| Index: src/opts/SkNx_neon.h
|
| diff --git a/src/opts/SkNx_neon.h b/src/opts/SkNx_neon.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..01ea67c5d7a2211ddf8612d2b68e1cec0d022999
|
| --- /dev/null
|
| +++ b/src/opts/SkNx_neon.h
|
| @@ -0,0 +1,257 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#ifndef SkNx_neon_DEFINED
|
| +#define SkNx_neon_DEFINED
|
| +
|
| +#include <arm_neon.h>
|
| +
|
| +template <>
|
| +class SkNi<2, int32_t> {
|
| +public:
|
| + SkNi(int32x2_t vec) : fVec(vec) {}
|
| +
|
| + SkNi() {}
|
| + bool allTrue() const { return fVec[0] && fVec[1]; }
|
| + bool anyTrue() const { return fVec[0] || fVec[1]; }
|
| +private:
|
| + int32x2_t fVec;
|
| +};
|
| +
|
| +template <>
|
| +class SkNi<4, int32_t> {
|
| +public:
|
| + SkNi(int32x4_t vec) : fVec(vec) {}
|
| +
|
| + SkNi() {}
|
| + bool allTrue() const { return fVec[0] && fVec[1] && fVec[2] && fVec[3]; }
|
| + bool anyTrue() const { return fVec[0] || fVec[1] || fVec[2] || fVec[3]; }
|
| +private:
|
| + int32x4_t fVec;
|
| +};
|
| +
|
| +template <>
|
| +class SkNf<2, float> {
|
| + typedef SkNi<2, int32_t> Ni;
|
| +public:
|
| + SkNf(float32x2_t vec) : fVec(vec) {}
|
| +
|
| + SkNf() {}
|
| + explicit SkNf(float val) : fVec(vdup_n_f32(val)) {}
|
| + static SkNf Load(const float vals[2]) { return vld1_f32(vals); }
|
| + SkNf(float a, float b) { fVec = (float32x2_t) { a, b }; }
|
| +
|
| + void store(float vals[2]) const { vst1_f32(vals, fVec); }
|
| +
|
| + SkNf approxInvert() const {
|
| + float32x2_t est0 = vrecpe_f32(fVec),
|
| + est1 = vmul_f32(vrecps_f32(est0, fVec), est0);
|
| + return est1;
|
| + }
|
| + SkNf invert() const {
|
| + float32x2_t est1 = this->approxInvert().fVec,
|
| + est2 = vmul_f32(vrecps_f32(est1, fVec), est1);
|
| + return est2;
|
| + }
|
| +
|
| + SkNf operator + (const SkNf& o) const { return vadd_f32(fVec, o.fVec); }
|
| + SkNf operator - (const SkNf& o) const { return vsub_f32(fVec, o.fVec); }
|
| + SkNf operator * (const SkNf& o) const { return vmul_f32(fVec, o.fVec); }
|
| + SkNf operator / (const SkNf& o) const {
|
| + #if defined(SK_CPU_ARM64)
|
| + return vdiv_f32(fVec, o.fVec);
|
| + #else
|
| + return vmul_f32(fVec, o.invert().fVec);
|
| + #endif
|
| + }
|
| +
|
| + Ni operator == (const SkNf& o) const { return vreinterpret_s32_u32(vceq_f32(fVec, o.fVec)); }
|
| + Ni operator < (const SkNf& o) const { return vreinterpret_s32_u32(vclt_f32(fVec, o.fVec)); }
|
| + Ni operator > (const SkNf& o) const { return vreinterpret_s32_u32(vcgt_f32(fVec, o.fVec)); }
|
| + Ni operator <= (const SkNf& o) const { return vreinterpret_s32_u32(vcle_f32(fVec, o.fVec)); }
|
| + Ni operator >= (const SkNf& o) const { return vreinterpret_s32_u32(vcge_f32(fVec, o.fVec)); }
|
| + Ni operator != (const SkNf& o) const {
|
| + return vreinterpret_s32_u32(vmvn_u32(vceq_f32(fVec, o.fVec)));
|
| + }
|
| +
|
| + static SkNf Min(const SkNf& l, const SkNf& r) { return vmin_f32(l.fVec, r.fVec); }
|
| + static SkNf Max(const SkNf& l, const SkNf& r) { return vmax_f32(l.fVec, r.fVec); }
|
| +
|
| + SkNf rsqrt() const {
|
| + float32x2_t est0 = vrsqrte_f32(fVec),
|
| + est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
|
| + return est1;
|
| + }
|
| +
|
| + SkNf sqrt() const {
|
| + #if defined(SK_CPU_ARM64)
|
| + return vsqrt_f32(fVec);
|
| + #else
|
| + float32x2_t est1 = this->rsqrt().fVec,
|
| + // An extra step of Newton's method to refine the estimate of 1/sqrt(this).
|
| + est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
|
| + return vmul_f32(fVec, est2);
|
| + #endif
|
| + }
|
| +
|
| + float operator[] (int k) const {
|
| + SkASSERT(0 <= k && k < 2);
|
| + return fVec[k];
|
| + }
|
| +
|
| +private:
|
| + float32x2_t fVec;
|
| +};
|
| +
|
| +#if defined(SK_CPU_ARM64)
|
| +template <>
|
| +class SkNi<2, int64_t> {
|
| +public:
|
| + SkNi(int64x2_t vec) : fVec(vec) {}
|
| +
|
| + SkNi() {}
|
| + bool allTrue() const { return fVec[0] && fVec[1]; }
|
| + bool anyTrue() const { return fVec[0] || fVec[1]; }
|
| +private:
|
| + int64x2_t fVec;
|
| +};
|
| +
|
| +template <>
|
| +class SkNf<2, double> {
|
| + typedef SkNi<2, int64_t> Ni;
|
| +public:
|
| + SkNf(float64x2_t vec) : fVec(vec) {}
|
| +
|
| + SkNf() {}
|
| + explicit SkNf(double val) : fVec(vdupq_n_f64(val)) {}
|
| + static SkNf Load(const double vals[2]) { return vld1q_f64(vals); }
|
| + SkNf(double a, double b) { fVec = (float64x2_t) { a, b }; }
|
| +
|
| + void store(double vals[2]) const { vst1q_f64(vals, fVec); }
|
| +
|
| + SkNf operator + (const SkNf& o) const { return vaddq_f64(fVec, o.fVec); }
|
| + SkNf operator - (const SkNf& o) const { return vsubq_f64(fVec, o.fVec); }
|
| + SkNf operator * (const SkNf& o) const { return vmulq_f64(fVec, o.fVec); }
|
| + SkNf operator / (const SkNf& o) const { return vdivq_f64(fVec, o.fVec); }
|
| +
|
| + Ni operator == (const SkNf& o) const { return vreinterpretq_s64_u64(vceqq_f64(fVec, o.fVec)); }
|
| + Ni operator < (const SkNf& o) const { return vreinterpretq_s64_u64(vcltq_f64(fVec, o.fVec)); }
|
| + Ni operator > (const SkNf& o) const { return vreinterpretq_s64_u64(vcgtq_f64(fVec, o.fVec)); }
|
| + Ni operator <= (const SkNf& o) const { return vreinterpretq_s64_u64(vcleq_f64(fVec, o.fVec)); }
|
| + Ni operator >= (const SkNf& o) const { return vreinterpretq_s64_u64(vcgeq_f64(fVec, o.fVec)); }
|
| + Ni operator != (const SkNf& o) const {
|
| + return vreinterpretq_s64_u32(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(fVec, o.fVec))));
|
| + }
|
| +
|
| + static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f64(l.fVec, r.fVec); }
|
| + static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f64(l.fVec, r.fVec); }
|
| +
|
| + SkNf sqrt() const { return vsqrtq_f64(fVec); }
|
| + SkNf rsqrt() const {
|
| + float64x2_t est0 = vrsqrteq_f64(fVec),
|
| + est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0);
|
| + return est1;
|
| + }
|
| +
|
| + SkNf approxInvert() const {
|
| + float64x2_t est0 = vrecpeq_f64(fVec),
|
| + est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0);
|
| + return est1;
|
| + }
|
| +
|
| + SkNf invert() const {
|
| + float64x2_t est1 = this->approxInvert().fVec,
|
| + est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1),
|
| + est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2);
|
| + return est3;
|
| + }
|
| +
|
| + double operator[] (int k) const {
|
| + SkASSERT(0 <= k && k < 2);
|
| + return fVec[k];
|
| + }
|
| +
|
| +private:
|
| + float64x2_t fVec;
|
| +};
|
| +#endif//defined(SK_CPU_ARM64)
|
| +
|
| +template <>
|
| +class SkNf<4, float> {
|
| + typedef SkNi<4, int32_t> Ni;
|
| +public:
|
| + SkNf(float32x4_t vec) : fVec(vec) {}
|
| + float32x4_t vec() const { return fVec; }
|
| +
|
| + SkNf() {}
|
| + explicit SkNf(float val) : fVec(vdupq_n_f32(val)) {}
|
| + static SkNf Load(const float vals[4]) { return vld1q_f32(vals); }
|
| + SkNf(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; }
|
| +
|
| + void store(float vals[4]) const { vst1q_f32(vals, fVec); }
|
| +
|
| + SkNf approxInvert() const {
|
| + float32x4_t est0 = vrecpeq_f32(fVec),
|
| + est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0);
|
| + return est1;
|
| + }
|
| + SkNf invert() const {
|
| + float32x4_t est1 = this->approxInvert().fVec,
|
| + est2 = vmulq_f32(vrecpsq_f32(est1, fVec), est1);
|
| + return est2;
|
| + }
|
| +
|
| + SkNf operator + (const SkNf& o) const { return vaddq_f32(fVec, o.fVec); }
|
| + SkNf operator - (const SkNf& o) const { return vsubq_f32(fVec, o.fVec); }
|
| + SkNf operator * (const SkNf& o) const { return vmulq_f32(fVec, o.fVec); }
|
| + SkNf operator / (const SkNf& o) const {
|
| + #if defined(SK_CPU_ARM64)
|
| + return vdivq_f32(fVec, o.fVec);
|
| + #else
|
| + return vmulq_f32(fVec, o.invert().fVec);
|
| + #endif
|
| + }
|
| +
|
| + Ni operator == (const SkNf& o) const { return vreinterpretq_s32_u32(vceqq_f32(fVec, o.fVec)); }
|
| + Ni operator < (const SkNf& o) const { return vreinterpretq_s32_u32(vcltq_f32(fVec, o.fVec)); }
|
| + Ni operator > (const SkNf& o) const { return vreinterpretq_s32_u32(vcgtq_f32(fVec, o.fVec)); }
|
| + Ni operator <= (const SkNf& o) const { return vreinterpretq_s32_u32(vcleq_f32(fVec, o.fVec)); }
|
| + Ni operator >= (const SkNf& o) const { return vreinterpretq_s32_u32(vcgeq_f32(fVec, o.fVec)); }
|
| + Ni operator != (const SkNf& o) const {
|
| + return vreinterpretq_s32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec)));
|
| + }
|
| +
|
| + static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f32(l.fVec, r.fVec); }
|
| + static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f32(l.fVec, r.fVec); }
|
| +
|
| + SkNf rsqrt() const {
|
| + float32x4_t est0 = vrsqrteq_f32(fVec),
|
| + est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0);
|
| + return est1;
|
| + }
|
| +
|
| + SkNf sqrt() const {
|
| + #if defined(SK_CPU_ARM64)
|
| + return vsqrtq_f32(fVec);
|
| + #else
|
| + float32x4_t est1 = this->rsqrt().fVec,
|
| + // An extra step of Newton's method to refine the estimate of 1/sqrt(this).
|
| + est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1);
|
| + return vmulq_f32(fVec, est2);
|
| + #endif
|
| + }
|
| +
|
| + float operator[] (int k) const {
|
| + SkASSERT(0 <= k && k < 4);
|
| + return fVec[k];
|
| + }
|
| +
|
| +private:
|
| + float32x4_t fVec;
|
| +};
|
| +
|
| +#endif//SkNx_neon_DEFINED
|
|
|