Chromium Code Reviews

Unified Diff: ui/gfx/transform.cc

Issue 1047463002: Determine face orientation in (x, y: w) projected space (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments.
Jump to:
View side-by-side diff with in-line comments
« no previous file with comments | « cc/trees/layer_tree_host_common.cc ('k') | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: ui/gfx/transform.cc
diff --git a/ui/gfx/transform.cc b/ui/gfx/transform.cc
index 33946cba67f07a79f9330b3dd1c7eea009ce6d7d..574d85a3dc1628889fb478d84b72e330e072ca0b 100644
--- a/ui/gfx/transform.cc
+++ b/ui/gfx/transform.cc
@@ -258,60 +258,76 @@ bool Transform::IsIdentityOrIntegerTranslation() const {
bool Transform::IsBackFaceVisible() const {
// Compute whether a layer with a forward-facing normal of (0, 0, 1, 0)
// would have its back face visible after applying the transform.
- if (matrix_.isIdentity())
- return false;
- // This is done by transforming the normal and seeing if the resulting z
- // value is positive or negative. However, note that transforming a normal
- // actually requires using the inverse-transpose of the original transform.
+ // Case 1: Shortcut if simple translate and scale.
+ if (!(matrix_.getType() & SkMatrix44::kAffine_Mask))
+ return matrix_.get(2, 2) < 0;
+
+ // Case 2: Determine back face in the projected space.
//
- // We can avoid inverting and transposing the matrix since we know we want
- // to transform only the specific normal vector (0, 0, 1, 0). In this case,
- // we only need the 3rd row, 3rd column of the inverse-transpose. We can
- // calculate only the 3rd row 3rd column element of the inverse, skipping
- // everything else.
+ // This is done by projecting an arbitrary vector that points to the
+ // front side of the plane. For simplicity we can use (0, 0, 1, 0).
+ // Note that this projected vector will no longer be the normal vector
+ // of the projected plane. To avoid confusion, it will be referred as
+ // the front-face indicator.
//
- // For more information, refer to:
- // http://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution
+ // Then we find the normal vector of the projected plane. This vector
+ // is not normalized and does not indicate the face direction. Compute
+ // the dot product of the front-face indicator by the normal vector to
+ // determine which face is the front face.
//
-
- double determinant = matrix_.determinant();
-
- // If matrix was not invertible, then just assume back face is not visible.
- if (std::abs(determinant) <= kEpsilon)
+ // The face that faces the half-space where the origin resides is visible.
+
+ // Compute the normal vector of the projected plane.
+ double normal_x = matrix_.get(1, 0) * matrix_.get(3, 1) -
+ matrix_.get(3, 0) * matrix_.get(1, 1);
+ double normal_y = matrix_.get(3, 0) * matrix_.get(0, 1) -
+ matrix_.get(0, 0) * matrix_.get(3, 1);
+ double normal_w = matrix_.get(0, 0) * matrix_.get(1, 1) -
+ matrix_.get(1, 0) * matrix_.get(0, 1);
+
+ // Compute the determinant to determine which half-space the origin resides.
+ // Note that the origin resides in the half-space of the opposite sign.
+ double determinant = normal_x * matrix_.get(0, 3) +
+ normal_y * matrix_.get(1, 3) +
+ normal_w * matrix_.get(3, 3);
+
+ // The origin coplanes the projected plane or the plane is degenerate.
+ if (!determinant)
return false;
- // Compute the cofactor of the 3rd row, 3rd column.
- double cofactor_part_1 =
- matrix_.get(0, 0) * matrix_.get(1, 1) * matrix_.get(3, 3);
-
- double cofactor_part_2 =
- matrix_.get(0, 1) * matrix_.get(1, 3) * matrix_.get(3, 0);
+ // Compute the dot product of the normal vector by the front-face indicator.
+ double face_direction = normal_x * matrix_.get(0, 2) +
+ normal_y * matrix_.get(1, 2) +
+ normal_w * matrix_.get(3, 2);
- double cofactor_part_3 =
- matrix_.get(0, 3) * matrix_.get(1, 0) * matrix_.get(3, 1);
+ // We are seeing the back face if the front face faces the opposite
+ // half-space the origin resides.
+ if (face_direction)
+ return determinant * face_direction > 0;
- double cofactor_part_4 =
- matrix_.get(0, 0) * matrix_.get(1, 3) * matrix_.get(3, 1);
-
- double cofactor_part_5 =
- matrix_.get(0, 1) * matrix_.get(1, 0) * matrix_.get(3, 3);
-
- double cofactor_part_6 =
- matrix_.get(0, 3) * matrix_.get(1, 1) * matrix_.get(3, 0);
-
- double cofactor33 =
- cofactor_part_1 +
- cofactor_part_2 +
- cofactor_part_3 -
- cofactor_part_4 -
- cofactor_part_5 -
- cofactor_part_6;
-
- // Technically the transformed z component is cofactor33 / determinant. But
- // we can avoid the costly division because we only care about the resulting
- // +/- sign; we can check this equivalently by multiplication.
- return cofactor33 * determinant < 0;
+ // Case 3: Front-face indicator is 0.
+ //
+ // This can happen if the z component does not participate the projection,
+ // which means the original space gets flattened there is no front or back.
+ // A notable example is no perspective (= infinite perspective).
+ //
+ // Try again as if a perspective that approaches infinite is applied.
+ // | 1 0 0 0 |
+ // lim | 0 1 0 0 |
+ // e->+0 | 0 0 1 0 |
+ // | 0 0 -e 1 |
+
+ double normal_x_epsilon = matrix_.get(1, 0) * -matrix_.get(2, 1) -
+ -matrix_.get(2, 0) * matrix_.get(1, 1);
+ double normal_y_epsilon = -matrix_.get(2, 0) * matrix_.get(0, 1) -
+ matrix_.get(0, 0) * -matrix_.get(2, 1);
+
+ face_direction = normal_x_epsilon * matrix_.get(0, 2) +
+ normal_y_epsilon * matrix_.get(1, 2) +
+ normal_w * -matrix_.get(2, 2);
+
+ return determinant * face_direction > 0;
}
bool Transform::GetInverse(Transform* transform) const {
« no previous file with comments | « cc/trees/layer_tree_host_common.cc ('k') | no next file » | no next file with comments »

Powered by Google App Engine