OLD | NEW |
1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2014 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_ | 5 #ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
6 #define V8_COMPILER_CONTROL_EQUIVALENCE_H_ | 6 #define V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
7 | 7 |
8 #include "src/compiler/graph.h" | 8 #include "src/compiler/graph.h" |
9 #include "src/compiler/node.h" | 9 #include "src/compiler/node.h" |
10 #include "src/compiler/node-properties.h" | |
11 #include "src/zone-containers.h" | 10 #include "src/zone-containers.h" |
12 | 11 |
13 namespace v8 { | 12 namespace v8 { |
14 namespace internal { | 13 namespace internal { |
15 namespace compiler { | 14 namespace compiler { |
16 | 15 |
17 #define TRACE(...) \ | |
18 do { \ | |
19 if (FLAG_trace_turbo_scheduler) PrintF(__VA_ARGS__); \ | |
20 } while (false) | |
21 | |
22 // Determines control dependence equivalence classes for control nodes. Any two | 16 // Determines control dependence equivalence classes for control nodes. Any two |
23 // nodes having the same set of control dependences land in one class. These | 17 // nodes having the same set of control dependences land in one class. These |
24 // classes can in turn be used to: | 18 // classes can in turn be used to: |
25 // - Build a program structure tree (PST) for controls in the graph. | 19 // - Build a program structure tree (PST) for controls in the graph. |
26 // - Determine single-entry single-exit (SESE) regions within the graph. | 20 // - Determine single-entry single-exit (SESE) regions within the graph. |
27 // | 21 // |
28 // Note that this implementation actually uses cycle equivalence to establish | 22 // Note that this implementation actually uses cycle equivalence to establish |
29 // class numbers. Any two nodes are cycle equivalent if they occur in the same | 23 // class numbers. Any two nodes are cycle equivalent if they occur in the same |
30 // set of cycles. It can be shown that control dependence equivalence reduces | 24 // set of cycles. It can be shown that control dependence equivalence reduces |
31 // to undirected cycle equivalence for strongly connected control flow graphs. | 25 // to undirected cycle equivalence for strongly connected control flow graphs. |
32 // | 26 // |
33 // The algorithm is based on the paper, "The program structure tree: computing | 27 // The algorithm is based on the paper, "The program structure tree: computing |
34 // control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which | 28 // control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which |
35 // also contains proofs for the aforementioned equivalence. References to line | 29 // also contains proofs for the aforementioned equivalence. References to line |
36 // numbers in the algorithm from figure 4 have been added [line:x]. | 30 // numbers in the algorithm from figure 4 have been added [line:x]. |
37 class ControlEquivalence : public ZoneObject { | 31 class ControlEquivalence FINAL : public ZoneObject { |
38 public: | 32 public: |
39 ControlEquivalence(Zone* zone, Graph* graph) | 33 ControlEquivalence(Zone* zone, Graph* graph) |
40 : zone_(zone), | 34 : zone_(zone), |
41 graph_(graph), | 35 graph_(graph), |
42 dfs_number_(0), | 36 dfs_number_(0), |
43 class_number_(1), | 37 class_number_(1), |
44 node_data_(graph->NodeCount(), EmptyData(), zone) {} | 38 node_data_(graph->NodeCount(), EmptyData(), zone) {} |
45 | 39 |
46 // Run the main algorithm starting from the {exit} control node. This causes | 40 // Run the main algorithm starting from the {exit} control node. This causes |
47 // the following iterations over control edges of the graph: | 41 // the following iterations over control edges of the graph: |
48 // 1) A breadth-first backwards traversal to determine the set of nodes that | 42 // 1) A breadth-first backwards traversal to determine the set of nodes that |
49 // participate in the next step. Takes O(E) time and O(N) space. | 43 // participate in the next step. Takes O(E) time and O(N) space. |
50 // 2) An undirected depth-first backwards traversal that determines class | 44 // 2) An undirected depth-first backwards traversal that determines class |
51 // numbers for all participating nodes. Takes O(E) time and O(N) space. | 45 // numbers for all participating nodes. Takes O(E) time and O(N) space. |
52 void Run(Node* exit) { | 46 void Run(Node* exit); |
53 if (GetClass(exit) != kInvalidClass) return; | |
54 DetermineParticipation(exit); | |
55 RunUndirectedDFS(exit); | |
56 } | |
57 | 47 |
58 // Retrieves a previously computed class number. | 48 // Retrieves a previously computed class number. |
59 size_t ClassOf(Node* node) { | 49 size_t ClassOf(Node* node) { |
60 DCHECK(GetClass(node) != kInvalidClass); | 50 DCHECK_NE(kInvalidClass, GetClass(node)); |
61 return GetClass(node); | 51 return GetClass(node); |
62 } | 52 } |
63 | 53 |
64 private: | 54 private: |
65 static const size_t kInvalidClass = static_cast<size_t>(-1); | 55 static const size_t kInvalidClass = static_cast<size_t>(-1); |
66 typedef enum { kInputDirection, kUseDirection } DFSDirection; | 56 typedef enum { kInputDirection, kUseDirection } DFSDirection; |
67 | 57 |
68 struct Bracket { | 58 struct Bracket { |
69 DFSDirection direction; // Direction in which this bracket was added. | 59 DFSDirection direction; // Direction in which this bracket was added. |
70 size_t recent_class; // Cached class when bracket was topmost. | 60 size_t recent_class; // Cached class when bracket was topmost. |
(...skipping 22 matching lines...) Expand all Loading... |
93 bool visited; // Indicates node has already been visited. | 83 bool visited; // Indicates node has already been visited. |
94 bool on_stack; // Indicates node is on DFS stack during walk. | 84 bool on_stack; // Indicates node is on DFS stack during walk. |
95 bool participates; // Indicates node participates in DFS walk. | 85 bool participates; // Indicates node participates in DFS walk. |
96 BracketList blist; // List of brackets per node. | 86 BracketList blist; // List of brackets per node. |
97 }; | 87 }; |
98 | 88 |
99 // The per-node data computed during the DFS walk. | 89 // The per-node data computed during the DFS walk. |
100 typedef ZoneVector<NodeData> Data; | 90 typedef ZoneVector<NodeData> Data; |
101 | 91 |
102 // Called at pre-visit during DFS walk. | 92 // Called at pre-visit during DFS walk. |
103 void VisitPre(Node* node) { | 93 void VisitPre(Node* node); |
104 TRACE("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); | |
105 | |
106 // Dispense a new pre-order number. | |
107 SetNumber(node, NewDFSNumber()); | |
108 TRACE(" Assigned DFS number is %zu\n", GetNumber(node)); | |
109 } | |
110 | 94 |
111 // Called at mid-visit during DFS walk. | 95 // Called at mid-visit during DFS walk. |
112 void VisitMid(Node* node, DFSDirection direction) { | 96 void VisitMid(Node* node, DFSDirection direction); |
113 TRACE("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); | |
114 BracketList& blist = GetBracketList(node); | |
115 | |
116 // Remove brackets pointing to this node [line:19]. | |
117 BracketListDelete(blist, node, direction); | |
118 | |
119 // Potentially introduce artificial dependency from start to end. | |
120 if (blist.empty()) { | |
121 DCHECK_EQ(kInputDirection, direction); | |
122 VisitBackedge(node, graph_->end(), kInputDirection); | |
123 } | |
124 | |
125 // Potentially start a new equivalence class [line:37]. | |
126 BracketListTRACE(blist); | |
127 Bracket* recent = &blist.back(); | |
128 if (recent->recent_size != blist.size()) { | |
129 recent->recent_size = blist.size(); | |
130 recent->recent_class = NewClassNumber(); | |
131 } | |
132 | |
133 // Assign equivalence class to node. | |
134 SetClass(node, recent->recent_class); | |
135 TRACE(" Assigned class number is %zu\n", GetClass(node)); | |
136 } | |
137 | 97 |
138 // Called at post-visit during DFS walk. | 98 // Called at post-visit during DFS walk. |
139 void VisitPost(Node* node, Node* parent_node, DFSDirection direction) { | 99 void VisitPost(Node* node, Node* parent_node, DFSDirection direction); |
140 TRACE("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); | |
141 BracketList& blist = GetBracketList(node); | |
142 | |
143 // Remove brackets pointing to this node [line:19]. | |
144 BracketListDelete(blist, node, direction); | |
145 | |
146 // Propagate bracket list up the DFS tree [line:13]. | |
147 if (parent_node != NULL) { | |
148 BracketList& parent_blist = GetBracketList(parent_node); | |
149 parent_blist.splice(parent_blist.end(), blist); | |
150 } | |
151 } | |
152 | 100 |
153 // Called when hitting a back edge in the DFS walk. | 101 // Called when hitting a back edge in the DFS walk. |
154 void VisitBackedge(Node* from, Node* to, DFSDirection direction) { | 102 void VisitBackedge(Node* from, Node* to, DFSDirection direction); |
155 TRACE("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(), | |
156 from->op()->mnemonic(), to->id(), to->op()->mnemonic()); | |
157 | |
158 // Push backedge onto the bracket list [line:25]. | |
159 Bracket bracket = {direction, kInvalidClass, 0, from, to}; | |
160 GetBracketList(from).push_back(bracket); | |
161 } | |
162 | 103 |
163 // Performs and undirected DFS walk of the graph. Conceptually all nodes are | 104 // Performs and undirected DFS walk of the graph. Conceptually all nodes are |
164 // expanded, splitting "input" and "use" out into separate nodes. During the | 105 // expanded, splitting "input" and "use" out into separate nodes. During the |
165 // traversal, edges towards the representative nodes are preferred. | 106 // traversal, edges towards the representative nodes are preferred. |
166 // | 107 // |
167 // \ / - Pre-visit: When N1 is visited in direction D the preferred | 108 // \ / - Pre-visit: When N1 is visited in direction D the preferred |
168 // x N1 edge towards N is taken next, calling VisitPre(N). | 109 // x N1 edge towards N is taken next, calling VisitPre(N). |
169 // | - Mid-visit: After all edges out of N2 in direction D have | 110 // | - Mid-visit: After all edges out of N2 in direction D have |
170 // | N been visited, we switch the direction and start considering | 111 // | N been visited, we switch the direction and start considering |
171 // | edges out of N1 now, and we call VisitMid(N). | 112 // | edges out of N1 now, and we call VisitMid(N). |
172 // x N2 - Post-visit: After all edges out of N1 in direction opposite | 113 // x N2 - Post-visit: After all edges out of N1 in direction opposite |
173 // / \ to D have been visited, we pop N and call VisitPost(N). | 114 // / \ to D have been visited, we pop N and call VisitPost(N). |
174 // | 115 // |
175 // This will yield a true spanning tree (without cross or forward edges) and | 116 // This will yield a true spanning tree (without cross or forward edges) and |
176 // also discover proper back edges in both directions. | 117 // also discover proper back edges in both directions. |
177 void RunUndirectedDFS(Node* exit) { | 118 void RunUndirectedDFS(Node* exit); |
178 ZoneStack<DFSStackEntry> stack(zone_); | |
179 DFSPush(stack, exit, NULL, kInputDirection); | |
180 VisitPre(exit); | |
181 | 119 |
182 while (!stack.empty()) { // Undirected depth-first backwards traversal. | 120 void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node); |
183 DFSStackEntry& entry = stack.top(); | 121 void DetermineParticipation(Node* exit); |
184 Node* node = entry.node; | |
185 | |
186 if (entry.direction == kInputDirection) { | |
187 if (entry.input != node->input_edges().end()) { | |
188 Edge edge = *entry.input; | |
189 Node* input = edge.to(); | |
190 ++(entry.input); | |
191 if (NodeProperties::IsControlEdge(edge)) { | |
192 // Visit next control input. | |
193 if (!GetData(input)->participates) continue; | |
194 if (GetData(input)->visited) continue; | |
195 if (GetData(input)->on_stack) { | |
196 // Found backedge if input is on stack. | |
197 if (input != entry.parent_node) { | |
198 VisitBackedge(node, input, kInputDirection); | |
199 } | |
200 } else { | |
201 // Push input onto stack. | |
202 DFSPush(stack, input, node, kInputDirection); | |
203 VisitPre(input); | |
204 } | |
205 } | |
206 continue; | |
207 } | |
208 if (entry.use != node->use_edges().end()) { | |
209 // Switch direction to uses. | |
210 entry.direction = kUseDirection; | |
211 VisitMid(node, kInputDirection); | |
212 continue; | |
213 } | |
214 } | |
215 | |
216 if (entry.direction == kUseDirection) { | |
217 if (entry.use != node->use_edges().end()) { | |
218 Edge edge = *entry.use; | |
219 Node* use = edge.from(); | |
220 ++(entry.use); | |
221 if (NodeProperties::IsControlEdge(edge)) { | |
222 // Visit next control use. | |
223 if (!GetData(use)->participates) continue; | |
224 if (GetData(use)->visited) continue; | |
225 if (GetData(use)->on_stack) { | |
226 // Found backedge if use is on stack. | |
227 if (use != entry.parent_node) { | |
228 VisitBackedge(node, use, kUseDirection); | |
229 } | |
230 } else { | |
231 // Push use onto stack. | |
232 DFSPush(stack, use, node, kUseDirection); | |
233 VisitPre(use); | |
234 } | |
235 } | |
236 continue; | |
237 } | |
238 if (entry.input != node->input_edges().end()) { | |
239 // Switch direction to inputs. | |
240 entry.direction = kInputDirection; | |
241 VisitMid(node, kUseDirection); | |
242 continue; | |
243 } | |
244 } | |
245 | |
246 // Pop node from stack when done with all inputs and uses. | |
247 DCHECK(entry.input == node->input_edges().end()); | |
248 DCHECK(entry.use == node->use_edges().end()); | |
249 DFSPop(stack, node); | |
250 VisitPost(node, entry.parent_node, entry.direction); | |
251 } | |
252 } | |
253 | |
254 void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node) { | |
255 if (!GetData(node)->participates) { | |
256 GetData(node)->participates = true; | |
257 queue.push(node); | |
258 } | |
259 } | |
260 | |
261 void DetermineParticipation(Node* exit) { | |
262 ZoneQueue<Node*> queue(zone_); | |
263 DetermineParticipationEnqueue(queue, exit); | |
264 while (!queue.empty()) { // Breadth-first backwards traversal. | |
265 Node* node = queue.front(); | |
266 queue.pop(); | |
267 int max = NodeProperties::PastControlIndex(node); | |
268 for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) { | |
269 DetermineParticipationEnqueue(queue, node->InputAt(i)); | |
270 } | |
271 } | |
272 } | |
273 | 122 |
274 private: | 123 private: |
275 NodeData* GetData(Node* node) { return &node_data_[node->id()]; } | 124 NodeData* GetData(Node* node) { return &node_data_[node->id()]; } |
276 int NewClassNumber() { return class_number_++; } | 125 int NewClassNumber() { return class_number_++; } |
277 int NewDFSNumber() { return dfs_number_++; } | 126 int NewDFSNumber() { return dfs_number_++; } |
278 | 127 |
279 // Template used to initialize per-node data. | 128 // Template used to initialize per-node data. |
280 NodeData EmptyData() { | 129 NodeData EmptyData() { |
281 return {kInvalidClass, 0, false, false, false, BracketList(zone_)}; | 130 return {kInvalidClass, 0, false, false, false, BracketList(zone_)}; |
282 } | 131 } |
(...skipping 10 matching lines...) Expand all Loading... |
293 GetData(node)->class_number = number; | 142 GetData(node)->class_number = number; |
294 } | 143 } |
295 | 144 |
296 // Accessors for the bracket list stored within the per-node data. | 145 // Accessors for the bracket list stored within the per-node data. |
297 BracketList& GetBracketList(Node* node) { return GetData(node)->blist; } | 146 BracketList& GetBracketList(Node* node) { return GetData(node)->blist; } |
298 void SetBracketList(Node* node, BracketList& list) { | 147 void SetBracketList(Node* node, BracketList& list) { |
299 GetData(node)->blist = list; | 148 GetData(node)->blist = list; |
300 } | 149 } |
301 | 150 |
302 // Mutates the DFS stack by pushing an entry. | 151 // Mutates the DFS stack by pushing an entry. |
303 void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir) { | 152 void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir); |
304 DCHECK(GetData(node)->participates); | |
305 DCHECK(!GetData(node)->visited); | |
306 GetData(node)->on_stack = true; | |
307 Node::InputEdges::iterator input = node->input_edges().begin(); | |
308 Node::UseEdges::iterator use = node->use_edges().begin(); | |
309 stack.push({dir, input, use, from, node}); | |
310 } | |
311 | 153 |
312 // Mutates the DFS stack by popping an entry. | 154 // Mutates the DFS stack by popping an entry. |
313 void DFSPop(DFSStack& stack, Node* node) { | 155 void DFSPop(DFSStack& stack, Node* node); |
314 DCHECK_EQ(stack.top().node, node); | |
315 GetData(node)->on_stack = false; | |
316 GetData(node)->visited = true; | |
317 stack.pop(); | |
318 } | |
319 | 156 |
320 // TODO(mstarzinger): Optimize this to avoid linear search. | 157 void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction); |
321 void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction) { | 158 void BracketListTRACE(BracketList& blist); |
322 for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) { | |
323 if (i->to == to && i->direction != direction) { | |
324 TRACE(" BList erased: {%d->%d}\n", i->from->id(), i->to->id()); | |
325 i = blist.erase(i); | |
326 } else { | |
327 ++i; | |
328 } | |
329 } | |
330 } | |
331 | 159 |
332 void BracketListTRACE(BracketList& blist) { | 160 Zone* const zone_; |
333 if (FLAG_trace_turbo_scheduler) { | 161 Graph* const graph_; |
334 TRACE(" BList: "); | |
335 for (Bracket bracket : blist) { | |
336 TRACE("{%d->%d} ", bracket.from->id(), bracket.to->id()); | |
337 } | |
338 TRACE("\n"); | |
339 } | |
340 } | |
341 | |
342 Zone* zone_; | |
343 Graph* graph_; | |
344 int dfs_number_; // Generates new DFS pre-order numbers on demand. | 162 int dfs_number_; // Generates new DFS pre-order numbers on demand. |
345 int class_number_; // Generates new equivalence class numbers on demand. | 163 int class_number_; // Generates new equivalence class numbers on demand. |
346 Data node_data_; // Per-node data stored as a side-table. | 164 Data node_data_; // Per-node data stored as a side-table. |
347 }; | 165 }; |
348 | 166 |
349 #undef TRACE | |
350 | |
351 } // namespace compiler | 167 } // namespace compiler |
352 } // namespace internal | 168 } // namespace internal |
353 } // namespace v8 | 169 } // namespace v8 |
354 | 170 |
355 #endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_ | 171 #endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
OLD | NEW |