Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(311)

Side by Side Diff: src/serialize.cc

Issue 1041743002: Serializer: move to a subfolder and clean up includes. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: removed OWNERS Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/serialize.h ('k') | src/snapshot.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/base/platform/platform.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/cpu-profiler.h"
13 #include "src/deoptimizer.h"
14 #include "src/execution.h"
15 #include "src/global-handles.h"
16 #include "src/ic/ic.h"
17 #include "src/ic/stub-cache.h"
18 #include "src/natives.h"
19 #include "src/objects.h"
20 #include "src/parser.h"
21 #include "src/runtime/runtime.h"
22 #include "src/serialize.h"
23 #include "src/snapshot.h"
24 #include "src/snapshot-source-sink.h"
25 #include "src/v8threads.h"
26 #include "src/version.h"
27
28 namespace v8 {
29 namespace internal {
30
31
32 // -----------------------------------------------------------------------------
33 // Coding of external references.
34
35
36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
37 ExternalReferenceTable* external_reference_table =
38 isolate->external_reference_table();
39 if (external_reference_table == NULL) {
40 external_reference_table = new ExternalReferenceTable(isolate);
41 isolate->set_external_reference_table(external_reference_table);
42 }
43 return external_reference_table;
44 }
45
46
47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
48 // Miscellaneous
49 Add(ExternalReference::roots_array_start(isolate).address(),
50 "Heap::roots_array_start()");
51 Add(ExternalReference::address_of_stack_limit(isolate).address(),
52 "StackGuard::address_of_jslimit()");
53 Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
54 "StackGuard::address_of_real_jslimit()");
55 Add(ExternalReference::new_space_start(isolate).address(),
56 "Heap::NewSpaceStart()");
57 Add(ExternalReference::new_space_mask(isolate).address(),
58 "Heap::NewSpaceMask()");
59 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
60 "Heap::NewSpaceAllocationLimitAddress()");
61 Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
62 "Heap::NewSpaceAllocationTopAddress()");
63 Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()");
64 Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
65 "Debug::step_in_fp_addr()");
66 Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
67 "mod_two_doubles");
68 // Keyed lookup cache.
69 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
70 "KeyedLookupCache::keys()");
71 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
72 "KeyedLookupCache::field_offsets()");
73 Add(ExternalReference::handle_scope_next_address(isolate).address(),
74 "HandleScope::next");
75 Add(ExternalReference::handle_scope_limit_address(isolate).address(),
76 "HandleScope::limit");
77 Add(ExternalReference::handle_scope_level_address(isolate).address(),
78 "HandleScope::level");
79 Add(ExternalReference::new_deoptimizer_function(isolate).address(),
80 "Deoptimizer::New()");
81 Add(ExternalReference::compute_output_frames_function(isolate).address(),
82 "Deoptimizer::ComputeOutputFrames()");
83 Add(ExternalReference::address_of_min_int().address(),
84 "LDoubleConstant::min_int");
85 Add(ExternalReference::address_of_one_half().address(),
86 "LDoubleConstant::one_half");
87 Add(ExternalReference::isolate_address(isolate).address(), "isolate");
88 Add(ExternalReference::address_of_negative_infinity().address(),
89 "LDoubleConstant::negative_infinity");
90 Add(ExternalReference::power_double_double_function(isolate).address(),
91 "power_double_double_function");
92 Add(ExternalReference::power_double_int_function(isolate).address(),
93 "power_double_int_function");
94 Add(ExternalReference::math_log_double_function(isolate).address(),
95 "std::log");
96 Add(ExternalReference::store_buffer_top(isolate).address(),
97 "store_buffer_top");
98 Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
99 Add(ExternalReference::get_date_field_function(isolate).address(),
100 "JSDate::GetField");
101 Add(ExternalReference::date_cache_stamp(isolate).address(),
102 "date_cache_stamp");
103 Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
104 "address_of_pending_message_obj");
105 Add(ExternalReference::get_make_code_young_function(isolate).address(),
106 "Code::MakeCodeYoung");
107 Add(ExternalReference::cpu_features().address(), "cpu_features");
108 Add(ExternalReference::old_pointer_space_allocation_top_address(isolate)
109 .address(),
110 "Heap::OldPointerSpaceAllocationTopAddress");
111 Add(ExternalReference::old_pointer_space_allocation_limit_address(isolate)
112 .address(),
113 "Heap::OldPointerSpaceAllocationLimitAddress");
114 Add(ExternalReference::old_data_space_allocation_top_address(isolate)
115 .address(),
116 "Heap::OldDataSpaceAllocationTopAddress");
117 Add(ExternalReference::old_data_space_allocation_limit_address(isolate)
118 .address(),
119 "Heap::OldDataSpaceAllocationLimitAddress");
120 Add(ExternalReference::allocation_sites_list_address(isolate).address(),
121 "Heap::allocation_sites_list_address()");
122 Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
123 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
124 "Code::MarkCodeAsExecuted");
125 Add(ExternalReference::is_profiling_address(isolate).address(),
126 "CpuProfiler::is_profiling");
127 Add(ExternalReference::scheduled_exception_address(isolate).address(),
128 "Isolate::scheduled_exception");
129 Add(ExternalReference::invoke_function_callback(isolate).address(),
130 "InvokeFunctionCallback");
131 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
132 "InvokeAccessorGetterCallback");
133 Add(ExternalReference::flush_icache_function(isolate).address(),
134 "CpuFeatures::FlushICache");
135 Add(ExternalReference::log_enter_external_function(isolate).address(),
136 "Logger::EnterExternal");
137 Add(ExternalReference::log_leave_external_function(isolate).address(),
138 "Logger::LeaveExternal");
139 Add(ExternalReference::address_of_minus_one_half().address(),
140 "double_constants.minus_one_half");
141 Add(ExternalReference::stress_deopt_count(isolate).address(),
142 "Isolate::stress_deopt_count_address()");
143
144 // Debug addresses
145 Add(ExternalReference::debug_after_break_target_address(isolate).address(),
146 "Debug::after_break_target_address()");
147 Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate)
148 .address(),
149 "Debug::restarter_frame_function_pointer_address()");
150 Add(ExternalReference::debug_is_active_address(isolate).address(),
151 "Debug::is_active_address()");
152
153 #ifndef V8_INTERPRETED_REGEXP
154 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
155 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
156 Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
157 "RegExpMacroAssembler*::CheckStackGuardState()");
158 Add(ExternalReference::re_grow_stack(isolate).address(),
159 "NativeRegExpMacroAssembler::GrowStack()");
160 Add(ExternalReference::re_word_character_map().address(),
161 "NativeRegExpMacroAssembler::word_character_map");
162 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
163 "RegExpStack::limit_address()");
164 Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
165 .address(),
166 "RegExpStack::memory_address()");
167 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
168 "RegExpStack::memory_size()");
169 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
170 "OffsetsVector::static_offsets_vector");
171 #endif // V8_INTERPRETED_REGEXP
172
173 // The following populates all of the different type of external references
174 // into the ExternalReferenceTable.
175 //
176 // NOTE: This function was originally 100k of code. It has since been
177 // rewritten to be mostly table driven, as the callback macro style tends to
178 // very easily cause code bloat. Please be careful in the future when adding
179 // new references.
180
181 struct RefTableEntry {
182 uint16_t id;
183 const char* name;
184 };
185
186 static const RefTableEntry c_builtins[] = {
187 #define DEF_ENTRY_C(name, ignored) \
188 { Builtins::c_##name, "Builtins::" #name } \
189 ,
190 BUILTIN_LIST_C(DEF_ENTRY_C)
191 #undef DEF_ENTRY_C
192 };
193
194 for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
195 ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
196 isolate);
197 Add(ref.address(), c_builtins[i].name);
198 }
199
200 static const RefTableEntry builtins[] = {
201 #define DEF_ENTRY_C(name, ignored) \
202 { Builtins::k##name, "Builtins::" #name } \
203 ,
204 #define DEF_ENTRY_A(name, i1, i2, i3) \
205 { Builtins::k##name, "Builtins::" #name } \
206 ,
207 BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
208 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
209 #undef DEF_ENTRY_C
210 #undef DEF_ENTRY_A
211 };
212
213 for (unsigned i = 0; i < arraysize(builtins); ++i) {
214 ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
215 Add(ref.address(), builtins[i].name);
216 }
217
218 static const RefTableEntry runtime_functions[] = {
219 #define RUNTIME_ENTRY(name, i1, i2) \
220 { Runtime::k##name, "Runtime::" #name } \
221 ,
222 FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
223 #undef RUNTIME_ENTRY
224 };
225
226 for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
227 ExternalReference ref(
228 static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
229 Add(ref.address(), runtime_functions[i].name);
230 }
231
232 static const RefTableEntry inline_caches[] = {
233 #define IC_ENTRY(name) \
234 { IC::k##name, "IC::" #name } \
235 ,
236 IC_UTIL_LIST(IC_ENTRY)
237 #undef IC_ENTRY
238 };
239
240 for (unsigned i = 0; i < arraysize(inline_caches); ++i) {
241 ExternalReference ref(
242 IC_Utility(static_cast<IC::UtilityId>(inline_caches[i].id)), isolate);
243 Add(ref.address(), runtime_functions[i].name);
244 }
245
246 // Stat counters
247 struct StatsRefTableEntry {
248 StatsCounter* (Counters::*counter)();
249 const char* name;
250 };
251
252 static const StatsRefTableEntry stats_ref_table[] = {
253 #define COUNTER_ENTRY(name, caption) \
254 { &Counters::name, "Counters::" #name } \
255 ,
256 STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
257 #undef COUNTER_ENTRY
258 };
259
260 Counters* counters = isolate->counters();
261 for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
262 // To make sure the indices are not dependent on whether counters are
263 // enabled, use a dummy address as filler.
264 Address address = NotAvailable();
265 StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
266 if (counter->Enabled()) {
267 address = reinterpret_cast<Address>(counter->GetInternalPointer());
268 }
269 Add(address, stats_ref_table[i].name);
270 }
271
272 // Top addresses
273 static const char* address_names[] = {
274 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
275 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
276 #undef BUILD_NAME_LITERAL
277 };
278
279 for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
280 Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
281 address_names[i]);
282 }
283
284 // Accessors
285 struct AccessorRefTable {
286 Address address;
287 const char* name;
288 };
289
290 static const AccessorRefTable accessors[] = {
291 #define ACCESSOR_INFO_DECLARATION(name) \
292 { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
293 , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"},
294 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
295 #undef ACCESSOR_INFO_DECLARATION
296 };
297
298 for (unsigned i = 0; i < arraysize(accessors); ++i) {
299 Add(accessors[i].address, accessors[i].name);
300 }
301
302 StubCache* stub_cache = isolate->stub_cache();
303
304 // Stub cache tables
305 Add(stub_cache->key_reference(StubCache::kPrimary).address(),
306 "StubCache::primary_->key");
307 Add(stub_cache->value_reference(StubCache::kPrimary).address(),
308 "StubCache::primary_->value");
309 Add(stub_cache->map_reference(StubCache::kPrimary).address(),
310 "StubCache::primary_->map");
311 Add(stub_cache->key_reference(StubCache::kSecondary).address(),
312 "StubCache::secondary_->key");
313 Add(stub_cache->value_reference(StubCache::kSecondary).address(),
314 "StubCache::secondary_->value");
315 Add(stub_cache->map_reference(StubCache::kSecondary).address(),
316 "StubCache::secondary_->map");
317
318 // Runtime entries
319 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
320 "HandleScope::DeleteExtensions");
321 Add(ExternalReference::incremental_marking_record_write_function(isolate)
322 .address(),
323 "IncrementalMarking::RecordWrite");
324 Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
325 "StoreBuffer::StoreBufferOverflow");
326
327 // Add a small set of deopt entry addresses to encoder without generating the
328 // deopt table code, which isn't possible at deserialization time.
329 HandleScope scope(isolate);
330 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
331 Address address = Deoptimizer::GetDeoptimizationEntry(
332 isolate,
333 entry,
334 Deoptimizer::LAZY,
335 Deoptimizer::CALCULATE_ENTRY_ADDRESS);
336 Add(address, "lazy_deopt");
337 }
338 }
339
340
341 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
342 map_ = isolate->external_reference_map();
343 if (map_ != NULL) return;
344 map_ = new HashMap(HashMap::PointersMatch);
345 ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
346 for (int i = 0; i < table->size(); ++i) {
347 Address addr = table->address(i);
348 if (addr == ExternalReferenceTable::NotAvailable()) continue;
349 // We expect no duplicate external references entries in the table.
350 DCHECK_NULL(map_->Lookup(addr, Hash(addr), false));
351 map_->Lookup(addr, Hash(addr), true)->value = reinterpret_cast<void*>(i);
352 }
353 isolate->set_external_reference_map(map_);
354 }
355
356
357 uint32_t ExternalReferenceEncoder::Encode(Address address) const {
358 DCHECK_NOT_NULL(address);
359 HashMap::Entry* entry =
360 const_cast<HashMap*>(map_)->Lookup(address, Hash(address), false);
361 DCHECK_NOT_NULL(entry);
362 return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
363 }
364
365
366 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
367 Address address) const {
368 HashMap::Entry* entry =
369 const_cast<HashMap*>(map_)->Lookup(address, Hash(address), false);
370 if (entry == NULL) return "<unknown>";
371 uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
372 return ExternalReferenceTable::instance(isolate)->name(i);
373 }
374
375
376 RootIndexMap::RootIndexMap(Isolate* isolate) {
377 map_ = isolate->root_index_map();
378 if (map_ != NULL) return;
379 map_ = new HashMap(HashMap::PointersMatch);
380 Object** root_array = isolate->heap()->roots_array_start();
381 for (uint32_t i = 0; i < Heap::kStrongRootListLength; i++) {
382 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i);
383 Object* root = root_array[root_index];
384 // Omit root entries that can be written after initialization. They must
385 // not be referenced through the root list in the snapshot.
386 if (root->IsHeapObject() &&
387 isolate->heap()->RootCanBeTreatedAsConstant(root_index)) {
388 HeapObject* heap_object = HeapObject::cast(root);
389 HashMap::Entry* entry = LookupEntry(map_, heap_object, false);
390 if (entry != NULL) {
391 // Some are initialized to a previous value in the root list.
392 DCHECK_LT(GetValue(entry), i);
393 } else {
394 SetValue(LookupEntry(map_, heap_object, true), i);
395 }
396 }
397 }
398 isolate->set_root_index_map(map_);
399 }
400
401
402 class CodeAddressMap: public CodeEventLogger {
403 public:
404 explicit CodeAddressMap(Isolate* isolate)
405 : isolate_(isolate) {
406 isolate->logger()->addCodeEventListener(this);
407 }
408
409 virtual ~CodeAddressMap() {
410 isolate_->logger()->removeCodeEventListener(this);
411 }
412
413 virtual void CodeMoveEvent(Address from, Address to) {
414 address_to_name_map_.Move(from, to);
415 }
416
417 virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
418 }
419
420 virtual void CodeDeleteEvent(Address from) {
421 address_to_name_map_.Remove(from);
422 }
423
424 const char* Lookup(Address address) {
425 return address_to_name_map_.Lookup(address);
426 }
427
428 private:
429 class NameMap {
430 public:
431 NameMap() : impl_(HashMap::PointersMatch) {}
432
433 ~NameMap() {
434 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
435 DeleteArray(static_cast<const char*>(p->value));
436 }
437 }
438
439 void Insert(Address code_address, const char* name, int name_size) {
440 HashMap::Entry* entry = FindOrCreateEntry(code_address);
441 if (entry->value == NULL) {
442 entry->value = CopyName(name, name_size);
443 }
444 }
445
446 const char* Lookup(Address code_address) {
447 HashMap::Entry* entry = FindEntry(code_address);
448 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
449 }
450
451 void Remove(Address code_address) {
452 HashMap::Entry* entry = FindEntry(code_address);
453 if (entry != NULL) {
454 DeleteArray(static_cast<char*>(entry->value));
455 RemoveEntry(entry);
456 }
457 }
458
459 void Move(Address from, Address to) {
460 if (from == to) return;
461 HashMap::Entry* from_entry = FindEntry(from);
462 DCHECK(from_entry != NULL);
463 void* value = from_entry->value;
464 RemoveEntry(from_entry);
465 HashMap::Entry* to_entry = FindOrCreateEntry(to);
466 DCHECK(to_entry->value == NULL);
467 to_entry->value = value;
468 }
469
470 private:
471 static char* CopyName(const char* name, int name_size) {
472 char* result = NewArray<char>(name_size + 1);
473 for (int i = 0; i < name_size; ++i) {
474 char c = name[i];
475 if (c == '\0') c = ' ';
476 result[i] = c;
477 }
478 result[name_size] = '\0';
479 return result;
480 }
481
482 HashMap::Entry* FindOrCreateEntry(Address code_address) {
483 return impl_.Lookup(code_address, ComputePointerHash(code_address), true);
484 }
485
486 HashMap::Entry* FindEntry(Address code_address) {
487 return impl_.Lookup(code_address,
488 ComputePointerHash(code_address),
489 false);
490 }
491
492 void RemoveEntry(HashMap::Entry* entry) {
493 impl_.Remove(entry->key, entry->hash);
494 }
495
496 HashMap impl_;
497
498 DISALLOW_COPY_AND_ASSIGN(NameMap);
499 };
500
501 virtual void LogRecordedBuffer(Code* code,
502 SharedFunctionInfo*,
503 const char* name,
504 int length) {
505 address_to_name_map_.Insert(code->address(), name, length);
506 }
507
508 NameMap address_to_name_map_;
509 Isolate* isolate_;
510 };
511
512
513 void Deserializer::DecodeReservation(
514 Vector<const SerializedData::Reservation> res) {
515 DCHECK_EQ(0, reservations_[NEW_SPACE].length());
516 STATIC_ASSERT(NEW_SPACE == 0);
517 int current_space = NEW_SPACE;
518 for (auto& r : res) {
519 reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
520 if (r.is_last()) current_space++;
521 }
522 DCHECK_EQ(kNumberOfSpaces, current_space);
523 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
524 }
525
526
527 void Deserializer::FlushICacheForNewCodeObjects() {
528 PageIterator it(isolate_->heap()->code_space());
529 while (it.has_next()) {
530 Page* p = it.next();
531 CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start());
532 }
533 }
534
535
536 bool Deserializer::ReserveSpace() {
537 #ifdef DEBUG
538 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
539 CHECK(reservations_[i].length() > 0);
540 }
541 #endif // DEBUG
542 if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
543 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
544 high_water_[i] = reservations_[i][0].start;
545 }
546 return true;
547 }
548
549
550 void Deserializer::Initialize(Isolate* isolate) {
551 DCHECK_NULL(isolate_);
552 DCHECK_NOT_NULL(isolate);
553 isolate_ = isolate;
554 DCHECK_NULL(external_reference_table_);
555 external_reference_table_ = ExternalReferenceTable::instance(isolate);
556 CHECK_EQ(magic_number_,
557 SerializedData::ComputeMagicNumber(external_reference_table_));
558 }
559
560
561 void Deserializer::Deserialize(Isolate* isolate) {
562 Initialize(isolate);
563 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
564 // No active threads.
565 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
566 // No active handles.
567 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
568 isolate_->heap()->IterateSmiRoots(this);
569 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
570 isolate_->heap()->RepairFreeListsAfterDeserialization();
571 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
572
573 isolate_->heap()->set_native_contexts_list(
574 isolate_->heap()->undefined_value());
575 isolate_->heap()->set_array_buffers_list(
576 isolate_->heap()->undefined_value());
577 isolate->heap()->set_new_array_buffer_views_list(
578 isolate_->heap()->undefined_value());
579
580 // The allocation site list is build during root iteration, but if no sites
581 // were encountered then it needs to be initialized to undefined.
582 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
583 isolate_->heap()->set_allocation_sites_list(
584 isolate_->heap()->undefined_value());
585 }
586
587 // Update data pointers to the external strings containing natives sources.
588 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
589 Object* source = isolate_->heap()->natives_source_cache()->get(i);
590 if (!source->IsUndefined()) {
591 ExternalOneByteString::cast(source)->update_data_cache();
592 }
593 }
594
595 FlushICacheForNewCodeObjects();
596
597 // Issue code events for newly deserialized code objects.
598 LOG_CODE_EVENT(isolate_, LogCodeObjects());
599 LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
600 }
601
602
603 MaybeHandle<Object> Deserializer::DeserializePartial(
604 Isolate* isolate, Handle<JSGlobalProxy> global_proxy,
605 Handle<FixedArray>* outdated_contexts_out) {
606 Initialize(isolate);
607 if (!ReserveSpace()) {
608 V8::FatalProcessOutOfMemory("deserialize context");
609 return MaybeHandle<Object>();
610 }
611
612 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
613 attached_objects[kGlobalProxyReference] = global_proxy;
614 SetAttachedObjects(attached_objects);
615
616 DisallowHeapAllocation no_gc;
617 // Keep track of the code space start and end pointers in case new
618 // code objects were unserialized
619 OldSpace* code_space = isolate_->heap()->code_space();
620 Address start_address = code_space->top();
621 Object* root;
622 Object* outdated_contexts;
623 VisitPointer(&root);
624 VisitPointer(&outdated_contexts);
625
626 // There's no code deserialized here. If this assert fires
627 // then that's changed and logging should be added to notify
628 // the profiler et al of the new code.
629 CHECK_EQ(start_address, code_space->top());
630 CHECK(outdated_contexts->IsFixedArray());
631 *outdated_contexts_out =
632 Handle<FixedArray>(FixedArray::cast(outdated_contexts), isolate);
633 return Handle<Object>(root, isolate);
634 }
635
636
637 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
638 Isolate* isolate) {
639 Initialize(isolate);
640 if (!ReserveSpace()) {
641 return Handle<SharedFunctionInfo>();
642 } else {
643 deserializing_user_code_ = true;
644 DisallowHeapAllocation no_gc;
645 Object* root;
646 VisitPointer(&root);
647 return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
648 }
649 }
650
651
652 Deserializer::~Deserializer() {
653 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
654 // DCHECK(source_.AtEOF());
655 attached_objects_.Dispose();
656 }
657
658
659 // This is called on the roots. It is the driver of the deserialization
660 // process. It is also called on the body of each function.
661 void Deserializer::VisitPointers(Object** start, Object** end) {
662 // The space must be new space. Any other space would cause ReadChunk to try
663 // to update the remembered using NULL as the address.
664 ReadData(start, end, NEW_SPACE, NULL);
665 }
666
667
668 void Deserializer::RelinkAllocationSite(AllocationSite* site) {
669 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
670 site->set_weak_next(isolate_->heap()->undefined_value());
671 } else {
672 site->set_weak_next(isolate_->heap()->allocation_sites_list());
673 }
674 isolate_->heap()->set_allocation_sites_list(site);
675 }
676
677
678 // Used to insert a deserialized internalized string into the string table.
679 class StringTableInsertionKey : public HashTableKey {
680 public:
681 explicit StringTableInsertionKey(String* string)
682 : string_(string), hash_(HashForObject(string)) {
683 DCHECK(string->IsInternalizedString());
684 }
685
686 bool IsMatch(Object* string) OVERRIDE {
687 // We know that all entries in a hash table had their hash keys created.
688 // Use that knowledge to have fast failure.
689 if (hash_ != HashForObject(string)) return false;
690 // We want to compare the content of two internalized strings here.
691 return string_->SlowEquals(String::cast(string));
692 }
693
694 uint32_t Hash() OVERRIDE { return hash_; }
695
696 uint32_t HashForObject(Object* key) OVERRIDE {
697 return String::cast(key)->Hash();
698 }
699
700 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate)
701 OVERRIDE {
702 return handle(string_, isolate);
703 }
704
705 String* string_;
706 uint32_t hash_;
707 };
708
709
710 HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) {
711 if (obj->IsString()) {
712 String* string = String::cast(obj);
713 // Uninitialize hash field as the hash seed may have changed.
714 string->set_hash_field(String::kEmptyHashField);
715 if (string->IsInternalizedString()) {
716 DisallowHeapAllocation no_gc;
717 HandleScope scope(isolate_);
718 StringTableInsertionKey key(string);
719 String* canonical = *StringTable::LookupKey(isolate_, &key);
720 string->SetForwardedInternalizedString(canonical);
721 return canonical;
722 }
723 } else if (obj->IsScript()) {
724 Script::cast(obj)->set_id(isolate_->heap()->NextScriptId());
725 }
726 return obj;
727 }
728
729
730 HeapObject* Deserializer::GetBackReferencedObject(int space) {
731 HeapObject* obj;
732 BackReference back_reference(source_.GetInt());
733 if (space == LO_SPACE) {
734 CHECK(back_reference.chunk_index() == 0);
735 uint32_t index = back_reference.large_object_index();
736 obj = deserialized_large_objects_[index];
737 } else {
738 DCHECK(space < kNumberOfPreallocatedSpaces);
739 uint32_t chunk_index = back_reference.chunk_index();
740 DCHECK_LE(chunk_index, current_chunk_[space]);
741 uint32_t chunk_offset = back_reference.chunk_offset();
742 obj = HeapObject::FromAddress(reservations_[space][chunk_index].start +
743 chunk_offset);
744 }
745 if (deserializing_user_code() && obj->IsInternalizedString()) {
746 obj = String::cast(obj)->GetForwardedInternalizedString();
747 }
748 hot_objects_.Add(obj);
749 return obj;
750 }
751
752
753 // This routine writes the new object into the pointer provided and then
754 // returns true if the new object was in young space and false otherwise.
755 // The reason for this strange interface is that otherwise the object is
756 // written very late, which means the FreeSpace map is not set up by the
757 // time we need to use it to mark the space at the end of a page free.
758 void Deserializer::ReadObject(int space_number, Object** write_back) {
759 Address address;
760 HeapObject* obj;
761 int next_int = source_.GetInt();
762
763 bool double_align = false;
764 #ifndef V8_HOST_ARCH_64_BIT
765 double_align = next_int == kDoubleAlignmentSentinel;
766 if (double_align) next_int = source_.GetInt();
767 #endif
768
769 DCHECK_NE(kDoubleAlignmentSentinel, next_int);
770 int size = next_int << kObjectAlignmentBits;
771 int reserved_size = size + (double_align ? kPointerSize : 0);
772 address = Allocate(space_number, reserved_size);
773 obj = HeapObject::FromAddress(address);
774 if (double_align) {
775 obj = isolate_->heap()->DoubleAlignForDeserialization(obj, reserved_size);
776 address = obj->address();
777 }
778
779 isolate_->heap()->OnAllocationEvent(obj, size);
780 Object** current = reinterpret_cast<Object**>(address);
781 Object** limit = current + (size >> kPointerSizeLog2);
782 if (FLAG_log_snapshot_positions) {
783 LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
784 }
785 ReadData(current, limit, space_number, address);
786
787 // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
788 // as a (weak) root. If this root is relocated correctly,
789 // RelinkAllocationSite() isn't necessary.
790 if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj));
791
792 // Fix up strings from serialized user code.
793 if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj);
794
795 Object* write_back_obj = obj;
796 UnalignedCopy(write_back, &write_back_obj);
797 #ifdef DEBUG
798 if (obj->IsCode()) {
799 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
800 #ifdef VERIFY_HEAP
801 obj->ObjectVerify();
802 #endif // VERIFY_HEAP
803 } else {
804 DCHECK(space_number != CODE_SPACE);
805 }
806 #endif // DEBUG
807 }
808
809
810 // We know the space requirements before deserialization and can
811 // pre-allocate that reserved space. During deserialization, all we need
812 // to do is to bump up the pointer for each space in the reserved
813 // space. This is also used for fixing back references.
814 // We may have to split up the pre-allocation into several chunks
815 // because it would not fit onto a single page. We do not have to keep
816 // track of when to move to the next chunk. An opcode will signal this.
817 // Since multiple large objects cannot be folded into one large object
818 // space allocation, we have to do an actual allocation when deserializing
819 // each large object. Instead of tracking offset for back references, we
820 // reference large objects by index.
821 Address Deserializer::Allocate(int space_index, int size) {
822 if (space_index == LO_SPACE) {
823 AlwaysAllocateScope scope(isolate_);
824 LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
825 Executability exec = static_cast<Executability>(source_.Get());
826 AllocationResult result = lo_space->AllocateRaw(size, exec);
827 HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
828 deserialized_large_objects_.Add(obj);
829 return obj->address();
830 } else {
831 DCHECK(space_index < kNumberOfPreallocatedSpaces);
832 Address address = high_water_[space_index];
833 DCHECK_NOT_NULL(address);
834 high_water_[space_index] += size;
835 #ifdef DEBUG
836 // Assert that the current reserved chunk is still big enough.
837 const Heap::Reservation& reservation = reservations_[space_index];
838 int chunk_index = current_chunk_[space_index];
839 CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
840 #endif
841 return address;
842 }
843 }
844
845
846 void Deserializer::ReadData(Object** current, Object** limit, int source_space,
847 Address current_object_address) {
848 Isolate* const isolate = isolate_;
849 // Write barrier support costs around 1% in startup time. In fact there
850 // are no new space objects in current boot snapshots, so it's not needed,
851 // but that may change.
852 bool write_barrier_needed =
853 (current_object_address != NULL && source_space != NEW_SPACE &&
854 source_space != CELL_SPACE && source_space != CODE_SPACE &&
855 source_space != OLD_DATA_SPACE);
856 while (current < limit) {
857 byte data = source_.Get();
858 switch (data) {
859 #define CASE_STATEMENT(where, how, within, space_number) \
860 case where + how + within + space_number: \
861 STATIC_ASSERT((where & ~kWhereMask) == 0); \
862 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
863 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
864 STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
865
866 #define CASE_BODY(where, how, within, space_number_if_any) \
867 { \
868 bool emit_write_barrier = false; \
869 bool current_was_incremented = false; \
870 int space_number = space_number_if_any == kAnyOldSpace \
871 ? (data & kSpaceMask) \
872 : space_number_if_any; \
873 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
874 ReadObject(space_number, current); \
875 emit_write_barrier = (space_number == NEW_SPACE); \
876 } else { \
877 Object* new_object = NULL; /* May not be a real Object pointer. */ \
878 if (where == kNewObject) { \
879 ReadObject(space_number, &new_object); \
880 } else if (where == kBackref) { \
881 emit_write_barrier = (space_number == NEW_SPACE); \
882 new_object = GetBackReferencedObject(data & kSpaceMask); \
883 } else if (where == kBackrefWithSkip) { \
884 int skip = source_.GetInt(); \
885 current = reinterpret_cast<Object**>( \
886 reinterpret_cast<Address>(current) + skip); \
887 emit_write_barrier = (space_number == NEW_SPACE); \
888 new_object = GetBackReferencedObject(data & kSpaceMask); \
889 } else if (where == kRootArray) { \
890 int root_id = source_.GetInt(); \
891 new_object = isolate->heap()->roots_array_start()[root_id]; \
892 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
893 } else if (where == kPartialSnapshotCache) { \
894 int cache_index = source_.GetInt(); \
895 new_object = isolate->partial_snapshot_cache()->at(cache_index); \
896 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
897 } else if (where == kExternalReference) { \
898 int skip = source_.GetInt(); \
899 current = reinterpret_cast<Object**>( \
900 reinterpret_cast<Address>(current) + skip); \
901 int reference_id = source_.GetInt(); \
902 Address address = external_reference_table_->address(reference_id); \
903 new_object = reinterpret_cast<Object*>(address); \
904 } else if (where == kAttachedReference) { \
905 int index = source_.GetInt(); \
906 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \
907 new_object = *attached_objects_[index]; \
908 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
909 } else { \
910 DCHECK(where == kBuiltin); \
911 DCHECK(deserializing_user_code()); \
912 int builtin_id = source_.GetInt(); \
913 DCHECK_LE(0, builtin_id); \
914 DCHECK_LT(builtin_id, Builtins::builtin_count); \
915 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
916 new_object = isolate->builtins()->builtin(name); \
917 emit_write_barrier = false; \
918 } \
919 if (within == kInnerPointer) { \
920 if (space_number != CODE_SPACE || new_object->IsCode()) { \
921 Code* new_code_object = reinterpret_cast<Code*>(new_object); \
922 new_object = \
923 reinterpret_cast<Object*>(new_code_object->instruction_start()); \
924 } else { \
925 DCHECK(space_number == CODE_SPACE); \
926 Cell* cell = Cell::cast(new_object); \
927 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
928 } \
929 } \
930 if (how == kFromCode) { \
931 Address location_of_branch_data = reinterpret_cast<Address>(current); \
932 Assembler::deserialization_set_special_target_at( \
933 location_of_branch_data, \
934 Code::cast(HeapObject::FromAddress(current_object_address)), \
935 reinterpret_cast<Address>(new_object)); \
936 location_of_branch_data += Assembler::kSpecialTargetSize; \
937 current = reinterpret_cast<Object**>(location_of_branch_data); \
938 current_was_incremented = true; \
939 } else { \
940 UnalignedCopy(current, &new_object); \
941 } \
942 } \
943 if (emit_write_barrier && write_barrier_needed) { \
944 Address current_address = reinterpret_cast<Address>(current); \
945 isolate->heap()->RecordWrite( \
946 current_object_address, \
947 static_cast<int>(current_address - current_object_address)); \
948 } \
949 if (!current_was_incremented) { \
950 current++; \
951 } \
952 break; \
953 }
954
955 // This generates a case and a body for the new space (which has to do extra
956 // write barrier handling) and handles the other spaces with fall-through cases
957 // and one body.
958 #define ALL_SPACES(where, how, within) \
959 CASE_STATEMENT(where, how, within, NEW_SPACE) \
960 CASE_BODY(where, how, within, NEW_SPACE) \
961 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
962 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
963 CASE_STATEMENT(where, how, within, CODE_SPACE) \
964 CASE_STATEMENT(where, how, within, MAP_SPACE) \
965 CASE_STATEMENT(where, how, within, CELL_SPACE) \
966 CASE_STATEMENT(where, how, within, LO_SPACE) \
967 CASE_BODY(where, how, within, kAnyOldSpace)
968
969 #define FOUR_CASES(byte_code) \
970 case byte_code: \
971 case byte_code + 1: \
972 case byte_code + 2: \
973 case byte_code + 3:
974
975 #define SIXTEEN_CASES(byte_code) \
976 FOUR_CASES(byte_code) \
977 FOUR_CASES(byte_code + 4) \
978 FOUR_CASES(byte_code + 8) \
979 FOUR_CASES(byte_code + 12)
980
981 // Deserialize a new object and write a pointer to it to the current
982 // object.
983 ALL_SPACES(kNewObject, kPlain, kStartOfObject)
984 // Support for direct instruction pointers in functions. It's an inner
985 // pointer because it points at the entry point, not at the start of the
986 // code object.
987 CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
988 CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
989 // Deserialize a new code object and write a pointer to its first
990 // instruction to the current code object.
991 ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
992 // Find a recently deserialized object using its offset from the current
993 // allocation point and write a pointer to it to the current object.
994 ALL_SPACES(kBackref, kPlain, kStartOfObject)
995 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
996 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
997 defined(V8_TARGET_ARCH_PPC) || V8_OOL_CONSTANT_POOL
998 // Deserialize a new object from pointer found in code and write
999 // a pointer to it to the current object. Required only for MIPS, PPC or
1000 // ARM with ool constant pool, and omitted on the other architectures
1001 // because it is fully unrolled and would cause bloat.
1002 ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
1003 // Find a recently deserialized code object using its offset from the
1004 // current allocation point and write a pointer to it to the current
1005 // object. Required only for MIPS, PPC or ARM with ool constant pool.
1006 ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1007 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
1008 #endif
1009 // Find a recently deserialized code object using its offset from the
1010 // current allocation point and write a pointer to its first instruction
1011 // to the current code object or the instruction pointer in a function
1012 // object.
1013 ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1014 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1015 ALL_SPACES(kBackref, kPlain, kInnerPointer)
1016 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1017 // Find an object in the roots array and write a pointer to it to the
1018 // current object.
1019 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
1020 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
1021 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
1022 defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC)
1023 // Find an object in the roots array and write a pointer to it to in code.
1024 CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0)
1025 CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0)
1026 #endif
1027 // Find an object in the partial snapshots cache and write a pointer to it
1028 // to the current object.
1029 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1030 CASE_BODY(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1031 // Find an code entry in the partial snapshots cache and
1032 // write a pointer to it to the current object.
1033 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1034 CASE_BODY(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1035 // Find an external reference and write a pointer to it to the current
1036 // object.
1037 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
1038 CASE_BODY(kExternalReference, kPlain, kStartOfObject, 0)
1039 // Find an external reference and write a pointer to it in the current
1040 // code object.
1041 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
1042 CASE_BODY(kExternalReference, kFromCode, kStartOfObject, 0)
1043 // Find an object in the attached references and write a pointer to it to
1044 // the current object.
1045 CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0)
1046 CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0)
1047 CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0)
1048 CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0)
1049 CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0)
1050 CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0)
1051 // Find a builtin and write a pointer to it to the current object.
1052 CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0)
1053 CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0)
1054 CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0)
1055 CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0)
1056 CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0)
1057 CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0)
1058
1059 #undef CASE_STATEMENT
1060 #undef CASE_BODY
1061 #undef ALL_SPACES
1062
1063 case kSkip: {
1064 int size = source_.GetInt();
1065 current = reinterpret_cast<Object**>(
1066 reinterpret_cast<intptr_t>(current) + size);
1067 break;
1068 }
1069
1070 case kInternalReferenceEncoded:
1071 case kInternalReference: {
1072 // Internal reference address is not encoded via skip, but by offset
1073 // from code entry.
1074 int pc_offset = source_.GetInt();
1075 int target_offset = source_.GetInt();
1076 Code* code =
1077 Code::cast(HeapObject::FromAddress(current_object_address));
1078 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
1079 DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
1080 Address pc = code->entry() + pc_offset;
1081 Address target = code->entry() + target_offset;
1082 Assembler::deserialization_set_target_internal_reference_at(
1083 pc, target, data == kInternalReference
1084 ? RelocInfo::INTERNAL_REFERENCE
1085 : RelocInfo::INTERNAL_REFERENCE_ENCODED);
1086 break;
1087 }
1088
1089 case kNop:
1090 break;
1091
1092 case kNextChunk: {
1093 int space = source_.Get();
1094 DCHECK(space < kNumberOfPreallocatedSpaces);
1095 int chunk_index = current_chunk_[space];
1096 const Heap::Reservation& reservation = reservations_[space];
1097 // Make sure the current chunk is indeed exhausted.
1098 CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
1099 // Move to next reserved chunk.
1100 chunk_index = ++current_chunk_[space];
1101 CHECK_LT(chunk_index, reservation.length());
1102 high_water_[space] = reservation[chunk_index].start;
1103 break;
1104 }
1105
1106 case kSynchronize:
1107 // If we get here then that indicates that you have a mismatch between
1108 // the number of GC roots when serializing and deserializing.
1109 CHECK(false);
1110 break;
1111
1112 case kNativesStringResource: {
1113 DCHECK(!isolate_->heap()->deserialization_complete());
1114 int index = source_.Get();
1115 Vector<const char> source_vector = Natives::GetScriptSource(index);
1116 NativesExternalStringResource* resource =
1117 new NativesExternalStringResource(source_vector.start(),
1118 source_vector.length());
1119 Object* resource_obj = reinterpret_cast<Object*>(resource);
1120 UnalignedCopy(current++, &resource_obj);
1121 break;
1122 }
1123
1124 // Deserialize raw data of variable length.
1125 case kVariableRawData: {
1126 int size_in_bytes = source_.GetInt();
1127 byte* raw_data_out = reinterpret_cast<byte*>(current);
1128 source_.CopyRaw(raw_data_out, size_in_bytes);
1129 break;
1130 }
1131
1132 case kVariableRepeat: {
1133 int repeats = source_.GetInt();
1134 Object* object = current[-1];
1135 DCHECK(!isolate->heap()->InNewSpace(object));
1136 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1137 break;
1138 }
1139
1140 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
1141 STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
1142 SIXTEEN_CASES(kRootArrayConstantsWithSkip)
1143 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
1144 int skip = source_.GetInt();
1145 current = reinterpret_cast<Object**>(
1146 reinterpret_cast<intptr_t>(current) + skip);
1147 // Fall through.
1148 }
1149
1150 SIXTEEN_CASES(kRootArrayConstants)
1151 SIXTEEN_CASES(kRootArrayConstants + 16) {
1152 int root_id = data & kRootArrayConstantsMask;
1153 Object* object = isolate->heap()->roots_array_start()[root_id];
1154 DCHECK(!isolate->heap()->InNewSpace(object));
1155 UnalignedCopy(current++, &object);
1156 break;
1157 }
1158
1159 STATIC_ASSERT(kNumberOfHotObjects == 8);
1160 FOUR_CASES(kHotObjectWithSkip)
1161 FOUR_CASES(kHotObjectWithSkip + 4) {
1162 int skip = source_.GetInt();
1163 current = reinterpret_cast<Object**>(
1164 reinterpret_cast<Address>(current) + skip);
1165 // Fall through.
1166 }
1167
1168 FOUR_CASES(kHotObject)
1169 FOUR_CASES(kHotObject + 4) {
1170 int index = data & kHotObjectMask;
1171 Object* hot_object = hot_objects_.Get(index);
1172 UnalignedCopy(current, &hot_object);
1173 if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
1174 Address current_address = reinterpret_cast<Address>(current);
1175 isolate->heap()->RecordWrite(
1176 current_object_address,
1177 static_cast<int>(current_address - current_object_address));
1178 }
1179 current++;
1180 break;
1181 }
1182
1183 // Deserialize raw data of fixed length from 1 to 32 words.
1184 STATIC_ASSERT(kNumberOfFixedRawData == 32);
1185 SIXTEEN_CASES(kFixedRawData)
1186 SIXTEEN_CASES(kFixedRawData + 16) {
1187 byte* raw_data_out = reinterpret_cast<byte*>(current);
1188 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
1189 source_.CopyRaw(raw_data_out, size_in_bytes);
1190 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
1191 break;
1192 }
1193
1194 STATIC_ASSERT(kNumberOfFixedRepeat == 16);
1195 SIXTEEN_CASES(kFixedRepeat) {
1196 int repeats = data - kFixedRepeatStart;
1197 Object* object;
1198 UnalignedCopy(&object, current - 1);
1199 DCHECK(!isolate->heap()->InNewSpace(object));
1200 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1201 break;
1202 }
1203
1204 #undef SIXTEEN_CASES
1205 #undef FOUR_CASES
1206
1207 default:
1208 CHECK(false);
1209 }
1210 }
1211 CHECK_EQ(limit, current);
1212 }
1213
1214
1215 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1216 : isolate_(isolate),
1217 sink_(sink),
1218 external_reference_encoder_(isolate),
1219 root_index_map_(isolate),
1220 code_address_map_(NULL),
1221 large_objects_total_size_(0),
1222 seen_large_objects_index_(0) {
1223 // The serializer is meant to be used only to generate initial heap images
1224 // from a context in which there is only one isolate.
1225 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1226 pending_chunk_[i] = 0;
1227 max_chunk_size_[i] = static_cast<uint32_t>(
1228 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
1229 }
1230 }
1231
1232
1233 Serializer::~Serializer() {
1234 if (code_address_map_ != NULL) delete code_address_map_;
1235 }
1236
1237
1238 void StartupSerializer::SerializeStrongReferences() {
1239 Isolate* isolate = this->isolate();
1240 // No active threads.
1241 CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
1242 // No active or weak handles.
1243 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1244 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1245 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1246 // We don't support serializing installed extensions.
1247 CHECK(!isolate->has_installed_extensions());
1248 isolate->heap()->IterateSmiRoots(this);
1249 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1250 }
1251
1252
1253 void StartupSerializer::VisitPointers(Object** start, Object** end) {
1254 for (Object** current = start; current < end; current++) {
1255 if (start == isolate()->heap()->roots_array_start()) {
1256 root_index_wave_front_ =
1257 Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1258 }
1259 if (ShouldBeSkipped(current)) {
1260 sink_->Put(kSkip, "Skip");
1261 sink_->PutInt(kPointerSize, "SkipOneWord");
1262 } else if ((*current)->IsSmi()) {
1263 sink_->Put(kOnePointerRawData, "Smi");
1264 for (int i = 0; i < kPointerSize; i++) {
1265 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1266 }
1267 } else {
1268 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1269 }
1270 }
1271 }
1272
1273
1274 void PartialSerializer::Serialize(Object** o) {
1275 if ((*o)->IsContext()) {
1276 Context* context = Context::cast(*o);
1277 global_object_ = context->global_object();
1278 back_reference_map()->AddGlobalProxy(context->global_proxy());
1279 }
1280 VisitPointer(o);
1281 SerializeOutdatedContextsAsFixedArray();
1282 Pad();
1283 }
1284
1285
1286 void PartialSerializer::SerializeOutdatedContextsAsFixedArray() {
1287 int length = outdated_contexts_.length();
1288 if (length == 0) {
1289 FixedArray* empty = isolate_->heap()->empty_fixed_array();
1290 SerializeObject(empty, kPlain, kStartOfObject, 0);
1291 } else {
1292 // Serialize an imaginary fixed array containing outdated contexts.
1293 int size = FixedArray::SizeFor(length);
1294 Allocate(NEW_SPACE, size);
1295 sink_->Put(kNewObject + NEW_SPACE, "emulated FixedArray");
1296 sink_->PutInt(size >> kObjectAlignmentBits, "FixedArray size in words");
1297 Map* map = isolate_->heap()->fixed_array_map();
1298 SerializeObject(map, kPlain, kStartOfObject, 0);
1299 Smi* length_smi = Smi::FromInt(length);
1300 sink_->Put(kOnePointerRawData, "Smi");
1301 for (int i = 0; i < kPointerSize; i++) {
1302 sink_->Put(reinterpret_cast<byte*>(&length_smi)[i], "Byte");
1303 }
1304 for (int i = 0; i < length; i++) {
1305 BackReference back_ref = outdated_contexts_[i];
1306 DCHECK(BackReferenceIsAlreadyAllocated(back_ref));
1307 sink_->Put(kBackref + back_ref.space(), "BackRef");
1308 sink_->PutInt(back_ref.reference(), "BackRefValue");
1309 }
1310 }
1311 }
1312
1313
1314 bool Serializer::ShouldBeSkipped(Object** current) {
1315 Object** roots = isolate()->heap()->roots_array_start();
1316 return current == &roots[Heap::kStoreBufferTopRootIndex]
1317 || current == &roots[Heap::kStackLimitRootIndex]
1318 || current == &roots[Heap::kRealStackLimitRootIndex];
1319 }
1320
1321
1322 void Serializer::VisitPointers(Object** start, Object** end) {
1323 for (Object** current = start; current < end; current++) {
1324 if ((*current)->IsSmi()) {
1325 sink_->Put(kOnePointerRawData, "Smi");
1326 for (int i = 0; i < kPointerSize; i++) {
1327 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1328 }
1329 } else {
1330 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1331 }
1332 }
1333 }
1334
1335
1336 void Serializer::EncodeReservations(
1337 List<SerializedData::Reservation>* out) const {
1338 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1339 for (int j = 0; j < completed_chunks_[i].length(); j++) {
1340 out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
1341 }
1342
1343 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
1344 out->Add(SerializedData::Reservation(pending_chunk_[i]));
1345 }
1346 out->last().mark_as_last();
1347 }
1348
1349 out->Add(SerializedData::Reservation(large_objects_total_size_));
1350 out->last().mark_as_last();
1351 }
1352
1353
1354 // This ensures that the partial snapshot cache keeps things alive during GC and
1355 // tracks their movement. When it is called during serialization of the startup
1356 // snapshot nothing happens. When the partial (context) snapshot is created,
1357 // this array is populated with the pointers that the partial snapshot will
1358 // need. As that happens we emit serialized objects to the startup snapshot
1359 // that correspond to the elements of this cache array. On deserialization we
1360 // therefore need to visit the cache array. This fills it up with pointers to
1361 // deserialized objects.
1362 void SerializerDeserializer::Iterate(Isolate* isolate,
1363 ObjectVisitor* visitor) {
1364 if (isolate->serializer_enabled()) return;
1365 List<Object*>* cache = isolate->partial_snapshot_cache();
1366 for (int i = 0;; ++i) {
1367 // Extend the array ready to get a value when deserializing.
1368 if (cache->length() <= i) cache->Add(Smi::FromInt(0));
1369 visitor->VisitPointer(&cache->at(i));
1370 // Sentinel is the undefined object, which is a root so it will not normally
1371 // be found in the cache.
1372 if (cache->at(i)->IsUndefined()) break;
1373 }
1374 }
1375
1376
1377 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1378 Isolate* isolate = this->isolate();
1379 List<Object*>* cache = isolate->partial_snapshot_cache();
1380 int new_index = cache->length();
1381
1382 int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
1383 if (index == PartialCacheIndexMap::kInvalidIndex) {
1384 // We didn't find the object in the cache. So we add it to the cache and
1385 // then visit the pointer so that it becomes part of the startup snapshot
1386 // and we can refer to it from the partial snapshot.
1387 cache->Add(heap_object);
1388 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1389 // We don't recurse from the startup snapshot generator into the partial
1390 // snapshot generator.
1391 return new_index;
1392 }
1393 return index;
1394 }
1395
1396
1397 #ifdef DEBUG
1398 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
1399 DCHECK(reference.is_valid());
1400 DCHECK(!reference.is_source());
1401 DCHECK(!reference.is_global_proxy());
1402 AllocationSpace space = reference.space();
1403 int chunk_index = reference.chunk_index();
1404 if (space == LO_SPACE) {
1405 return chunk_index == 0 &&
1406 reference.large_object_index() < seen_large_objects_index_;
1407 } else if (chunk_index == completed_chunks_[space].length()) {
1408 return reference.chunk_offset() < pending_chunk_[space];
1409 } else {
1410 return chunk_index < completed_chunks_[space].length() &&
1411 reference.chunk_offset() < completed_chunks_[space][chunk_index];
1412 }
1413 }
1414 #endif // DEBUG
1415
1416
1417 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
1418 WhereToPoint where_to_point, int skip) {
1419 if (how_to_code == kPlain && where_to_point == kStartOfObject) {
1420 // Encode a reference to a hot object by its index in the working set.
1421 int index = hot_objects_.Find(obj);
1422 if (index != HotObjectsList::kNotFound) {
1423 DCHECK(index >= 0 && index < kNumberOfHotObjects);
1424 if (FLAG_trace_serializer) {
1425 PrintF(" Encoding hot object %d:", index);
1426 obj->ShortPrint();
1427 PrintF("\n");
1428 }
1429 if (skip != 0) {
1430 sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
1431 sink_->PutInt(skip, "HotObjectSkipDistance");
1432 } else {
1433 sink_->Put(kHotObject + index, "HotObject");
1434 }
1435 return true;
1436 }
1437 }
1438 BackReference back_reference = back_reference_map_.Lookup(obj);
1439 if (back_reference.is_valid()) {
1440 // Encode the location of an already deserialized object in order to write
1441 // its location into a later object. We can encode the location as an
1442 // offset fromthe start of the deserialized objects or as an offset
1443 // backwards from thecurrent allocation pointer.
1444 if (back_reference.is_source()) {
1445 FlushSkip(skip);
1446 if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
1447 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1448 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
1449 sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
1450 } else if (back_reference.is_global_proxy()) {
1451 FlushSkip(skip);
1452 if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
1453 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1454 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
1455 sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
1456 } else {
1457 if (FLAG_trace_serializer) {
1458 PrintF(" Encoding back reference to: ");
1459 obj->ShortPrint();
1460 PrintF("\n");
1461 }
1462
1463 AllocationSpace space = back_reference.space();
1464 if (skip == 0) {
1465 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
1466 } else {
1467 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1468 "BackRefWithSkip");
1469 sink_->PutInt(skip, "BackRefSkipDistance");
1470 }
1471 DCHECK(BackReferenceIsAlreadyAllocated(back_reference));
1472 sink_->PutInt(back_reference.reference(), "BackRefValue");
1473
1474 hot_objects_.Add(obj);
1475 }
1476 return true;
1477 }
1478 return false;
1479 }
1480
1481
1482 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1483 WhereToPoint where_to_point, int skip) {
1484 DCHECK(!obj->IsJSFunction());
1485
1486 int root_index = root_index_map_.Lookup(obj);
1487 // We can only encode roots as such if it has already been serialized.
1488 // That applies to root indices below the wave front.
1489 if (root_index != RootIndexMap::kInvalidRootIndex &&
1490 root_index < root_index_wave_front_) {
1491 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1492 return;
1493 }
1494
1495 if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) {
1496 obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
1497 }
1498
1499 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1500
1501 FlushSkip(skip);
1502
1503 // Object has not yet been serialized. Serialize it here.
1504 ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
1505 where_to_point);
1506 object_serializer.Serialize();
1507 }
1508
1509
1510 void StartupSerializer::SerializeWeakReferences() {
1511 // This phase comes right after the serialization (of the snapshot).
1512 // After we have done the partial serialization the partial snapshot cache
1513 // will contain some references needed to decode the partial snapshot. We
1514 // add one entry with 'undefined' which is the sentinel that the deserializer
1515 // uses to know it is done deserializing the array.
1516 Object* undefined = isolate()->heap()->undefined_value();
1517 VisitPointer(&undefined);
1518 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1519 Pad();
1520 }
1521
1522
1523 void Serializer::PutRoot(int root_index,
1524 HeapObject* object,
1525 SerializerDeserializer::HowToCode how_to_code,
1526 SerializerDeserializer::WhereToPoint where_to_point,
1527 int skip) {
1528 if (FLAG_trace_serializer) {
1529 PrintF(" Encoding root %d:", root_index);
1530 object->ShortPrint();
1531 PrintF("\n");
1532 }
1533
1534 if (how_to_code == kPlain && where_to_point == kStartOfObject &&
1535 root_index < kNumberOfRootArrayConstants &&
1536 !isolate()->heap()->InNewSpace(object)) {
1537 if (skip == 0) {
1538 sink_->Put(kRootArrayConstants + root_index, "RootConstant");
1539 } else {
1540 sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
1541 sink_->PutInt(skip, "SkipInPutRoot");
1542 }
1543 } else {
1544 FlushSkip(skip);
1545 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1546 sink_->PutInt(root_index, "root_index");
1547 }
1548 }
1549
1550
1551 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1552 WhereToPoint where_to_point, int skip) {
1553 if (obj->IsMap()) {
1554 // The code-caches link to context-specific code objects, which
1555 // the startup and context serializes cannot currently handle.
1556 DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
1557 }
1558
1559 // Replace typed arrays by undefined.
1560 if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
1561
1562 int root_index = root_index_map_.Lookup(obj);
1563 if (root_index != RootIndexMap::kInvalidRootIndex) {
1564 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1565 return;
1566 }
1567
1568 if (ShouldBeInThePartialSnapshotCache(obj)) {
1569 FlushSkip(skip);
1570
1571 int cache_index = PartialSnapshotCacheIndex(obj);
1572 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1573 "PartialSnapshotCache");
1574 sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1575 return;
1576 }
1577
1578 // Pointers from the partial snapshot to the objects in the startup snapshot
1579 // should go through the root array or through the partial snapshot cache.
1580 // If this is not the case you may have to add something to the root array.
1581 DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
1582 // All the internalized strings that the partial snapshot needs should be
1583 // either in the root table or in the partial snapshot cache.
1584 DCHECK(!obj->IsInternalizedString());
1585
1586 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1587
1588 FlushSkip(skip);
1589
1590 // Object has not yet been serialized. Serialize it here.
1591 ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
1592 serializer.Serialize();
1593
1594 if (obj->IsContext() &&
1595 Context::cast(obj)->global_object() == global_object_) {
1596 // Context refers to the current global object. This reference will
1597 // become outdated after deserialization.
1598 BackReference back_reference = back_reference_map_.Lookup(obj);
1599 DCHECK(back_reference.is_valid());
1600 outdated_contexts_.Add(back_reference);
1601 }
1602 }
1603
1604
1605 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
1606 int size, Map* map) {
1607 if (serializer_->code_address_map_) {
1608 const char* code_name =
1609 serializer_->code_address_map_->Lookup(object_->address());
1610 LOG(serializer_->isolate_,
1611 CodeNameEvent(object_->address(), sink_->Position(), code_name));
1612 LOG(serializer_->isolate_,
1613 SnapshotPositionEvent(object_->address(), sink_->Position()));
1614 }
1615
1616 BackReference back_reference;
1617 if (space == LO_SPACE) {
1618 sink_->Put(kNewObject + reference_representation_ + space,
1619 "NewLargeObject");
1620 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1621 if (object_->IsCode()) {
1622 sink_->Put(EXECUTABLE, "executable large object");
1623 } else {
1624 sink_->Put(NOT_EXECUTABLE, "not executable large object");
1625 }
1626 back_reference = serializer_->AllocateLargeObject(size);
1627 } else {
1628 bool needs_double_align = false;
1629 if (object_->NeedsToEnsureDoubleAlignment()) {
1630 // Add wriggle room for double alignment padding.
1631 back_reference = serializer_->Allocate(space, size + kPointerSize);
1632 needs_double_align = true;
1633 } else {
1634 back_reference = serializer_->Allocate(space, size);
1635 }
1636 sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
1637 if (needs_double_align)
1638 sink_->PutInt(kDoubleAlignmentSentinel, "DoubleAlignSentinel");
1639 int encoded_size = size >> kObjectAlignmentBits;
1640 DCHECK_NE(kDoubleAlignmentSentinel, encoded_size);
1641 sink_->PutInt(encoded_size, "ObjectSizeInWords");
1642 }
1643
1644 // Mark this object as already serialized.
1645 serializer_->back_reference_map()->Add(object_, back_reference);
1646
1647 // Serialize the map (first word of the object).
1648 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
1649 }
1650
1651
1652 void Serializer::ObjectSerializer::SerializeExternalString() {
1653 // Instead of serializing this as an external string, we serialize
1654 // an imaginary sequential string with the same content.
1655 Isolate* isolate = serializer_->isolate();
1656 DCHECK(object_->IsExternalString());
1657 DCHECK(object_->map() != isolate->heap()->native_source_string_map());
1658 ExternalString* string = ExternalString::cast(object_);
1659 int length = string->length();
1660 Map* map;
1661 int content_size;
1662 int allocation_size;
1663 const byte* resource;
1664 // Find the map and size for the imaginary sequential string.
1665 bool internalized = object_->IsInternalizedString();
1666 if (object_->IsExternalOneByteString()) {
1667 map = internalized ? isolate->heap()->one_byte_internalized_string_map()
1668 : isolate->heap()->one_byte_string_map();
1669 allocation_size = SeqOneByteString::SizeFor(length);
1670 content_size = length * kCharSize;
1671 resource = reinterpret_cast<const byte*>(
1672 ExternalOneByteString::cast(string)->resource()->data());
1673 } else {
1674 map = internalized ? isolate->heap()->internalized_string_map()
1675 : isolate->heap()->string_map();
1676 allocation_size = SeqTwoByteString::SizeFor(length);
1677 content_size = length * kShortSize;
1678 resource = reinterpret_cast<const byte*>(
1679 ExternalTwoByteString::cast(string)->resource()->data());
1680 }
1681
1682 AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
1683 ? LO_SPACE
1684 : OLD_DATA_SPACE;
1685 SerializePrologue(space, allocation_size, map);
1686
1687 // Output the rest of the imaginary string.
1688 int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
1689
1690 // Output raw data header. Do not bother with common raw length cases here.
1691 sink_->Put(kVariableRawData, "RawDataForString");
1692 sink_->PutInt(bytes_to_output, "length");
1693
1694 // Serialize string header (except for map).
1695 Address string_start = string->address();
1696 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
1697 sink_->PutSection(string_start[i], "StringHeader");
1698 }
1699
1700 // Serialize string content.
1701 sink_->PutRaw(resource, content_size, "StringContent");
1702
1703 // Since the allocation size is rounded up to object alignment, there
1704 // maybe left-over bytes that need to be padded.
1705 int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
1706 DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
1707 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
1708
1709 sink_->Put(kSkip, "SkipAfterString");
1710 sink_->PutInt(bytes_to_output, "SkipDistance");
1711 }
1712
1713
1714 void Serializer::ObjectSerializer::Serialize() {
1715 if (FLAG_trace_serializer) {
1716 PrintF(" Encoding heap object: ");
1717 object_->ShortPrint();
1718 PrintF("\n");
1719 }
1720
1721 // We cannot serialize typed array objects correctly.
1722 DCHECK(!object_->IsJSTypedArray());
1723
1724 if (object_->IsScript()) {
1725 // Clear cached line ends.
1726 Object* undefined = serializer_->isolate()->heap()->undefined_value();
1727 Script::cast(object_)->set_line_ends(undefined);
1728 }
1729
1730 if (object_->IsExternalString()) {
1731 Heap* heap = serializer_->isolate()->heap();
1732 if (object_->map() != heap->native_source_string_map()) {
1733 // Usually we cannot recreate resources for external strings. To work
1734 // around this, external strings are serialized to look like ordinary
1735 // sequential strings.
1736 // The exception are native source code strings, since we can recreate
1737 // their resources. In that case we fall through and leave it to
1738 // VisitExternalOneByteString further down.
1739 SerializeExternalString();
1740 return;
1741 }
1742 }
1743
1744 int size = object_->Size();
1745 Map* map = object_->map();
1746 AllocationSpace space =
1747 MemoryChunk::FromAddress(object_->address())->owner()->identity();
1748 SerializePrologue(space, size, map);
1749
1750 // Serialize the rest of the object.
1751 CHECK_EQ(0, bytes_processed_so_far_);
1752 bytes_processed_so_far_ = kPointerSize;
1753
1754 object_->IterateBody(map->instance_type(), size, this);
1755 OutputRawData(object_->address() + size);
1756 }
1757
1758
1759 void Serializer::ObjectSerializer::VisitPointers(Object** start,
1760 Object** end) {
1761 Object** current = start;
1762 while (current < end) {
1763 while (current < end && (*current)->IsSmi()) current++;
1764 if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1765
1766 while (current < end && !(*current)->IsSmi()) {
1767 HeapObject* current_contents = HeapObject::cast(*current);
1768 int root_index = serializer_->root_index_map()->Lookup(current_contents);
1769 // Repeats are not subject to the write barrier so we can only use
1770 // immortal immovable root members. They are never in new space.
1771 if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
1772 Heap::RootIsImmortalImmovable(root_index) &&
1773 current_contents == current[-1]) {
1774 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
1775 int repeat_count = 1;
1776 while (&current[repeat_count] < end - 1 &&
1777 current[repeat_count] == current_contents) {
1778 repeat_count++;
1779 }
1780 current += repeat_count;
1781 bytes_processed_so_far_ += repeat_count * kPointerSize;
1782 if (repeat_count > kNumberOfFixedRepeat) {
1783 sink_->Put(kVariableRepeat, "VariableRepeat");
1784 sink_->PutInt(repeat_count, "repeat count");
1785 } else {
1786 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
1787 }
1788 } else {
1789 serializer_->SerializeObject(
1790 current_contents, kPlain, kStartOfObject, 0);
1791 bytes_processed_so_far_ += kPointerSize;
1792 current++;
1793 }
1794 }
1795 }
1796 }
1797
1798
1799 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
1800 // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1801 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1802
1803 int skip = OutputRawData(rinfo->target_address_address(),
1804 kCanReturnSkipInsteadOfSkipping);
1805 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1806 Object* object = rinfo->target_object();
1807 serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
1808 kStartOfObject, skip);
1809 bytes_processed_so_far_ += rinfo->target_address_size();
1810 }
1811
1812
1813 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
1814 int skip = OutputRawData(reinterpret_cast<Address>(p),
1815 kCanReturnSkipInsteadOfSkipping);
1816 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1817 sink_->PutInt(skip, "SkipB4ExternalRef");
1818 Address target = *p;
1819 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1820 bytes_processed_so_far_ += kPointerSize;
1821 }
1822
1823
1824 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
1825 int skip = OutputRawData(rinfo->target_address_address(),
1826 kCanReturnSkipInsteadOfSkipping);
1827 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1828 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1829 sink_->PutInt(skip, "SkipB4ExternalRef");
1830 Address target = rinfo->target_external_reference();
1831 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1832 bytes_processed_so_far_ += rinfo->target_address_size();
1833 }
1834
1835
1836 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
1837 // We can only reference to internal references of code that has been output.
1838 DCHECK(is_code_object_ && code_has_been_output_);
1839 // We do not use skip from last patched pc to find the pc to patch, since
1840 // target_address_address may not return addresses in ascending order when
1841 // used for internal references. External references may be stored at the
1842 // end of the code in the constant pool, whereas internal references are
1843 // inline. That would cause the skip to be negative. Instead, we store the
1844 // offset from code entry.
1845 Address entry = Code::cast(object_)->entry();
1846 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
1847 intptr_t target_offset = rinfo->target_internal_reference() - entry;
1848 DCHECK(0 <= pc_offset &&
1849 pc_offset <= Code::cast(object_)->instruction_size());
1850 DCHECK(0 <= target_offset &&
1851 target_offset <= Code::cast(object_)->instruction_size());
1852 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
1853 ? kInternalReference
1854 : kInternalReferenceEncoded,
1855 "InternalRef");
1856 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
1857 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
1858 }
1859
1860
1861 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1862 int skip = OutputRawData(rinfo->target_address_address(),
1863 kCanReturnSkipInsteadOfSkipping);
1864 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1865 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1866 sink_->PutInt(skip, "SkipB4ExternalRef");
1867 Address target = rinfo->target_address();
1868 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1869 bytes_processed_so_far_ += rinfo->target_address_size();
1870 }
1871
1872
1873 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1874 // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1875 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1876
1877 int skip = OutputRawData(rinfo->target_address_address(),
1878 kCanReturnSkipInsteadOfSkipping);
1879 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
1880 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
1881 bytes_processed_so_far_ += rinfo->target_address_size();
1882 }
1883
1884
1885 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1886 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
1887 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1888 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1889 bytes_processed_so_far_ += kPointerSize;
1890 }
1891
1892
1893 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
1894 // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1895 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1896
1897 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
1898 Cell* object = Cell::cast(rinfo->target_cell());
1899 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1900 bytes_processed_so_far_ += kPointerSize;
1901 }
1902
1903
1904 void Serializer::ObjectSerializer::VisitExternalOneByteString(
1905 v8::String::ExternalOneByteStringResource** resource_pointer) {
1906 Address references_start = reinterpret_cast<Address>(resource_pointer);
1907 OutputRawData(references_start);
1908 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1909 Object* source =
1910 serializer_->isolate()->heap()->natives_source_cache()->get(i);
1911 if (!source->IsUndefined()) {
1912 ExternalOneByteString* string = ExternalOneByteString::cast(source);
1913 typedef v8::String::ExternalOneByteStringResource Resource;
1914 const Resource* resource = string->resource();
1915 if (resource == *resource_pointer) {
1916 sink_->Put(kNativesStringResource, "NativesStringResource");
1917 sink_->PutSection(i, "NativesStringResourceEnd");
1918 bytes_processed_so_far_ += sizeof(resource);
1919 return;
1920 }
1921 }
1922 }
1923 // One of the strings in the natives cache should match the resource. We
1924 // don't expect any other kinds of external strings here.
1925 UNREACHABLE();
1926 }
1927
1928
1929 Address Serializer::ObjectSerializer::PrepareCode() {
1930 // To make snapshots reproducible, we make a copy of the code object
1931 // and wipe all pointers in the copy, which we then serialize.
1932 Code* original = Code::cast(object_);
1933 Code* code = serializer_->CopyCode(original);
1934 // Code age headers are not serializable.
1935 code->MakeYoung(serializer_->isolate());
1936 int mode_mask = RelocInfo::kCodeTargetMask |
1937 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
1938 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
1939 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
1940 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
1941 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
1942 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
1943 RelocInfo* rinfo = it.rinfo();
1944 if (!(FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool())) {
1945 rinfo->WipeOut();
1946 }
1947 }
1948 // We need to wipe out the header fields *after* wiping out the
1949 // relocations, because some of these fields are needed for the latter.
1950 code->WipeOutHeader();
1951 return code->address();
1952 }
1953
1954
1955 int Serializer::ObjectSerializer::OutputRawData(
1956 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
1957 Address object_start = object_->address();
1958 int base = bytes_processed_so_far_;
1959 int up_to_offset = static_cast<int>(up_to - object_start);
1960 int to_skip = up_to_offset - bytes_processed_so_far_;
1961 int bytes_to_output = to_skip;
1962 bytes_processed_so_far_ += to_skip;
1963 // This assert will fail if the reloc info gives us the target_address_address
1964 // locations in a non-ascending order. Luckily that doesn't happen.
1965 DCHECK(to_skip >= 0);
1966 bool outputting_code = false;
1967 if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
1968 // Output the code all at once and fix later.
1969 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
1970 outputting_code = true;
1971 code_has_been_output_ = true;
1972 }
1973 if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
1974 if (!outputting_code && bytes_to_output == to_skip &&
1975 IsAligned(bytes_to_output, kPointerAlignment) &&
1976 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
1977 int size_in_words = bytes_to_output >> kPointerSizeLog2;
1978 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
1979 to_skip = 0; // This instruction includes skip.
1980 } else {
1981 // We always end up here if we are outputting the code of a code object.
1982 sink_->Put(kVariableRawData, "VariableRawData");
1983 sink_->PutInt(bytes_to_output, "length");
1984 }
1985
1986 if (is_code_object_) object_start = PrepareCode();
1987
1988 const char* description = is_code_object_ ? "Code" : "Byte";
1989 #ifdef MEMORY_SANITIZER
1990 // Object sizes are usually rounded up with uninitialized padding space.
1991 MSAN_MEMORY_IS_INITIALIZED(object_start + base, bytes_to_output);
1992 #endif // MEMORY_SANITIZER
1993 sink_->PutRaw(object_start + base, bytes_to_output, description);
1994 }
1995 if (to_skip != 0 && return_skip == kIgnoringReturn) {
1996 sink_->Put(kSkip, "Skip");
1997 sink_->PutInt(to_skip, "SkipDistance");
1998 to_skip = 0;
1999 }
2000 return to_skip;
2001 }
2002
2003
2004 BackReference Serializer::AllocateLargeObject(int size) {
2005 // Large objects are allocated one-by-one when deserializing. We do not
2006 // have to keep track of multiple chunks.
2007 large_objects_total_size_ += size;
2008 return BackReference::LargeObjectReference(seen_large_objects_index_++);
2009 }
2010
2011
2012 BackReference Serializer::Allocate(AllocationSpace space, int size) {
2013 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
2014 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
2015 uint32_t new_chunk_size = pending_chunk_[space] + size;
2016 if (new_chunk_size > max_chunk_size(space)) {
2017 // The new chunk size would not fit onto a single page. Complete the
2018 // current chunk and start a new one.
2019 sink_->Put(kNextChunk, "NextChunk");
2020 sink_->Put(space, "NextChunkSpace");
2021 completed_chunks_[space].Add(pending_chunk_[space]);
2022 DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
2023 pending_chunk_[space] = 0;
2024 new_chunk_size = size;
2025 }
2026 uint32_t offset = pending_chunk_[space];
2027 pending_chunk_[space] = new_chunk_size;
2028 return BackReference::Reference(space, completed_chunks_[space].length(),
2029 offset);
2030 }
2031
2032
2033 void Serializer::Pad() {
2034 // The non-branching GetInt will read up to 3 bytes too far, so we need
2035 // to pad the snapshot to make sure we don't read over the end.
2036 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
2037 sink_->Put(kNop, "Padding");
2038 }
2039 // Pad up to pointer size for checksum.
2040 while (!IsAligned(sink_->Position(), kPointerAlignment)) {
2041 sink_->Put(kNop, "Padding");
2042 }
2043 }
2044
2045
2046 void Serializer::InitializeCodeAddressMap() {
2047 isolate_->InitializeLoggingAndCounters();
2048 code_address_map_ = new CodeAddressMap(isolate_);
2049 }
2050
2051
2052 Code* Serializer::CopyCode(Code* code) {
2053 code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
2054 int size = code->CodeSize();
2055 code_buffer_.AddAll(Vector<byte>(code->address(), size));
2056 return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
2057 }
2058
2059
2060 ScriptData* CodeSerializer::Serialize(Isolate* isolate,
2061 Handle<SharedFunctionInfo> info,
2062 Handle<String> source) {
2063 base::ElapsedTimer timer;
2064 if (FLAG_profile_deserialization) timer.Start();
2065 if (FLAG_trace_serializer) {
2066 PrintF("[Serializing from");
2067 Object* script = info->script();
2068 if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
2069 PrintF("]\n");
2070 }
2071
2072 // Serialize code object.
2073 SnapshotByteSink sink(info->code()->CodeSize() * 2);
2074 CodeSerializer cs(isolate, &sink, *source, info->code());
2075 DisallowHeapAllocation no_gc;
2076 Object** location = Handle<Object>::cast(info).location();
2077 cs.VisitPointer(location);
2078 cs.Pad();
2079
2080 SerializedCodeData data(sink.data(), cs);
2081 ScriptData* script_data = data.GetScriptData();
2082
2083 if (FLAG_profile_deserialization) {
2084 double ms = timer.Elapsed().InMillisecondsF();
2085 int length = script_data->length();
2086 PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
2087 }
2088
2089 return script_data;
2090 }
2091
2092
2093 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
2094 WhereToPoint where_to_point, int skip) {
2095 int root_index = root_index_map_.Lookup(obj);
2096 if (root_index != RootIndexMap::kInvalidRootIndex) {
2097 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
2098 return;
2099 }
2100
2101 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
2102
2103 FlushSkip(skip);
2104
2105 if (obj->IsCode()) {
2106 Code* code_object = Code::cast(obj);
2107 switch (code_object->kind()) {
2108 case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
2109 case Code::HANDLER: // No handlers patched in yet.
2110 case Code::REGEXP: // No regexp literals initialized yet.
2111 case Code::NUMBER_OF_KINDS: // Pseudo enum value.
2112 CHECK(false);
2113 case Code::BUILTIN:
2114 SerializeBuiltin(code_object->builtin_index(), how_to_code,
2115 where_to_point);
2116 return;
2117 case Code::STUB:
2118 SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
2119 return;
2120 #define IC_KIND_CASE(KIND) case Code::KIND:
2121 IC_KIND_LIST(IC_KIND_CASE)
2122 #undef IC_KIND_CASE
2123 SerializeIC(code_object, how_to_code, where_to_point);
2124 return;
2125 case Code::FUNCTION:
2126 DCHECK(code_object->has_reloc_info_for_serialization());
2127 // Only serialize the code for the toplevel function unless specified
2128 // by flag. Replace code of inner functions by the lazy compile builtin.
2129 // This is safe, as checked in Compiler::BuildFunctionInfo.
2130 if (code_object != main_code_ && !FLAG_serialize_inner) {
2131 SerializeBuiltin(Builtins::kCompileLazy, how_to_code, where_to_point);
2132 } else {
2133 SerializeGeneric(code_object, how_to_code, where_to_point);
2134 }
2135 return;
2136 }
2137 UNREACHABLE();
2138 }
2139
2140 // Past this point we should not see any (context-specific) maps anymore.
2141 CHECK(!obj->IsMap());
2142 // There should be no references to the global object embedded.
2143 CHECK(!obj->IsJSGlobalProxy() && !obj->IsGlobalObject());
2144 // There should be no hash table embedded. They would require rehashing.
2145 CHECK(!obj->IsHashTable());
2146 // We expect no instantiated function objects or contexts.
2147 CHECK(!obj->IsJSFunction() && !obj->IsContext());
2148
2149 SerializeGeneric(obj, how_to_code, where_to_point);
2150 }
2151
2152
2153 void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
2154 HowToCode how_to_code,
2155 WhereToPoint where_to_point) {
2156 if (heap_object->IsInternalizedString()) num_internalized_strings_++;
2157
2158 // Object has not yet been serialized. Serialize it here.
2159 ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
2160 where_to_point);
2161 serializer.Serialize();
2162 }
2163
2164
2165 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
2166 WhereToPoint where_to_point) {
2167 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2168 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2169 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2170 DCHECK_LT(builtin_index, Builtins::builtin_count);
2171 DCHECK_LE(0, builtin_index);
2172
2173 if (FLAG_trace_serializer) {
2174 PrintF(" Encoding builtin: %s\n",
2175 isolate()->builtins()->name(builtin_index));
2176 }
2177
2178 sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
2179 sink_->PutInt(builtin_index, "builtin_index");
2180 }
2181
2182
2183 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
2184 WhereToPoint where_to_point) {
2185 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2186 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2187 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2188 DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
2189 DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
2190
2191 int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
2192
2193 if (FLAG_trace_serializer) {
2194 PrintF(" Encoding code stub %s as %d\n",
2195 CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false),
2196 index);
2197 }
2198
2199 sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
2200 sink_->PutInt(index, "CodeStub key");
2201 }
2202
2203
2204 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
2205 WhereToPoint where_to_point) {
2206 // The IC may be implemented as a stub.
2207 uint32_t stub_key = ic->stub_key();
2208 if (stub_key != CodeStub::NoCacheKey()) {
2209 if (FLAG_trace_serializer) {
2210 PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
2211 }
2212 SerializeCodeStub(stub_key, how_to_code, where_to_point);
2213 return;
2214 }
2215 // The IC may be implemented as builtin. Only real builtins have an
2216 // actual builtin_index value attached (otherwise it's just garbage).
2217 // Compare to make sure we are really dealing with a builtin.
2218 int builtin_index = ic->builtin_index();
2219 if (builtin_index < Builtins::builtin_count) {
2220 Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
2221 Code* builtin = isolate()->builtins()->builtin(name);
2222 if (builtin == ic) {
2223 if (FLAG_trace_serializer) {
2224 PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
2225 }
2226 DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
2227 ic->kind() == Code::KEYED_STORE_IC);
2228 SerializeBuiltin(builtin_index, how_to_code, where_to_point);
2229 return;
2230 }
2231 }
2232 // The IC may also just be a piece of code kept in the non_monomorphic_cache.
2233 // In that case, just serialize as a normal code object.
2234 if (FLAG_trace_serializer) {
2235 PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
2236 }
2237 DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
2238 SerializeGeneric(ic, how_to_code, where_to_point);
2239 }
2240
2241
2242 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
2243 // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
2244 int index = 0;
2245 while (index < stub_keys_.length()) {
2246 if (stub_keys_[index] == stub_key) return index;
2247 index++;
2248 }
2249 stub_keys_.Add(stub_key);
2250 return index;
2251 }
2252
2253
2254 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
2255 Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
2256 base::ElapsedTimer timer;
2257 if (FLAG_profile_deserialization) timer.Start();
2258
2259 HandleScope scope(isolate);
2260
2261 SmartPointer<SerializedCodeData> scd(
2262 SerializedCodeData::FromCachedData(isolate, cached_data, *source));
2263 if (scd.is_empty()) {
2264 if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
2265 DCHECK(cached_data->rejected());
2266 return MaybeHandle<SharedFunctionInfo>();
2267 }
2268
2269 // Eagerly expand string table to avoid allocations during deserialization.
2270 StringTable::EnsureCapacityForDeserialization(isolate,
2271 scd->NumInternalizedStrings());
2272
2273 // Prepare and register list of attached objects.
2274 Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
2275 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
2276 code_stub_keys.length() + kCodeStubsBaseIndex);
2277 attached_objects[kSourceObjectIndex] = source;
2278 for (int i = 0; i < code_stub_keys.length(); i++) {
2279 attached_objects[i + kCodeStubsBaseIndex] =
2280 CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
2281 }
2282
2283 Deserializer deserializer(scd.get());
2284 deserializer.SetAttachedObjects(attached_objects);
2285
2286 // Deserialize.
2287 Handle<SharedFunctionInfo> result;
2288 if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
2289 // Deserializing may fail if the reservations cannot be fulfilled.
2290 if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
2291 return MaybeHandle<SharedFunctionInfo>();
2292 }
2293 deserializer.FlushICacheForNewCodeObjects();
2294
2295 if (FLAG_profile_deserialization) {
2296 double ms = timer.Elapsed().InMillisecondsF();
2297 int length = cached_data->length();
2298 PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
2299 }
2300 result->set_deserialized(true);
2301
2302 if (isolate->logger()->is_logging_code_events() ||
2303 isolate->cpu_profiler()->is_profiling()) {
2304 String* name = isolate->heap()->empty_string();
2305 if (result->script()->IsScript()) {
2306 Script* script = Script::cast(result->script());
2307 if (script->name()->IsString()) name = String::cast(script->name());
2308 }
2309 isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(),
2310 *result, NULL, name);
2311 }
2312 return scope.CloseAndEscape(result);
2313 }
2314
2315
2316 void SerializedData::AllocateData(int size) {
2317 DCHECK(!owns_data_);
2318 data_ = NewArray<byte>(size);
2319 size_ = size;
2320 owns_data_ = true;
2321 DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
2322 }
2323
2324
2325 SnapshotData::SnapshotData(const Serializer& ser) {
2326 DisallowHeapAllocation no_gc;
2327 List<Reservation> reservations;
2328 ser.EncodeReservations(&reservations);
2329 const List<byte>& payload = ser.sink()->data();
2330
2331 // Calculate sizes.
2332 int reservation_size = reservations.length() * kInt32Size;
2333 int size = kHeaderSize + reservation_size + payload.length();
2334
2335 // Allocate backing store and create result data.
2336 AllocateData(size);
2337
2338 // Set header values.
2339 SetMagicNumber(ser.isolate());
2340 SetHeaderValue(kCheckSumOffset, Version::Hash());
2341 SetHeaderValue(kNumReservationsOffset, reservations.length());
2342 SetHeaderValue(kPayloadLengthOffset, payload.length());
2343
2344 // Copy reservation chunk sizes.
2345 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2346 reservation_size);
2347
2348 // Copy serialized data.
2349 CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
2350 static_cast<size_t>(payload.length()));
2351 }
2352
2353
2354 bool SnapshotData::IsSane() {
2355 return GetHeaderValue(kCheckSumOffset) == Version::Hash();
2356 }
2357
2358
2359 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
2360 return Vector<const Reservation>(
2361 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2362 GetHeaderValue(kNumReservationsOffset));
2363 }
2364
2365
2366 Vector<const byte> SnapshotData::Payload() const {
2367 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2368 const byte* payload = data_ + kHeaderSize + reservations_size;
2369 int length = GetHeaderValue(kPayloadLengthOffset);
2370 DCHECK_EQ(data_ + size_, payload + length);
2371 return Vector<const byte>(payload, length);
2372 }
2373
2374
2375 class Checksum {
2376 public:
2377 explicit Checksum(Vector<const byte> payload) {
2378 // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
2379 uintptr_t a = 1;
2380 uintptr_t b = 0;
2381 const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
2382 DCHECK(IsAligned(payload.length(), kIntptrSize));
2383 const uintptr_t* end = cur + payload.length() / kIntptrSize;
2384 while (cur < end) {
2385 // Unsigned overflow expected and intended.
2386 a += *cur++;
2387 b += a;
2388 }
2389 #if V8_HOST_ARCH_64_BIT
2390 a ^= a >> 32;
2391 b ^= b >> 32;
2392 #endif // V8_HOST_ARCH_64_BIT
2393 a_ = static_cast<uint32_t>(a);
2394 b_ = static_cast<uint32_t>(b);
2395 }
2396
2397 bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
2398
2399 uint32_t a() const { return a_; }
2400 uint32_t b() const { return b_; }
2401
2402 private:
2403 uint32_t a_;
2404 uint32_t b_;
2405
2406 DISALLOW_COPY_AND_ASSIGN(Checksum);
2407 };
2408
2409
2410 SerializedCodeData::SerializedCodeData(const List<byte>& payload,
2411 const CodeSerializer& cs) {
2412 DisallowHeapAllocation no_gc;
2413 const List<uint32_t>* stub_keys = cs.stub_keys();
2414
2415 List<Reservation> reservations;
2416 cs.EncodeReservations(&reservations);
2417
2418 // Calculate sizes.
2419 int reservation_size = reservations.length() * kInt32Size;
2420 int num_stub_keys = stub_keys->length();
2421 int stub_keys_size = stub_keys->length() * kInt32Size;
2422 int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
2423 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2424 int size = padded_payload_offset + payload.length();
2425
2426 // Allocate backing store and create result data.
2427 AllocateData(size);
2428
2429 // Set header values.
2430 SetMagicNumber(cs.isolate());
2431 SetHeaderValue(kVersionHashOffset, Version::Hash());
2432 SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
2433 SetHeaderValue(kCpuFeaturesOffset,
2434 static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
2435 SetHeaderValue(kFlagHashOffset, FlagList::Hash());
2436 SetHeaderValue(kNumInternalizedStringsOffset, cs.num_internalized_strings());
2437 SetHeaderValue(kNumReservationsOffset, reservations.length());
2438 SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
2439 SetHeaderValue(kPayloadLengthOffset, payload.length());
2440
2441 Checksum checksum(payload.ToConstVector());
2442 SetHeaderValue(kChecksum1Offset, checksum.a());
2443 SetHeaderValue(kChecksum2Offset, checksum.b());
2444
2445 // Copy reservation chunk sizes.
2446 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2447 reservation_size);
2448
2449 // Copy code stub keys.
2450 CopyBytes(data_ + kHeaderSize + reservation_size,
2451 reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
2452
2453 memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
2454
2455 // Copy serialized data.
2456 CopyBytes(data_ + padded_payload_offset, payload.begin(),
2457 static_cast<size_t>(payload.length()));
2458 }
2459
2460
2461 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
2462 Isolate* isolate, String* source) const {
2463 uint32_t magic_number = GetMagicNumber();
2464 uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
2465 uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
2466 uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
2467 uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
2468 uint32_t c1 = GetHeaderValue(kChecksum1Offset);
2469 uint32_t c2 = GetHeaderValue(kChecksum2Offset);
2470 if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
2471 if (version_hash != Version::Hash()) return VERSION_MISMATCH;
2472 if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
2473 if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
2474 return CPU_FEATURES_MISMATCH;
2475 }
2476 if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
2477 if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
2478 return CHECK_SUCCESS;
2479 }
2480
2481
2482 // Return ScriptData object and relinquish ownership over it to the caller.
2483 ScriptData* SerializedCodeData::GetScriptData() {
2484 DCHECK(owns_data_);
2485 ScriptData* result = new ScriptData(data_, size_);
2486 result->AcquireDataOwnership();
2487 owns_data_ = false;
2488 data_ = NULL;
2489 return result;
2490 }
2491
2492
2493 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
2494 const {
2495 return Vector<const Reservation>(
2496 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2497 GetHeaderValue(kNumReservationsOffset));
2498 }
2499
2500
2501 Vector<const byte> SerializedCodeData::Payload() const {
2502 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2503 int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
2504 int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
2505 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2506 const byte* payload = data_ + padded_payload_offset;
2507 DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
2508 int length = GetHeaderValue(kPayloadLengthOffset);
2509 DCHECK_EQ(data_ + size_, payload + length);
2510 return Vector<const byte>(payload, length);
2511 }
2512
2513
2514 int SerializedCodeData::NumInternalizedStrings() const {
2515 return GetHeaderValue(kNumInternalizedStringsOffset);
2516 }
2517
2518 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
2519 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2520 const byte* start = data_ + kHeaderSize + reservations_size;
2521 return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
2522 GetHeaderValue(kNumCodeStubKeysOffset));
2523 }
2524
2525
2526 SerializedCodeData::SerializedCodeData(ScriptData* data)
2527 : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
2528
2529
2530 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
2531 ScriptData* cached_data,
2532 String* source) {
2533 DisallowHeapAllocation no_gc;
2534 SerializedCodeData* scd = new SerializedCodeData(cached_data);
2535 SanityCheckResult r = scd->SanityCheck(isolate, source);
2536 if (r == CHECK_SUCCESS) return scd;
2537 cached_data->Reject();
2538 source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
2539 delete scd;
2540 return NULL;
2541 }
2542 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/serialize.h ('k') | src/snapshot.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698