OLD | NEW |
| (Empty) |
1 // Copyright 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/resources/picture_pile.h" | |
6 | |
7 #include <algorithm> | |
8 #include <limits> | |
9 #include <vector> | |
10 | |
11 #include "cc/base/region.h" | |
12 #include "cc/resources/picture_pile_impl.h" | |
13 #include "skia/ext/analysis_canvas.h" | |
14 | |
15 namespace { | |
16 // Layout pixel buffer around the visible layer rect to record. Any base | |
17 // picture that intersects the visible layer rect expanded by this distance | |
18 // will be recorded. | |
19 const int kPixelDistanceToRecord = 8000; | |
20 // We don't perform solid color analysis on images that have more than 10 skia | |
21 // operations. | |
22 const int kOpCountThatIsOkToAnalyze = 10; | |
23 | |
24 // Dimensions of the tiles in this picture pile as well as the dimensions of | |
25 // the base picture in each tile. | |
26 const int kBasePictureSize = 512; | |
27 | |
28 // Invalidation frequency settings. kInvalidationFrequencyThreshold is a value | |
29 // between 0 and 1 meaning invalidation frequency between 0% and 100% that | |
30 // indicates when to stop invalidating offscreen regions. | |
31 // kFrequentInvalidationDistanceThreshold defines what it means to be | |
32 // "offscreen" in terms of distance to visible in css pixels. | |
33 const float kInvalidationFrequencyThreshold = 0.75f; | |
34 const int kFrequentInvalidationDistanceThreshold = 512; | |
35 | |
36 // TODO(humper): The density threshold here is somewhat arbitrary; need a | |
37 // way to set // this from the command line so we can write a benchmark | |
38 // script and find a sweet spot. | |
39 const float kDensityThreshold = 0.5f; | |
40 | |
41 bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) { | |
42 return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x()); | |
43 } | |
44 | |
45 bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) { | |
46 return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y()); | |
47 } | |
48 | |
49 float PerformClustering(const std::vector<gfx::Rect>& tiles, | |
50 std::vector<gfx::Rect>* clustered_rects) { | |
51 // These variables track the record area and invalid area | |
52 // for the entire clustering | |
53 int total_record_area = 0; | |
54 int total_invalid_area = 0; | |
55 | |
56 // These variables track the record area and invalid area | |
57 // for the current cluster being constructed. | |
58 gfx::Rect cur_record_rect; | |
59 int cluster_record_area = 0, cluster_invalid_area = 0; | |
60 | |
61 for (std::vector<gfx::Rect>::const_iterator it = tiles.begin(); | |
62 it != tiles.end(); | |
63 it++) { | |
64 gfx::Rect invalid_tile = *it; | |
65 | |
66 // For each tile, we consider adding the invalid tile to the | |
67 // current record rectangle. Only add it if the amount of empty | |
68 // space created is below a density threshold. | |
69 int tile_area = invalid_tile.width() * invalid_tile.height(); | |
70 | |
71 gfx::Rect proposed_union = cur_record_rect; | |
72 proposed_union.Union(invalid_tile); | |
73 int proposed_area = proposed_union.width() * proposed_union.height(); | |
74 float proposed_density = | |
75 static_cast<float>(cluster_invalid_area + tile_area) / | |
76 static_cast<float>(proposed_area); | |
77 | |
78 if (proposed_density >= kDensityThreshold) { | |
79 // It's okay to add this invalid tile to the | |
80 // current recording rectangle. | |
81 cur_record_rect = proposed_union; | |
82 cluster_record_area = proposed_area; | |
83 cluster_invalid_area += tile_area; | |
84 total_invalid_area += tile_area; | |
85 } else { | |
86 // Adding this invalid tile to the current recording rectangle | |
87 // would exceed our badness threshold, so put the current rectangle | |
88 // in the list of recording rects, and start a new one. | |
89 clustered_rects->push_back(cur_record_rect); | |
90 total_record_area += cluster_record_area; | |
91 cur_record_rect = invalid_tile; | |
92 cluster_invalid_area = tile_area; | |
93 cluster_record_area = tile_area; | |
94 } | |
95 } | |
96 | |
97 DCHECK(!cur_record_rect.IsEmpty()); | |
98 clustered_rects->push_back(cur_record_rect); | |
99 total_record_area += cluster_record_area;; | |
100 | |
101 DCHECK_NE(total_record_area, 0); | |
102 | |
103 return static_cast<float>(total_invalid_area) / | |
104 static_cast<float>(total_record_area); | |
105 } | |
106 | |
107 void ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles, | |
108 std::vector<gfx::Rect>* record_rects) { | |
109 TRACE_EVENT1("cc", "ClusterTiles", | |
110 "count", | |
111 invalid_tiles.size()); | |
112 if (invalid_tiles.size() <= 1) { | |
113 // Quickly handle the special case for common | |
114 // single-invalidation update, and also the less common | |
115 // case of no tiles passed in. | |
116 *record_rects = invalid_tiles; | |
117 return; | |
118 } | |
119 | |
120 // Sort the invalid tiles by y coordinate. | |
121 std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles; | |
122 std::sort(invalid_tiles_vertical.begin(), | |
123 invalid_tiles_vertical.end(), | |
124 rect_sort_y); | |
125 | |
126 std::vector<gfx::Rect> vertical_clustering; | |
127 float vertical_density = | |
128 PerformClustering(invalid_tiles_vertical, &vertical_clustering); | |
129 | |
130 // If vertical density is optimal, then we can return early. | |
131 if (vertical_density == 1.f) { | |
132 *record_rects = vertical_clustering; | |
133 return; | |
134 } | |
135 | |
136 // Now try again with a horizontal sort, see which one is best | |
137 std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles; | |
138 std::sort(invalid_tiles_horizontal.begin(), | |
139 invalid_tiles_horizontal.end(), | |
140 rect_sort_x); | |
141 | |
142 std::vector<gfx::Rect> horizontal_clustering; | |
143 float horizontal_density = | |
144 PerformClustering(invalid_tiles_horizontal, &horizontal_clustering); | |
145 | |
146 if (vertical_density < horizontal_density) { | |
147 *record_rects = horizontal_clustering; | |
148 return; | |
149 } | |
150 | |
151 *record_rects = vertical_clustering; | |
152 } | |
153 | |
154 #ifdef NDEBUG | |
155 const bool kDefaultClearCanvasSetting = false; | |
156 #else | |
157 const bool kDefaultClearCanvasSetting = true; | |
158 #endif | |
159 | |
160 } // namespace | |
161 | |
162 namespace cc { | |
163 | |
164 PicturePile::PicturePile(float min_contents_scale, | |
165 const gfx::Size& tile_grid_size) | |
166 : min_contents_scale_(0), | |
167 slow_down_raster_scale_factor_for_debug_(0), | |
168 gather_pixel_refs_(false), | |
169 has_any_recordings_(false), | |
170 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting), | |
171 requires_clear_(true), | |
172 is_solid_color_(false), | |
173 solid_color_(SK_ColorTRANSPARENT), | |
174 background_color_(SK_ColorTRANSPARENT), | |
175 pixel_record_distance_(kPixelDistanceToRecord), | |
176 is_suitable_for_gpu_rasterization_(true) { | |
177 tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize)); | |
178 SetMinContentsScale(min_contents_scale); | |
179 SetTileGridSize(tile_grid_size); | |
180 } | |
181 | |
182 PicturePile::~PicturePile() { | |
183 } | |
184 | |
185 bool PicturePile::UpdateAndExpandInvalidation( | |
186 ContentLayerClient* painter, | |
187 Region* invalidation, | |
188 const gfx::Size& layer_size, | |
189 const gfx::Rect& visible_layer_rect, | |
190 int frame_number, | |
191 RecordingSource::RecordingMode recording_mode) { | |
192 gfx::Rect interest_rect = visible_layer_rect; | |
193 interest_rect.Inset(-pixel_record_distance_, -pixel_record_distance_); | |
194 recorded_viewport_ = interest_rect; | |
195 recorded_viewport_.Intersect(gfx::Rect(layer_size)); | |
196 | |
197 bool updated = ApplyInvalidationAndResize(interest_rect, invalidation, | |
198 layer_size, frame_number); | |
199 std::vector<gfx::Rect> invalid_tiles; | |
200 GetInvalidTileRects(interest_rect, invalidation, visible_layer_rect, | |
201 frame_number, &invalid_tiles); | |
202 std::vector<gfx::Rect> record_rects; | |
203 ClusterTiles(invalid_tiles, &record_rects); | |
204 | |
205 if (record_rects.empty()) | |
206 return updated; | |
207 | |
208 CreatePictures(painter, recording_mode, record_rects); | |
209 | |
210 DetermineIfSolidColor(); | |
211 | |
212 has_any_recordings_ = true; | |
213 DCHECK(CanRasterSlowTileCheck(recorded_viewport_)); | |
214 return true; | |
215 } | |
216 | |
217 void PicturePile::DidMoveToNewCompositor() { | |
218 for (auto& map_pair : picture_map_) | |
219 map_pair.second.ResetInvalidationHistory(); | |
220 } | |
221 | |
222 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect& interest_rect, | |
223 Region* invalidation, | |
224 const gfx::Size& layer_size, | |
225 int frame_number) { | |
226 bool updated = false; | |
227 | |
228 Region synthetic_invalidation; | |
229 gfx::Size old_tiling_size = GetSize(); | |
230 if (old_tiling_size != layer_size) { | |
231 tiling_.SetTilingSize(layer_size); | |
232 updated = true; | |
233 } | |
234 | |
235 gfx::Rect interest_rect_over_tiles = | |
236 tiling_.ExpandRectToTileBounds(interest_rect); | |
237 | |
238 if (old_tiling_size != layer_size) { | |
239 gfx::Size min_tiling_size( | |
240 std::min(GetSize().width(), old_tiling_size.width()), | |
241 std::min(GetSize().height(), old_tiling_size.height())); | |
242 gfx::Size max_tiling_size( | |
243 std::max(GetSize().width(), old_tiling_size.width()), | |
244 std::max(GetSize().height(), old_tiling_size.height())); | |
245 | |
246 has_any_recordings_ = false; | |
247 | |
248 // Drop recordings that are outside the new or old layer bounds or that | |
249 // changed size. Newly exposed areas are considered invalidated. | |
250 // Previously exposed areas that are now outside of bounds also need to | |
251 // be invalidated, as they may become part of raster when scale < 1. | |
252 std::vector<PictureMapKey> to_erase; | |
253 int min_toss_x = tiling_.num_tiles_x(); | |
254 if (max_tiling_size.width() > min_tiling_size.width()) { | |
255 min_toss_x = | |
256 tiling_.FirstBorderTileXIndexFromSrcCoord(min_tiling_size.width()); | |
257 } | |
258 int min_toss_y = tiling_.num_tiles_y(); | |
259 if (max_tiling_size.height() > min_tiling_size.height()) { | |
260 min_toss_y = | |
261 tiling_.FirstBorderTileYIndexFromSrcCoord(min_tiling_size.height()); | |
262 } | |
263 for (const auto& key_picture_pair : picture_map_) { | |
264 const PictureMapKey& key = key_picture_pair.first; | |
265 if (key.first < min_toss_x && key.second < min_toss_y) { | |
266 has_any_recordings_ |= !!key_picture_pair.second.GetPicture(); | |
267 continue; | |
268 } | |
269 to_erase.push_back(key); | |
270 } | |
271 | |
272 for (size_t i = 0; i < to_erase.size(); ++i) | |
273 picture_map_.erase(to_erase[i]); | |
274 | |
275 // If a recording is dropped and not re-recorded below, invalidate that | |
276 // full recording to cause any raster tiles that would use it to be | |
277 // dropped. | |
278 // If the recording will be replaced below, invalidate newly exposed | |
279 // areas and previously exposed areas to force raster tiles that include the | |
280 // old recording to know there is new recording to display. | |
281 gfx::Rect min_tiling_rect_over_tiles = | |
282 tiling_.ExpandRectToTileBounds(gfx::Rect(min_tiling_size)); | |
283 if (min_toss_x < tiling_.num_tiles_x()) { | |
284 // The bounds which we want to invalidate are the tiles along the old | |
285 // edge of the pile when expanding, or the new edge of the pile when | |
286 // shrinking. In either case, it's the difference of the two, so we'll | |
287 // call this bounding box the DELTA EDGE RECT. | |
288 // | |
289 // In the picture below, the delta edge rect would be the bounding box of | |
290 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of | |
291 // the same tiles. | |
292 // | |
293 // min pile edge-v max pile edge-v | |
294 // ---------------+ - - - - - - - -+ | |
295 // mmppssvvyybbeeh|h . | |
296 // mmppssvvyybbeeh|h . | |
297 // nnqqttwwzzccffi|i . | |
298 // nnqqttwwzzccffi|i . | |
299 // oorruuxxaaddggj|j . | |
300 // oorruuxxaaddggj|j . | |
301 // ---------------+ - - - - - - - -+ <- min pile edge | |
302 // . | |
303 // - - - - - - - - - - - - - - - -+ <- max pile edge | |
304 // | |
305 // If you were to slide a vertical beam from the left edge of the | |
306 // delta edge rect toward the right, it would either hit the right edge | |
307 // of the delta edge rect, or the interest rect (expanded to the bounds | |
308 // of the tiles it touches). The same is true for a beam parallel to | |
309 // any of the four edges, sliding across the delta edge rect. We use | |
310 // the union of these four rectangles generated by these beams to | |
311 // determine which part of the delta edge rect is outside of the expanded | |
312 // interest rect. | |
313 // | |
314 // Case 1: Intersect rect is outside the delta edge rect. It can be | |
315 // either on the left or the right. The |left_rect| and |right_rect|, | |
316 // cover this case, one will be empty and one will cover the full | |
317 // delta edge rect. In the picture below, |left_rect| would cover the | |
318 // delta edge rect, and |right_rect| would be empty. | |
319 // +----------------------+ |^^^^^^^^^^^^^^^| | |
320 // |===> DELTA EDGE RECT | | | | |
321 // |===> | | INTEREST RECT | | |
322 // |===> | | | | |
323 // |===> | | | | |
324 // +----------------------+ |vvvvvvvvvvvvvvv| | |
325 // | |
326 // Case 2: Interest rect is inside the delta edge rect. It will always | |
327 // fill the entire delta edge rect horizontally since the old edge rect | |
328 // is a single tile wide, and the interest rect has been expanded to the | |
329 // bounds of the tiles it touches. In this case the |left_rect| and | |
330 // |right_rect| will be empty, but the case is handled by the |top_rect| | |
331 // and |bottom_rect|. In the picture below, neither the |top_rect| nor | |
332 // |bottom_rect| would empty, they would each cover the area of the old | |
333 // edge rect outside the expanded interest rect. | |
334 // +-----------------+ | |
335 // |:::::::::::::::::| | |
336 // |:::::::::::::::::| | |
337 // |vvvvvvvvvvvvvvvvv| | |
338 // | | | |
339 // +-----------------+ | |
340 // | INTEREST RECT | | |
341 // | | | |
342 // +-----------------+ | |
343 // | | | |
344 // | DELTA EDGE RECT | | |
345 // +-----------------+ | |
346 // | |
347 // Lastly, we need to consider tiles inside the expanded interest rect. | |
348 // For those tiles, we want to invalidate exactly the newly exposed | |
349 // pixels. In the picture below the tiles in the delta edge rect have | |
350 // been resized and the area covered by periods must be invalidated. The | |
351 // |exposed_rect| will cover exactly that area. | |
352 // v-min pile edge | |
353 // +---------+-------+ | |
354 // | ........| | |
355 // | ........| | |
356 // | DELTA EDGE.RECT.| | |
357 // | ........| | |
358 // | ........| | |
359 // | ........| | |
360 // | ........| | |
361 // | ........| | |
362 // | ........| | |
363 // +---------+-------+ | |
364 | |
365 int left = tiling_.TilePositionX(min_toss_x); | |
366 int right = left + tiling_.TileSizeX(min_toss_x); | |
367 int top = min_tiling_rect_over_tiles.y(); | |
368 int bottom = min_tiling_rect_over_tiles.bottom(); | |
369 | |
370 int left_until = std::min(interest_rect_over_tiles.x(), right); | |
371 int right_until = std::max(interest_rect_over_tiles.right(), left); | |
372 int top_until = std::min(interest_rect_over_tiles.y(), bottom); | |
373 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top); | |
374 | |
375 int exposed_left = min_tiling_size.width(); | |
376 int exposed_left_until = max_tiling_size.width(); | |
377 int exposed_top = top; | |
378 int exposed_bottom = max_tiling_size.height(); | |
379 DCHECK_GE(exposed_left, left); | |
380 | |
381 gfx::Rect left_rect(left, top, left_until - left, bottom - top); | |
382 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top); | |
383 gfx::Rect top_rect(left, top, right - left, top_until - top); | |
384 gfx::Rect bottom_rect( | |
385 left, bottom_until, right - left, bottom - bottom_until); | |
386 gfx::Rect exposed_rect(exposed_left, | |
387 exposed_top, | |
388 exposed_left_until - exposed_left, | |
389 exposed_bottom - exposed_top); | |
390 synthetic_invalidation.Union(left_rect); | |
391 synthetic_invalidation.Union(right_rect); | |
392 synthetic_invalidation.Union(top_rect); | |
393 synthetic_invalidation.Union(bottom_rect); | |
394 synthetic_invalidation.Union(exposed_rect); | |
395 } | |
396 if (min_toss_y < tiling_.num_tiles_y()) { | |
397 // The same thing occurs here as in the case above, but the invalidation | |
398 // rect is the bounding box around the bottom row of tiles in the min | |
399 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture. | |
400 | |
401 int top = tiling_.TilePositionY(min_toss_y); | |
402 int bottom = top + tiling_.TileSizeY(min_toss_y); | |
403 int left = min_tiling_rect_over_tiles.x(); | |
404 int right = min_tiling_rect_over_tiles.right(); | |
405 | |
406 int top_until = std::min(interest_rect_over_tiles.y(), bottom); | |
407 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top); | |
408 int left_until = std::min(interest_rect_over_tiles.x(), right); | |
409 int right_until = std::max(interest_rect_over_tiles.right(), left); | |
410 | |
411 int exposed_top = min_tiling_size.height(); | |
412 int exposed_top_until = max_tiling_size.height(); | |
413 int exposed_left = left; | |
414 int exposed_right = max_tiling_size.width(); | |
415 DCHECK_GE(exposed_top, top); | |
416 | |
417 gfx::Rect left_rect(left, top, left_until - left, bottom - top); | |
418 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top); | |
419 gfx::Rect top_rect(left, top, right - left, top_until - top); | |
420 gfx::Rect bottom_rect( | |
421 left, bottom_until, right - left, bottom - bottom_until); | |
422 gfx::Rect exposed_rect(exposed_left, | |
423 exposed_top, | |
424 exposed_right - exposed_left, | |
425 exposed_top_until - exposed_top); | |
426 synthetic_invalidation.Union(left_rect); | |
427 synthetic_invalidation.Union(right_rect); | |
428 synthetic_invalidation.Union(top_rect); | |
429 synthetic_invalidation.Union(bottom_rect); | |
430 synthetic_invalidation.Union(exposed_rect); | |
431 } | |
432 } | |
433 | |
434 // Detect cases where the full pile is invalidated, in this situation we | |
435 // can just drop/invalidate everything. | |
436 if (invalidation->Contains(gfx::Rect(old_tiling_size)) || | |
437 invalidation->Contains(gfx::Rect(GetSize()))) { | |
438 for (auto& it : picture_map_) | |
439 updated = it.second.Invalidate(frame_number) || updated; | |
440 } else { | |
441 // Expand invalidation that is on tiles that aren't in the interest rect and | |
442 // will not be re-recorded below. These tiles are no longer valid and should | |
443 // be considerered fully invalid, so we can know to not keep around raster | |
444 // tiles that intersect with these recording tiles. | |
445 Region invalidation_expanded_to_full_tiles; | |
446 | |
447 for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) { | |
448 gfx::Rect invalid_rect = i.rect(); | |
449 | |
450 // This rect covers the bounds (excluding borders) of all tiles whose | |
451 // bounds (including borders) touch the |interest_rect|. This matches | |
452 // the iteration of the |invalid_rect| below which includes borders when | |
453 // calling Invalidate() on pictures. | |
454 gfx::Rect invalid_rect_outside_interest_rect_tiles = | |
455 tiling_.ExpandRectToTileBounds(invalid_rect); | |
456 // We subtract the |interest_rect_over_tiles| which represents the bounds | |
457 // of tiles that will be re-recorded below. This matches the iteration of | |
458 // |interest_rect| below which includes borders. | |
459 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator | |
460 // instead of using Rect::Subtract which gives you the bounding box of the | |
461 // subtraction. | |
462 invalid_rect_outside_interest_rect_tiles.Subtract( | |
463 interest_rect_over_tiles); | |
464 invalidation_expanded_to_full_tiles.Union( | |
465 invalid_rect_outside_interest_rect_tiles); | |
466 | |
467 // Split this inflated invalidation across tile boundaries and apply it | |
468 // to all tiles that it touches. | |
469 bool include_borders = true; | |
470 for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders); | |
471 iter; | |
472 ++iter) { | |
473 const PictureMapKey& key = iter.index(); | |
474 | |
475 PictureMap::iterator picture_it = picture_map_.find(key); | |
476 if (picture_it == picture_map_.end()) | |
477 continue; | |
478 | |
479 // Inform the grid cell that it has been invalidated in this frame. | |
480 updated = picture_it->second.Invalidate(frame_number) || updated; | |
481 // Invalidate drops the picture so the whole tile better be invalidated | |
482 // if it won't be re-recorded below. | |
483 DCHECK_IMPLIES(!tiling_.TileBounds(key.first, key.second) | |
484 .Intersects(interest_rect_over_tiles), | |
485 invalidation_expanded_to_full_tiles.Contains( | |
486 tiling_.TileBounds(key.first, key.second))); | |
487 } | |
488 } | |
489 invalidation->Union(invalidation_expanded_to_full_tiles); | |
490 } | |
491 | |
492 invalidation->Union(synthetic_invalidation); | |
493 return updated; | |
494 } | |
495 | |
496 void PicturePile::GetInvalidTileRects(const gfx::Rect& interest_rect, | |
497 Region* invalidation, | |
498 const gfx::Rect& visible_layer_rect, | |
499 int frame_number, | |
500 std::vector<gfx::Rect>* invalid_tiles) { | |
501 // Make a list of all invalid tiles; we will attempt to | |
502 // cluster these into multiple invalidation regions. | |
503 bool include_borders = true; | |
504 for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it; | |
505 ++it) { | |
506 const PictureMapKey& key = it.index(); | |
507 PictureInfo& info = picture_map_[key]; | |
508 | |
509 gfx::Rect rect = PaddedRect(key); | |
510 int distance_to_visible = | |
511 rect.ManhattanInternalDistance(visible_layer_rect); | |
512 | |
513 if (info.NeedsRecording(frame_number, distance_to_visible)) { | |
514 gfx::Rect tile = tiling_.TileBounds(key.first, key.second); | |
515 invalid_tiles->push_back(tile); | |
516 } else if (!info.GetPicture()) { | |
517 if (recorded_viewport_.Intersects(rect)) { | |
518 // Recorded viewport is just an optimization for a fully recorded | |
519 // interest rect. In this case, a tile in that rect has declined | |
520 // to be recorded (probably due to frequent invalidations). | |
521 // TODO(enne): Shrink the recorded_viewport_ rather than clearing. | |
522 recorded_viewport_ = gfx::Rect(); | |
523 } | |
524 | |
525 // If a tile in the interest rect is not recorded, the entire tile needs | |
526 // to be considered invalid, so that we know not to keep around raster | |
527 // tiles that intersect this recording tile. | |
528 invalidation->Union(tiling_.TileBounds(it.index_x(), it.index_y())); | |
529 } | |
530 } | |
531 } | |
532 | |
533 void PicturePile::CreatePictures(ContentLayerClient* painter, | |
534 RecordingSource::RecordingMode recording_mode, | |
535 const std::vector<gfx::Rect>& record_rects) { | |
536 for (const auto& record_rect : record_rects) { | |
537 gfx::Rect padded_record_rect = PadRect(record_rect); | |
538 | |
539 int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_); | |
540 scoped_refptr<Picture> picture; | |
541 | |
542 for (int i = 0; i < repeat_count; i++) { | |
543 picture = Picture::Create(padded_record_rect, painter, tile_grid_size_, | |
544 gather_pixel_refs_, recording_mode); | |
545 // Note the '&&' with previous is-suitable state. | |
546 // This means that once a picture-pile becomes unsuitable for gpu | |
547 // rasterization due to some content, it will continue to be unsuitable | |
548 // even if that content is replaced by gpu-friendly content. | |
549 // This is an optimization to avoid iterating though all pictures in | |
550 // the pile after each invalidation. | |
551 if (is_suitable_for_gpu_rasterization_) { | |
552 const char* reason = nullptr; | |
553 is_suitable_for_gpu_rasterization_ &= | |
554 picture->IsSuitableForGpuRasterization(&reason); | |
555 | |
556 if (!is_suitable_for_gpu_rasterization_) { | |
557 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto", | |
558 TRACE_EVENT_SCOPE_THREAD, "reason", reason); | |
559 } | |
560 } | |
561 } | |
562 | |
563 bool found_tile_for_recorded_picture = false; | |
564 | |
565 bool include_borders = true; | |
566 for (TilingData::Iterator it(&tiling_, padded_record_rect, include_borders); | |
567 it; ++it) { | |
568 const PictureMapKey& key = it.index(); | |
569 gfx::Rect tile = PaddedRect(key); | |
570 if (padded_record_rect.Contains(tile)) { | |
571 PictureInfo& info = picture_map_[key]; | |
572 info.SetPicture(picture); | |
573 found_tile_for_recorded_picture = true; | |
574 } | |
575 } | |
576 DCHECK(found_tile_for_recorded_picture); | |
577 } | |
578 } | |
579 | |
580 scoped_refptr<RasterSource> PicturePile::CreateRasterSource( | |
581 bool can_use_lcd_text) const { | |
582 return scoped_refptr<RasterSource>( | |
583 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text)); | |
584 } | |
585 | |
586 gfx::Size PicturePile::GetSize() const { | |
587 return tiling_.tiling_size(); | |
588 } | |
589 | |
590 void PicturePile::SetEmptyBounds() { | |
591 tiling_.SetTilingSize(gfx::Size()); | |
592 Clear(); | |
593 } | |
594 | |
595 void PicturePile::SetMinContentsScale(float min_contents_scale) { | |
596 DCHECK(min_contents_scale); | |
597 if (min_contents_scale_ == min_contents_scale) | |
598 return; | |
599 | |
600 // Picture contents are played back scaled. When the final contents scale is | |
601 // less than 1 (i.e. low res), then multiple recorded pixels will be used | |
602 // to raster one final pixel. To avoid splitting a final pixel across | |
603 // pictures (which would result in incorrect rasterization due to blending), a | |
604 // buffer margin is added so that any picture can be snapped to integral | |
605 // final pixels. | |
606 // | |
607 // For example, if a 1/4 contents scale is used, then that would be 3 buffer | |
608 // pixels, since that's the minimum number of pixels to add so that resulting | |
609 // content can be snapped to a four pixel aligned grid. | |
610 int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1); | |
611 buffer_pixels = std::max(0, buffer_pixels); | |
612 SetBufferPixels(buffer_pixels); | |
613 min_contents_scale_ = min_contents_scale; | |
614 } | |
615 | |
616 void PicturePile::SetSlowdownRasterScaleFactor(int factor) { | |
617 slow_down_raster_scale_factor_for_debug_ = factor; | |
618 } | |
619 | |
620 void PicturePile::SetGatherPixelRefs(bool gather_pixel_refs) { | |
621 gather_pixel_refs_ = gather_pixel_refs; | |
622 } | |
623 | |
624 void PicturePile::SetBackgroundColor(SkColor background_color) { | |
625 background_color_ = background_color; | |
626 } | |
627 | |
628 void PicturePile::SetRequiresClear(bool requires_clear) { | |
629 requires_clear_ = requires_clear; | |
630 } | |
631 | |
632 bool PicturePile::IsSuitableForGpuRasterization() const { | |
633 return is_suitable_for_gpu_rasterization_; | |
634 } | |
635 | |
636 void PicturePile::SetTileGridSize(const gfx::Size& tile_grid_size) { | |
637 DCHECK_GT(tile_grid_size.width(), 0); | |
638 DCHECK_GT(tile_grid_size.height(), 0); | |
639 | |
640 tile_grid_size_ = tile_grid_size; | |
641 } | |
642 | |
643 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() { | |
644 is_suitable_for_gpu_rasterization_ = false; | |
645 } | |
646 | |
647 gfx::Size PicturePile::GetTileGridSizeForTesting() const { | |
648 return tile_grid_size_; | |
649 } | |
650 | |
651 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect& layer_rect) const { | |
652 bool include_borders = false; | |
653 for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders); | |
654 tile_iter; ++tile_iter) { | |
655 PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index()); | |
656 if (map_iter == picture_map_.end()) | |
657 return false; | |
658 if (!map_iter->second.GetPicture()) | |
659 return false; | |
660 } | |
661 return true; | |
662 } | |
663 | |
664 void PicturePile::DetermineIfSolidColor() { | |
665 is_solid_color_ = false; | |
666 solid_color_ = SK_ColorTRANSPARENT; | |
667 | |
668 if (picture_map_.empty()) { | |
669 return; | |
670 } | |
671 | |
672 PictureMap::const_iterator it = picture_map_.begin(); | |
673 const Picture* picture = it->second.GetPicture(); | |
674 | |
675 // Missing recordings due to frequent invalidations or being too far away | |
676 // from the interest rect will cause the a null picture to exist. | |
677 if (!picture) | |
678 return; | |
679 | |
680 // Don't bother doing more work if the first image is too complicated. | |
681 if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze) | |
682 return; | |
683 | |
684 // Make sure all of the mapped images point to the same picture. | |
685 for (++it; it != picture_map_.end(); ++it) { | |
686 if (it->second.GetPicture() != picture) | |
687 return; | |
688 } | |
689 | |
690 gfx::Size layer_size = GetSize(); | |
691 skia::AnalysisCanvas canvas(layer_size.width(), layer_size.height()); | |
692 | |
693 picture->Raster(&canvas, nullptr, Region(), 1.0f); | |
694 is_solid_color_ = canvas.GetColorIfSolid(&solid_color_); | |
695 } | |
696 | |
697 gfx::Rect PicturePile::PaddedRect(const PictureMapKey& key) const { | |
698 gfx::Rect tile = tiling_.TileBounds(key.first, key.second); | |
699 return PadRect(tile); | |
700 } | |
701 | |
702 gfx::Rect PicturePile::PadRect(const gfx::Rect& rect) const { | |
703 gfx::Rect padded_rect = rect; | |
704 padded_rect.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(), | |
705 -buffer_pixels()); | |
706 return padded_rect; | |
707 } | |
708 | |
709 void PicturePile::Clear() { | |
710 picture_map_.clear(); | |
711 recorded_viewport_ = gfx::Rect(); | |
712 has_any_recordings_ = false; | |
713 is_solid_color_ = false; | |
714 } | |
715 | |
716 PicturePile::PictureInfo::PictureInfo() : last_frame_number_(0) { | |
717 } | |
718 | |
719 PicturePile::PictureInfo::~PictureInfo() { | |
720 } | |
721 | |
722 void PicturePile::PictureInfo::AdvanceInvalidationHistory(int frame_number) { | |
723 DCHECK_GE(frame_number, last_frame_number_); | |
724 if (frame_number == last_frame_number_) | |
725 return; | |
726 | |
727 invalidation_history_ <<= (frame_number - last_frame_number_); | |
728 last_frame_number_ = frame_number; | |
729 } | |
730 | |
731 bool PicturePile::PictureInfo::Invalidate(int frame_number) { | |
732 AdvanceInvalidationHistory(frame_number); | |
733 invalidation_history_.set(0); | |
734 | |
735 bool did_invalidate = !!picture_.get(); | |
736 picture_ = NULL; | |
737 return did_invalidate; | |
738 } | |
739 | |
740 bool PicturePile::PictureInfo::NeedsRecording(int frame_number, | |
741 int distance_to_visible) { | |
742 AdvanceInvalidationHistory(frame_number); | |
743 | |
744 // We only need recording if we don't have a picture. Furthermore, we only | |
745 // need a recording if we're within frequent invalidation distance threshold | |
746 // or the invalidation is not frequent enough (below invalidation frequency | |
747 // threshold). | |
748 return !picture_.get() && | |
749 ((distance_to_visible <= kFrequentInvalidationDistanceThreshold) || | |
750 (GetInvalidationFrequency() < kInvalidationFrequencyThreshold)); | |
751 } | |
752 | |
753 void PicturePile::PictureInfo::ResetInvalidationHistory() { | |
754 invalidation_history_.reset(); | |
755 last_frame_number_ = 0; | |
756 } | |
757 | |
758 void PicturePile::SetBufferPixels(int new_buffer_pixels) { | |
759 if (new_buffer_pixels == buffer_pixels()) | |
760 return; | |
761 | |
762 Clear(); | |
763 tiling_.SetBorderTexels(new_buffer_pixels); | |
764 } | |
765 | |
766 void PicturePile::PictureInfo::SetPicture(scoped_refptr<Picture> picture) { | |
767 picture_ = picture; | |
768 } | |
769 | |
770 const Picture* PicturePile::PictureInfo::GetPicture() const { | |
771 return picture_.get(); | |
772 } | |
773 | |
774 float PicturePile::PictureInfo::GetInvalidationFrequency() const { | |
775 return invalidation_history_.count() / | |
776 static_cast<float>(INVALIDATION_FRAMES_TRACKED); | |
777 } | |
778 | |
779 } // namespace cc | |
OLD | NEW |