, | |
2468 inputs->can_render_to_separate_surface, gfx::Transform(), | |
2469 false); | |
2470 LayerList dummy_layer_list; | |
2471 SubtreeGlobals<Layer> globals; | |
2472 DataForRecursion<Layer> data_for_recursion; | |
2473 ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion); | |
2474 | |
2475 PreCalculateMetaInformationRecursiveData recursive_data; | |
2476 | |
2477 if (!inputs->verify_property_trees) { | |
2478 PreCalculateMetaInformation(inputs->root_layer, &recursive_data); | |
2479 std::vector<AccumulatedSurfaceState<Layer>> accumulated_surface_state; | |
2480 CalculateDrawPropertiesInternal<Layer>( | |
2481 inputs->root_layer, globals, data_for_recursion, | |
2482 inputs->render_surface_layer_list, &dummy_layer_list, | |
2483 &accumulated_surface_state, | |
2484 inputs->current_render_surface_layer_list_id); | |
2485 } else { | |
2486 { | |
2487 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"), | |
2488 "LayerTreeHostCommon::CalculateDrawProperties"); | |
2489 PreCalculateMetaInformation(inputs->root_layer, &recursive_data); | |
2490 std::vector<AccumulatedSurfaceState<Layer>> accumulated_surface_state; | |
2491 CalculateDrawPropertiesInternal<Layer>( | |
2492 inputs->root_layer, globals, data_for_recursion, | |
2493 inputs->render_surface_layer_list, &dummy_layer_list, | |
2494 &accumulated_surface_state, | |
2495 inputs->current_render_surface_layer_list_id); | |
2496 } | |
2497 | |
2498 // The translation from layer to property trees is an intermediate state. We | |
2499 // will eventually get these data passed directly to the compositor. | |
2500 TransformTree transform_tree; | |
2501 ClipTree clip_tree; | |
2502 OpacityTree opacity_tree; | |
2503 { | |
2504 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"), | |
2505 "LayerTreeHostCommon::ComputeVisibleRectsWithPropertyTrees"); | |
2506 ComputeVisibleRectsUsingPropertyTrees( | |
2507 inputs->root_layer, inputs->page_scale_application_layer, | |
2508 inputs->page_scale_factor, inputs->device_scale_factor, | |
2509 gfx::Rect(inputs->device_viewport_size), inputs->device_transform, | |
2510 &transform_tree, &clip_tree, &opacity_tree); | |
2511 } | |
2512 | |
2513 LayerIterator<Layer> it, end; | |
2514 for (it = LayerIterator<Layer>::Begin(inputs->render_surface_layer_list), | |
2515 end = LayerIterator<Layer>::End(inputs->render_surface_layer_list); | |
2516 it != end; ++it) { | |
2517 Layer* current_layer = *it; | |
2518 if (!it.represents_itself() || !current_layer->DrawsContent()) | |
2519 continue; | |
2520 | |
2521 const bool visible_rects_match = | |
2522 ApproximatelyEqual(current_layer->visible_content_rect(), | |
2523 current_layer->visible_rect_from_property_trees()); | |
2524 CHECK(visible_rects_match); | |
2525 | |
2526 const bool draw_opacities_match = | |
2527 current_layer->draw_opacity() == | |
2528 current_layer->DrawOpacityFromPropertyTrees(opacity_tree); | |
2529 CHECK(draw_opacities_match); | |
2530 } | |
2531 } | |
2532 | |
2533 // The dummy layer list should not have been used. | |
2534 DCHECK_EQ(0u, dummy_layer_list.size()); | |
2535 // A root layer render_surface should always exist after | |
2536 // CalculateDrawProperties. | |
2537 DCHECK(inputs->root_layer->render_surface()); | |
2538 } | |
2539 | |
2540 void LayerTreeHostCommon::CalculateDrawProperties( | |
2541 CalcDrawPropsImplInputs* inputs) { | |
2542 LayerImplList dummy_layer_list; | |
2543 SubtreeGlobals<LayerImpl> globals; | |
2544 DataForRecursion<LayerImpl> data_for_recursion; | |
2545 ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion); | |
2546 | |
2547 PreCalculateMetaInformationRecursiveData recursive_data; | |
2548 PreCalculateMetaInformation(inputs->root_layer, &recursive_data); | |
2549 std::vector<AccumulatedSurfaceState<LayerImpl>> accumulated_surface_state; | |
2550 CalculateDrawPropertiesInternal<LayerImpl>( | |
2551 inputs->root_layer, | |
2552 globals, | |
2553 data_for_recursion, | |
2554 inputs->render_surface_layer_list, | |
2555 &dummy_layer_list, | |
2556 &accumulated_surface_state, | |
2557 inputs->current_render_surface_layer_list_id); | |
2558 | |
2559 // The dummy layer list should not have been used. | |
2560 DCHECK_EQ(0u, dummy_layer_list.size()); | |
2561 // A root layer render_surface should always exist after | |
2562 // CalculateDrawProperties. | |
2563 DCHECK(inputs->root_layer->render_surface()); | |
2564 } | |
2565 | |
2566 } // namespace cc | |
OLD | NEW |