OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkCodec_libbmp.h" | 8 #include "SkCodec_libbmp.h" |
9 #include "SkCodecPriv.h" | 9 #include "SkCodecPriv.h" |
10 #include "SkColorPriv.h" | 10 #include "SkColorPriv.h" |
11 #include "SkStream.h" | 11 #include "SkStream.h" |
| 12 #include "SkUtils.h" |
12 | 13 |
13 /* | 14 /* |
14 * | 15 * |
15 * Checks if the conversion between the input image and the requested output | 16 * Checks if the conversion between the input image and the requested output |
16 * image has been implemented | 17 * image has been implemented |
17 * | 18 * |
18 */ | 19 */ |
19 static bool conversion_possible(const SkImageInfo& dst, | 20 static bool conversion_possible(const SkImageInfo& dst, |
20 const SkImageInfo& src) { | 21 const SkImageInfo& src) { |
21 // Ensure that the profile type is unchanged | 22 // Ensure that the profile type is unchanged |
22 if (dst.profileType() != src.profileType()) { | 23 if (dst.profileType() != src.profileType()) { |
23 return false; | 24 return false; |
24 } | 25 } |
25 | 26 |
26 // Check for supported color and alpha types | 27 // Check for supported alpha types |
| 28 if (src.alphaType() != dst.alphaType()) { |
| 29 if (kOpaque_SkAlphaType == src.alphaType()) { |
| 30 // If the source is opaque, we must decode to opaque |
| 31 return false; |
| 32 } |
| 33 |
| 34 // The source is not opaque |
| 35 switch (dst.alphaType()) { |
| 36 case kPremul_SkAlphaType: |
| 37 case kUnpremul_SkAlphaType: |
| 38 // The source is not opaque, so either of these is okay |
| 39 break; |
| 40 default: |
| 41 // We cannot decode a non-opaque image to opaque (or unknown) |
| 42 return false; |
| 43 } |
| 44 } |
| 45 |
| 46 // Check for supported color types |
27 switch (dst.colorType()) { | 47 switch (dst.colorType()) { |
| 48 // Allow output to kN32 from any type of input |
28 case kN32_SkColorType: | 49 case kN32_SkColorType: |
29 return src.alphaType() == dst.alphaType() || | 50 return true; |
30 (kPremul_SkAlphaType == dst.alphaType() && | 51 // Allow output to kIndex_8 from compatible inputs |
31 kUnpremul_SkAlphaType == src.alphaType()); | 52 case kIndex_8_SkColorType: |
| 53 return kIndex_8_SkColorType == src.colorType(); |
32 default: | 54 default: |
33 return false; | 55 return false; |
34 } | 56 } |
35 } | 57 } |
36 | 58 |
37 /* | 59 /* |
38 * | 60 * |
39 * Defines the version and type of the second bitmap header | 61 * Defines the version and type of the second bitmap header |
40 * | 62 * |
41 */ | 63 */ |
(...skipping 371 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
413 // Header types are matched based on size. If the header is | 435 // Header types are matched based on size. If the header is |
414 // V3+, we are guaranteed to be able to read at least this size. | 436 // V3+, we are guaranteed to be able to read at least this size. |
415 SkASSERT(infoBytesRemaining > 52); | 437 SkASSERT(infoBytesRemaining > 52); |
416 inputMasks.alpha = get_int(iBuffer.get(), 48); | 438 inputMasks.alpha = get_int(iBuffer.get(), 48); |
417 if (inputMasks.alpha != 0) { | 439 if (inputMasks.alpha != 0) { |
418 alphaType = kUnpremul_SkAlphaType; | 440 alphaType = kUnpremul_SkAlphaType; |
419 } | 441 } |
420 } | 442 } |
421 iBuffer.free(); | 443 iBuffer.free(); |
422 | 444 |
423 // Additionally, 32 bit bmp-in-icos use the alpha channel | 445 // Additionally, 32 bit bmp-in-icos use the alpha channel. |
424 if (isIco && 32 == bitsPerPixel) { | 446 // And, RLE inputs may skip pixels, leaving them as transparent. This |
| 447 // is uncommon, but we cannot be certain that an RLE bmp will be opaque. |
| 448 if ((isIco && 32 == bitsPerPixel) || (kRLE_BitmapInputFormat == inputFormat)
) { |
425 alphaType = kUnpremul_SkAlphaType; | 449 alphaType = kUnpremul_SkAlphaType; |
426 } | 450 } |
427 | 451 |
428 // Check for valid bits per pixel input | 452 // Check for valid bits per pixel. |
| 453 // At the same time, use this information to choose a suggested color type |
| 454 // and to set default masks. |
| 455 SkColorType colorType = kN32_SkColorType; |
429 switch (bitsPerPixel) { | 456 switch (bitsPerPixel) { |
430 // In addition to more standard pixel compression formats, bmp supports | 457 // In addition to more standard pixel compression formats, bmp supports |
431 // the use of bit masks to determine pixel components. The standard | 458 // the use of bit masks to determine pixel components. The standard |
432 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | 459 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
433 // which does not map well to any Skia color formats. For this reason, | 460 // which does not map well to any Skia color formats. For this reason, |
434 // we will always enable mask mode with 16 bits per pixel. | 461 // we will always enable mask mode with 16 bits per pixel. |
435 case 16: | 462 case 16: |
436 if (kBitMask_BitmapInputFormat != inputFormat) { | 463 if (kBitMask_BitmapInputFormat != inputFormat) { |
437 inputMasks.red = 0x7C00; | 464 inputMasks.red = 0x7C00; |
438 inputMasks.green = 0x03E0; | 465 inputMasks.green = 0x03E0; |
439 inputMasks.blue = 0x001F; | 466 inputMasks.blue = 0x001F; |
440 inputFormat = kBitMask_BitmapInputFormat; | 467 inputFormat = kBitMask_BitmapInputFormat; |
441 } | 468 } |
442 break; | 469 break; |
| 470 // We want to decode to kIndex_8 for input formats that are already |
| 471 // designed in index format. |
443 case 1: | 472 case 1: |
444 case 2: | 473 case 2: |
445 case 4: | 474 case 4: |
446 case 8: | 475 case 8: |
| 476 // However, we cannot in RLE format since we may need to leave some |
| 477 // pixels as transparent. Similarly, we also cannot for ICO images |
| 478 // since we may need to apply a transparent mask. |
| 479 if (kRLE_BitmapInputFormat != inputFormat && !isIco) { |
| 480 colorType = kIndex_8_SkColorType; |
| 481 } |
447 case 24: | 482 case 24: |
448 case 32: | 483 case 32: |
449 break; | 484 break; |
450 default: | 485 default: |
451 SkCodecPrintf("Error: invalid input value for bits per pixel.\n"); | 486 SkCodecPrintf("Error: invalid input value for bits per pixel.\n"); |
452 return false; | 487 return false; |
453 } | 488 } |
454 | 489 |
455 // Check that input bit masks are valid and create the masks object | 490 // Check that input bit masks are valid and create the masks object |
456 SkAutoTDelete<SkMasks> | 491 SkAutoTDelete<SkMasks> |
(...skipping 12 matching lines...) Expand all Loading... |
469 | 504 |
470 // Calculate the number of bytes read so far | 505 // Calculate the number of bytes read so far |
471 const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes; | 506 const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes; |
472 if (!isIco && offset < bytesRead) { | 507 if (!isIco && offset < bytesRead) { |
473 SkCodecPrintf("Error: pixel data offset less than header size.\n"); | 508 SkCodecPrintf("Error: pixel data offset less than header size.\n"); |
474 return false; | 509 return false; |
475 } | 510 } |
476 | 511 |
477 if (codecOut) { | 512 if (codecOut) { |
478 // Return the codec | 513 // Return the codec |
479 // We will use ImageInfo to store width, height, and alpha type. We | 514 // We will use ImageInfo to store width, height, suggested color type, a
nd |
480 // will set color type to kN32_SkColorType because that should be the | 515 // suggested alpha type. |
481 // default output. | |
482 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | 516 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
483 kN32_SkColorType, alphaType); | 517 colorType, alphaType); |
484 *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | 518 *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
485 inputFormat, masks.detach(), | 519 inputFormat, masks.detach(), |
486 numColors, bytesPerColor, | 520 numColors, bytesPerColor, |
487 offset - bytesRead, rowOrder, | 521 offset - bytesRead, rowOrder, |
488 RLEBytes, isIco)); | 522 RLEBytes, isIco)); |
489 } | 523 } |
490 return true; | 524 return true; |
491 } | 525 } |
492 | 526 |
493 /* | 527 /* |
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
534 | 568 |
535 {} | 569 {} |
536 | 570 |
537 /* | 571 /* |
538 * | 572 * |
539 * Initiates the bitmap decode | 573 * Initiates the bitmap decode |
540 * | 574 * |
541 */ | 575 */ |
542 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | 576 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
543 void* dst, size_t dstRowBytes, | 577 void* dst, size_t dstRowBytes, |
544 const Options&, | 578 const Options& opts, |
545 SkPMColor*, int*) { | 579 SkPMColor* inputColorPtr, |
| 580 int* inputColorCount) { |
546 // Check for proper input and output formats | 581 // Check for proper input and output formats |
547 SkCodec::RewindState rewindState = this->rewindIfNeeded(); | 582 SkCodec::RewindState rewindState = this->rewindIfNeeded(); |
548 if (rewindState == kCouldNotRewind_RewindState) { | 583 if (rewindState == kCouldNotRewind_RewindState) { |
549 return kCouldNotRewind; | 584 return kCouldNotRewind; |
550 } else if (rewindState == kRewound_RewindState) { | 585 } else if (rewindState == kRewound_RewindState) { |
551 if (!ReadHeader(this->stream(), fIsIco, NULL)) { | 586 if (!ReadHeader(this->stream(), fIsIco, NULL)) { |
552 return kCouldNotRewind; | 587 return kCouldNotRewind; |
553 } | 588 } |
554 } | 589 } |
555 if (dstInfo.dimensions() != this->getInfo().dimensions()) { | 590 if (dstInfo.dimensions() != this->getInfo().dimensions()) { |
556 SkCodecPrintf("Error: scaling not supported.\n"); | 591 SkCodecPrintf("Error: scaling not supported.\n"); |
557 return kInvalidScale; | 592 return kInvalidScale; |
558 } | 593 } |
559 if (!conversion_possible(dstInfo, this->getInfo())) { | 594 if (!conversion_possible(dstInfo, this->getInfo())) { |
560 SkCodecPrintf("Error: cannot convert input type to output type.\n"); | 595 SkCodecPrintf("Error: cannot convert input type to output type.\n"); |
561 return kInvalidConversion; | 596 return kInvalidConversion; |
562 } | 597 } |
563 | 598 |
564 // Create the color table if necessary and prepare the stream for decode | 599 // Create the color table if necessary and prepare the stream for decode |
565 if (!createColorTable(dstInfo.alphaType())) { | 600 // Note that if it is non-NULL, inputColorCount will be modified |
| 601 if (!createColorTable(dstInfo.alphaType(), inputColorCount)) { |
566 SkCodecPrintf("Error: could not create color table.\n"); | 602 SkCodecPrintf("Error: could not create color table.\n"); |
567 return kInvalidInput; | 603 return kInvalidInput; |
568 } | 604 } |
569 | 605 |
| 606 // Copy the color table to the client if necessary |
| 607 if (kIndex_8_SkColorType == dstInfo.colorType()) { |
| 608 SkASSERT(NULL != inputColorPtr); |
| 609 SkASSERT(NULL != inputColorCount); |
| 610 SkASSERT(NULL != fColorTable.get()); |
| 611 sk_memcpy32(inputColorPtr, fColorTable->readColors(), *inputColorCount); |
| 612 } |
| 613 |
570 // Perform the decode | 614 // Perform the decode |
571 switch (fInputFormat) { | 615 switch (fInputFormat) { |
572 case kBitMask_BitmapInputFormat: | 616 case kBitMask_BitmapInputFormat: |
573 return decodeMask(dstInfo, dst, dstRowBytes); | 617 return decodeMask(dstInfo, dst, dstRowBytes); |
574 case kRLE_BitmapInputFormat: | 618 case kRLE_BitmapInputFormat: |
575 return decodeRLE(dstInfo, dst, dstRowBytes); | 619 return decodeRLE(dstInfo, dst, dstRowBytes, opts); |
576 case kStandard_BitmapInputFormat: | 620 case kStandard_BitmapInputFormat: |
577 return decode(dstInfo, dst, dstRowBytes); | 621 return decode(dstInfo, dst, dstRowBytes); |
578 default: | 622 default: |
579 SkASSERT(false); | 623 SkASSERT(false); |
580 return kInvalidInput; | 624 return kInvalidInput; |
581 } | 625 } |
582 } | 626 } |
583 | 627 |
584 /* | 628 /* |
585 * | 629 * |
586 * Process the color table for the bmp input | 630 * Process the color table for the bmp input |
587 * | 631 * |
588 */ | 632 */ |
589 bool SkBmpCodec::createColorTable(SkAlphaType alphaType) { | 633 bool SkBmpCodec::createColorTable(SkAlphaType alphaType, int* numColors) { |
590 // Allocate memory for color table | 634 // Allocate memory for color table |
591 uint32_t colorBytes = 0; | 635 uint32_t colorBytes = 0; |
592 uint32_t maxColors = 0; | 636 uint32_t maxColors = 0; |
593 SkPMColor colorTable[256]; | 637 SkPMColor colorTable[256]; |
594 if (fBitsPerPixel <= 8) { | 638 if (fBitsPerPixel <= 8) { |
595 // Zero is a default for maxColors | 639 // Zero is a default for maxColors |
596 // Also set fNumColors to maxColors when it is too large | 640 // Also set fNumColors to maxColors when it is too large |
597 maxColors = 1 << fBitsPerPixel; | 641 maxColors = 1 << fBitsPerPixel; |
598 if (fNumColors == 0 || fNumColors >= maxColors) { | 642 if (fNumColors == 0 || fNumColors >= maxColors) { |
599 fNumColors = maxColors; | 643 fNumColors = maxColors; |
600 } | 644 } |
601 | 645 |
| 646 // Inform the caller of the number of colors |
| 647 if (NULL != numColors) { |
| 648 SkASSERT(256 == *numColors); |
| 649 // We set the number of colors to maxColors in order to ensure |
| 650 // safe memory accesses. Otherwise, an invalid pixel could |
| 651 // access memory outside of our color table array. |
| 652 *numColors = maxColors; |
| 653 } |
| 654 |
602 // Read the color table from the stream | 655 // Read the color table from the stream |
603 colorBytes = fNumColors * fBytesPerColor; | 656 colorBytes = fNumColors * fBytesPerColor; |
604 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | 657 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
605 if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { | 658 if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { |
606 SkCodecPrintf("Error: unable to read color table.\n"); | 659 SkCodecPrintf("Error: unable to read color table.\n"); |
607 return false; | 660 return false; |
608 } | 661 } |
609 | 662 |
610 // Choose the proper packing function | 663 // Choose the proper packing function |
611 SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); | 664 SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); |
(...skipping 13 matching lines...) Expand all Loading... |
625 packARGB = NULL; | 678 packARGB = NULL; |
626 break; | 679 break; |
627 } | 680 } |
628 | 681 |
629 // Fill in the color table | 682 // Fill in the color table |
630 uint32_t i = 0; | 683 uint32_t i = 0; |
631 for (; i < fNumColors; i++) { | 684 for (; i < fNumColors; i++) { |
632 uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); | 685 uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); |
633 uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); | 686 uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); |
634 uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); | 687 uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); |
635 uint8_t alpha = kOpaque_SkAlphaType == alphaType ? 0xFF : | 688 uint8_t alpha; |
636 (fMasks->getAlphaMask() >> 24) & | 689 if (kOpaque_SkAlphaType == alphaType || kRLE_BitmapInputFormat == fI
nputFormat) { |
637 get_byte(cBuffer.get(), i*fBytesPerColor + 3); | 690 alpha = 0xFF; |
| 691 } else { |
| 692 alpha = (fMasks->getAlphaMask() >> 24) & |
| 693 get_byte(cBuffer.get(), i*fBytesPerColor + 3); |
| 694 } |
638 colorTable[i] = packARGB(alpha, red, green, blue); | 695 colorTable[i] = packARGB(alpha, red, green, blue); |
639 } | 696 } |
640 | 697 |
641 // To avoid segmentation faults on bad pixel data, fill the end of the | 698 // To avoid segmentation faults on bad pixel data, fill the end of the |
642 // color table with black. This is the same the behavior as the | 699 // color table with black. This is the same the behavior as the |
643 // chromium decoder. | 700 // chromium decoder. |
644 for (; i < maxColors; i++) { | 701 for (; i < maxColors; i++) { |
645 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | 702 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
646 } | 703 } |
647 } | 704 } |
(...skipping 85 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
733 | 790 |
734 // Finished decoding the entire image | 791 // Finished decoding the entire image |
735 return kSuccess; | 792 return kSuccess; |
736 } | 793 } |
737 | 794 |
738 /* | 795 /* |
739 * | 796 * |
740 * Set an RLE pixel using the color table | 797 * Set an RLE pixel using the color table |
741 * | 798 * |
742 */ | 799 */ |
743 void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, | 800 void SkBmpCodec::setRLEPixel(void* dst, size_t dstRowBytes, |
744 const SkImageInfo& dstInfo, uint32_t x, uint32_t y, | 801 const SkImageInfo& dstInfo, uint32_t x, uint32_t y, |
745 uint8_t index) { | 802 uint8_t index) { |
746 // Set the row | 803 // Set the row |
747 int height = dstInfo.height(); | 804 int height = dstInfo.height(); |
748 int row; | 805 int row; |
749 if (kBottomUp_RowOrder == fRowOrder) { | 806 if (kBottomUp_RowOrder == fRowOrder) { |
750 row = height - y - 1; | 807 row = height - y - 1; |
751 } else { | 808 } else { |
752 row = y; | 809 row = y; |
753 } | 810 } |
754 | 811 |
755 // Set the pixel based on destination color type | 812 // Set the pixel based on destination color type |
756 switch (dstInfo.colorType()) { | 813 switch (dstInfo.colorType()) { |
757 case kN32_SkColorType: { | 814 case kN32_SkColorType: { |
758 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, | 815 SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
759 row * (int) dstRowBytes); | 816 row * (int) dstRowBytes); |
760 dstRow[x] = fColorTable->operator[](index); | 817 dstRow[x] = fColorTable->operator[](index); |
761 break; | 818 break; |
762 } | 819 } |
763 case kRGB_565_SkColorType: { | |
764 uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, | |
765 row * (int) dstRowBytes); | |
766 dstRow[x] = SkPixel32ToPixel16(fColorTable->operator[](index)); | |
767 break; | |
768 } | |
769 default: | 820 default: |
770 // This case should not be reached. We should catch an invalid | 821 // This case should not be reached. We should catch an invalid |
771 // color type when we check that the conversion is possible. | 822 // color type when we check that the conversion is possible. |
772 SkASSERT(false); | 823 SkASSERT(false); |
773 break; | 824 break; |
774 } | 825 } |
775 } | 826 } |
776 | 827 |
777 /* | 828 /* |
778 * | 829 * |
779 * Set an RLE pixel from R, G, B values | 830 * Set an RLE pixel from R, G, B values |
780 * | 831 * |
781 */ | 832 */ |
782 void SkBmpCodec::setRLE24Pixel(SkPMColor* dst, size_t dstRowBytes, | 833 void SkBmpCodec::setRLE24Pixel(void* dst, size_t dstRowBytes, |
783 const SkImageInfo& dstInfo, uint32_t x, | 834 const SkImageInfo& dstInfo, uint32_t x, |
784 uint32_t y, uint8_t red, uint8_t green, | 835 uint32_t y, uint8_t red, uint8_t green, |
785 uint8_t blue) { | 836 uint8_t blue) { |
786 // Set the row | 837 // Set the row |
787 int height = dstInfo.height(); | 838 int height = dstInfo.height(); |
788 int row; | 839 int row; |
789 if (kBottomUp_RowOrder == fRowOrder) { | 840 if (kBottomUp_RowOrder == fRowOrder) { |
790 row = height - y - 1; | 841 row = height - y - 1; |
791 } else { | 842 } else { |
792 row = y; | 843 row = y; |
793 } | 844 } |
794 | 845 |
795 // Set the pixel based on destination color type | 846 // Set the pixel based on destination color type |
796 switch (dstInfo.colorType()) { | 847 switch (dstInfo.colorType()) { |
797 case kN32_SkColorType: { | 848 case kN32_SkColorType: { |
798 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, | 849 SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
799 row * (int) dstRowBytes); | 850 row * (int) dstRowBytes); |
800 dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); | 851 dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); |
801 break; | 852 break; |
802 } | 853 } |
803 case kRGB_565_SkColorType: { | |
804 uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, | |
805 row * (int) dstRowBytes); | |
806 dstRow[x] = SkPack888ToRGB16(red, green, blue); | |
807 break; | |
808 } | |
809 default: | 854 default: |
810 // This case should not be reached. We should catch an invalid | 855 // This case should not be reached. We should catch an invalid |
811 // color type when we check that the conversion is possible. | 856 // color type when we check that the conversion is possible. |
812 SkASSERT(false); | 857 SkASSERT(false); |
813 break; | 858 break; |
814 } | 859 } |
815 } | 860 } |
816 | 861 |
817 /* | 862 /* |
818 * | 863 * |
819 * Performs the bitmap decoding for RLE input format | 864 * Performs the bitmap decoding for RLE input format |
820 * RLE decoding is performed all at once, rather than a one row at a time | 865 * RLE decoding is performed all at once, rather than a one row at a time |
821 * | 866 * |
822 */ | 867 */ |
823 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | 868 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
824 void* dst, size_t dstRowBytes) { | 869 void* dst, size_t dstRowBytes, |
| 870 const Options& opts) { |
825 // Set RLE flags | 871 // Set RLE flags |
826 static const uint8_t RLE_ESCAPE = 0; | 872 static const uint8_t RLE_ESCAPE = 0; |
827 static const uint8_t RLE_EOL = 0; | 873 static const uint8_t RLE_EOL = 0; |
828 static const uint8_t RLE_EOF = 1; | 874 static const uint8_t RLE_EOF = 1; |
829 static const uint8_t RLE_DELTA = 2; | 875 static const uint8_t RLE_DELTA = 2; |
830 | 876 |
831 // Set constant values | 877 // Set constant values |
832 const int width = dstInfo.width(); | 878 const int width = dstInfo.width(); |
833 const int height = dstInfo.height(); | 879 const int height = dstInfo.height(); |
834 | 880 |
835 // Input buffer parameters | 881 // Input buffer parameters |
836 uint32_t currByte = 0; | 882 uint32_t currByte = 0; |
837 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); | 883 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); |
838 size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); | 884 size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); |
839 if (totalBytes < fRLEBytes) { | 885 if (totalBytes < fRLEBytes) { |
840 SkCodecPrintf("Warning: incomplete RLE file.\n"); | 886 SkCodecPrintf("Warning: incomplete RLE file.\n"); |
841 } else if (totalBytes <= 0) { | 887 } else if (totalBytes <= 0) { |
842 SkCodecPrintf("Error: could not read RLE image data.\n"); | 888 SkCodecPrintf("Error: could not read RLE image data.\n"); |
843 return kInvalidInput; | 889 return kInvalidInput; |
844 } | 890 } |
845 | 891 |
846 // Destination parameters | 892 // Destination parameters |
847 int x = 0; | 893 int x = 0; |
848 int y = 0; | 894 int y = 0; |
849 // If the code skips pixels, remaining pixels are transparent or black | 895 |
850 // TODO: Skip this if memory was already zeroed. | 896 // Set the background as transparent. Then, if the RLE code skips pixels, |
851 memset(dst, 0, dstRowBytes * height); | 897 // the skipped pixels will be transparent. |
852 SkPMColor* dstPtr = (SkPMColor*) dst; | 898 // Because of the need for transparent pixels, kN32 is the only color |
| 899 // type that makes sense for the destination format. |
| 900 SkASSERT(kN32_SkColorType == dstInfo.colorType()); |
| 901 if (kNo_ZeroInitialized == opts.fZeroInitialized) { |
| 902 SkSwizzler::Fill(dst, dstInfo, dstRowBytes, 0, SK_ColorTRANSPARENT, NULL
); |
| 903 } |
853 | 904 |
854 while (true) { | 905 while (true) { |
855 // Every entry takes at least two bytes | 906 // Every entry takes at least two bytes |
856 if ((int) totalBytes - currByte < 2) { | 907 if ((int) totalBytes - currByte < 2) { |
857 SkCodecPrintf("Warning: incomplete RLE input.\n"); | 908 SkCodecPrintf("Warning: incomplete RLE input.\n"); |
858 return kIncompleteInput; | 909 return kIncompleteInput; |
859 } | 910 } |
860 | 911 |
861 // Read the next two bytes. These bytes have different meanings | 912 // Read the next two bytes. These bytes have different meanings |
862 // depending on their values. In the first interpretation, the first | 913 // depending on their values. In the first interpretation, the first |
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
913 (int) totalBytes - currByte < SkAlign2(rowBytes)) { | 964 (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
914 SkCodecPrintf("Warning: invalid RLE input.\n"); | 965 SkCodecPrintf("Warning: invalid RLE input.\n"); |
915 return kIncompleteInput; | 966 return kIncompleteInput; |
916 } | 967 } |
917 // Set numPixels number of pixels | 968 // Set numPixels number of pixels |
918 while (numPixels > 0) { | 969 while (numPixels > 0) { |
919 switch(fBitsPerPixel) { | 970 switch(fBitsPerPixel) { |
920 case 4: { | 971 case 4: { |
921 SkASSERT(currByte < totalBytes); | 972 SkASSERT(currByte < totalBytes); |
922 uint8_t val = buffer.get()[currByte++]; | 973 uint8_t val = buffer.get()[currByte++]; |
923 setRLEPixel(dstPtr, dstRowBytes, dstInfo, x++, | 974 setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
924 y, val >> 4); | 975 y, val >> 4); |
925 numPixels--; | 976 numPixels--; |
926 if (numPixels != 0) { | 977 if (numPixels != 0) { |
927 setRLEPixel(dstPtr, dstRowBytes, dstInfo, | 978 setRLEPixel(dst, dstRowBytes, dstInfo, |
928 x++, y, val & 0xF); | 979 x++, y, val & 0xF); |
929 numPixels--; | 980 numPixels--; |
930 } | 981 } |
931 break; | 982 break; |
932 } | 983 } |
933 case 8: | 984 case 8: |
934 SkASSERT(currByte < totalBytes); | 985 SkASSERT(currByte < totalBytes); |
935 setRLEPixel(dstPtr, dstRowBytes, dstInfo, x++, | 986 setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
936 y, buffer.get()[currByte++]); | 987 y, buffer.get()[currByte++]); |
937 numPixels--; | 988 numPixels--; |
938 break; | 989 break; |
939 case 24: { | 990 case 24: { |
940 SkASSERT(currByte + 2 < totalBytes); | 991 SkASSERT(currByte + 2 < totalBytes); |
941 uint8_t blue = buffer.get()[currByte++]; | 992 uint8_t blue = buffer.get()[currByte++]; |
942 uint8_t green = buffer.get()[currByte++]; | 993 uint8_t green = buffer.get()[currByte++]; |
943 uint8_t red = buffer.get()[currByte++]; | 994 uint8_t red = buffer.get()[currByte++]; |
944 setRLE24Pixel(dstPtr, dstRowBytes, dstInfo, | 995 setRLE24Pixel(dst, dstRowBytes, dstInfo, |
945 x++, y, red, green, blue); | 996 x++, y, red, green, blue); |
946 numPixels--; | 997 numPixels--; |
947 } | 998 } |
948 default: | 999 default: |
949 SkASSERT(false); | 1000 SkASSERT(false); |
950 return kInvalidInput; | 1001 return kInvalidInput; |
951 } | 1002 } |
952 } | 1003 } |
953 // Skip a byte if necessary to maintain alignment | 1004 // Skip a byte if necessary to maintain alignment |
954 if (!SkIsAlign2(rowBytes)) { | 1005 if (!SkIsAlign2(rowBytes)) { |
(...skipping 15 matching lines...) Expand all Loading... |
970 if ((int) totalBytes - currByte < 2) { | 1021 if ((int) totalBytes - currByte < 2) { |
971 SkCodecPrintf("Warning: incomplete RLE input\n"); | 1022 SkCodecPrintf("Warning: incomplete RLE input\n"); |
972 return kIncompleteInput; | 1023 return kIncompleteInput; |
973 } | 1024 } |
974 | 1025 |
975 // Fill the pixels up to endX with the specified color | 1026 // Fill the pixels up to endX with the specified color |
976 uint8_t blue = task; | 1027 uint8_t blue = task; |
977 uint8_t green = buffer.get()[currByte++]; | 1028 uint8_t green = buffer.get()[currByte++]; |
978 uint8_t red = buffer.get()[currByte++]; | 1029 uint8_t red = buffer.get()[currByte++]; |
979 while (x < endX) { | 1030 while (x < endX) { |
980 setRLE24Pixel(dstPtr, dstRowBytes, dstInfo, x++, y, red, | 1031 setRLE24Pixel(dst, dstRowBytes, dstInfo, x++, y, red, |
981 green, blue); | 1032 green, blue); |
982 } | 1033 } |
983 } else { | 1034 } else { |
984 // In RLE8 or RLE4, the second byte read gives the index in the | 1035 // In RLE8 or RLE4, the second byte read gives the index in the |
985 // color table to look up the pixel color. | 1036 // color table to look up the pixel color. |
986 // RLE8 has one color index that gets repeated | 1037 // RLE8 has one color index that gets repeated |
987 // RLE4 has two color indexes in the upper and lower 4 bits of | 1038 // RLE4 has two color indexes in the upper and lower 4 bits of |
988 // the bytes, which are alternated | 1039 // the bytes, which are alternated |
989 uint8_t indices[2] = { task, task }; | 1040 uint8_t indices[2] = { task, task }; |
990 if (4 == fBitsPerPixel) { | 1041 if (4 == fBitsPerPixel) { |
991 indices[0] >>= 4; | 1042 indices[0] >>= 4; |
992 indices[1] &= 0xf; | 1043 indices[1] &= 0xf; |
993 } | 1044 } |
994 | 1045 |
995 // Set the indicated number of pixels | 1046 // Set the indicated number of pixels |
996 for (int which = 0; x < endX; x++) { | 1047 for (int which = 0; x < endX; x++) { |
997 setRLEPixel(dstPtr, dstRowBytes, dstInfo, x, y, | 1048 setRLEPixel(dst, dstRowBytes, dstInfo, x, y, |
998 indices[which]); | 1049 indices[which]); |
999 which = !which; | 1050 which = !which; |
1000 } | 1051 } |
1001 } | 1052 } |
1002 } | 1053 } |
1003 } | 1054 } |
1004 } | 1055 } |
1005 | 1056 |
1006 /* | 1057 /* |
1007 * | 1058 * |
(...skipping 69 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1077 } | 1128 } |
1078 | 1129 |
1079 // FIXME: This code exists to match the behavior in the chromium decoder | 1130 // FIXME: This code exists to match the behavior in the chromium decoder |
1080 // and to follow the bmp specification as it relates to alpha masks. It is | 1131 // and to follow the bmp specification as it relates to alpha masks. It is |
1081 // commented out because we have yet to discover a test image that provides | 1132 // commented out because we have yet to discover a test image that provides |
1082 // an alpha mask and uses this decode mode. | 1133 // an alpha mask and uses this decode mode. |
1083 | 1134 |
1084 // Now we adjust the output image with some additional behavior that | 1135 // Now we adjust the output image with some additional behavior that |
1085 // SkSwizzler does not support. Firstly, all bmp images that contain | 1136 // SkSwizzler does not support. Firstly, all bmp images that contain |
1086 // alpha are masked by the alpha mask. Secondly, many fully transparent | 1137 // alpha are masked by the alpha mask. Secondly, many fully transparent |
1087 // bmp images are intended to be opaque. Here, we make those corrections. | 1138 // bmp images are intended to be opaque. Here, we make those corrections |
| 1139 // in the kN32 case. |
1088 /* | 1140 /* |
1089 SkPMColor* dstRow = (SkPMColor*) dst; | 1141 SkPMColor* dstRow = (SkPMColor*) dst; |
1090 if (SkSwizzler::kBGRA == config) { | 1142 if (SkSwizzler::kBGRA == config) { |
1091 for (int y = 0; y < height; y++) { | 1143 for (int y = 0; y < height; y++) { |
1092 for (int x = 0; x < width; x++) { | 1144 for (int x = 0; x < width; x++) { |
1093 if (transparent) { | 1145 if (transparent) { |
1094 dstRow[x] |= 0xFF000000; | 1146 dstRow[x] |= 0xFF000000; |
1095 } else { | 1147 } else { |
1096 dstRow[x] &= alphaMask; | 1148 dstRow[x] &= alphaMask; |
1097 } | 1149 } |
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1132 uint32_t alphaBit = | 1184 uint32_t alphaBit = |
1133 (srcBuffer.get()[quotient] >> shift) & 0x1; | 1185 (srcBuffer.get()[quotient] >> shift) & 0x1; |
1134 dstRow[x] &= alphaBit - 1; | 1186 dstRow[x] &= alphaBit - 1; |
1135 } | 1187 } |
1136 } | 1188 } |
1137 } | 1189 } |
1138 | 1190 |
1139 // Finished decoding the entire image | 1191 // Finished decoding the entire image |
1140 return kSuccess; | 1192 return kSuccess; |
1141 } | 1193 } |
OLD | NEW |