| OLD | NEW |
| (Empty) |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "src/v8.h" | |
| 6 | |
| 7 #include "src/accessors.h" | |
| 8 #include "src/api.h" | |
| 9 #include "src/base/platform/platform.h" | |
| 10 #include "src/bootstrapper.h" | |
| 11 #include "src/code-stubs.h" | |
| 12 #include "src/cpu-profiler.h" | |
| 13 #include "src/deoptimizer.h" | |
| 14 #include "src/execution.h" | |
| 15 #include "src/global-handles.h" | |
| 16 #include "src/ic/ic.h" | |
| 17 #include "src/ic/stub-cache.h" | |
| 18 #include "src/natives.h" | |
| 19 #include "src/objects.h" | |
| 20 #include "src/parser.h" | |
| 21 #include "src/runtime/runtime.h" | |
| 22 #include "src/serialize.h" | |
| 23 #include "src/snapshot.h" | |
| 24 #include "src/snapshot-source-sink.h" | |
| 25 #include "src/v8threads.h" | |
| 26 #include "src/version.h" | |
| 27 | |
| 28 namespace v8 { | |
| 29 namespace internal { | |
| 30 | |
| 31 | |
| 32 // ----------------------------------------------------------------------------- | |
| 33 // Coding of external references. | |
| 34 | |
| 35 | |
| 36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { | |
| 37 ExternalReferenceTable* external_reference_table = | |
| 38 isolate->external_reference_table(); | |
| 39 if (external_reference_table == NULL) { | |
| 40 external_reference_table = new ExternalReferenceTable(isolate); | |
| 41 isolate->set_external_reference_table(external_reference_table); | |
| 42 } | |
| 43 return external_reference_table; | |
| 44 } | |
| 45 | |
| 46 | |
| 47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) { | |
| 48 // Miscellaneous | |
| 49 Add(ExternalReference::roots_array_start(isolate).address(), | |
| 50 "Heap::roots_array_start()"); | |
| 51 Add(ExternalReference::address_of_stack_limit(isolate).address(), | |
| 52 "StackGuard::address_of_jslimit()"); | |
| 53 Add(ExternalReference::address_of_real_stack_limit(isolate).address(), | |
| 54 "StackGuard::address_of_real_jslimit()"); | |
| 55 Add(ExternalReference::new_space_start(isolate).address(), | |
| 56 "Heap::NewSpaceStart()"); | |
| 57 Add(ExternalReference::new_space_mask(isolate).address(), | |
| 58 "Heap::NewSpaceMask()"); | |
| 59 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), | |
| 60 "Heap::NewSpaceAllocationLimitAddress()"); | |
| 61 Add(ExternalReference::new_space_allocation_top_address(isolate).address(), | |
| 62 "Heap::NewSpaceAllocationTopAddress()"); | |
| 63 Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()"); | |
| 64 Add(ExternalReference::debug_step_in_fp_address(isolate).address(), | |
| 65 "Debug::step_in_fp_addr()"); | |
| 66 Add(ExternalReference::mod_two_doubles_operation(isolate).address(), | |
| 67 "mod_two_doubles"); | |
| 68 // Keyed lookup cache. | |
| 69 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), | |
| 70 "KeyedLookupCache::keys()"); | |
| 71 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), | |
| 72 "KeyedLookupCache::field_offsets()"); | |
| 73 Add(ExternalReference::handle_scope_next_address(isolate).address(), | |
| 74 "HandleScope::next"); | |
| 75 Add(ExternalReference::handle_scope_limit_address(isolate).address(), | |
| 76 "HandleScope::limit"); | |
| 77 Add(ExternalReference::handle_scope_level_address(isolate).address(), | |
| 78 "HandleScope::level"); | |
| 79 Add(ExternalReference::new_deoptimizer_function(isolate).address(), | |
| 80 "Deoptimizer::New()"); | |
| 81 Add(ExternalReference::compute_output_frames_function(isolate).address(), | |
| 82 "Deoptimizer::ComputeOutputFrames()"); | |
| 83 Add(ExternalReference::address_of_min_int().address(), | |
| 84 "LDoubleConstant::min_int"); | |
| 85 Add(ExternalReference::address_of_one_half().address(), | |
| 86 "LDoubleConstant::one_half"); | |
| 87 Add(ExternalReference::isolate_address(isolate).address(), "isolate"); | |
| 88 Add(ExternalReference::address_of_negative_infinity().address(), | |
| 89 "LDoubleConstant::negative_infinity"); | |
| 90 Add(ExternalReference::power_double_double_function(isolate).address(), | |
| 91 "power_double_double_function"); | |
| 92 Add(ExternalReference::power_double_int_function(isolate).address(), | |
| 93 "power_double_int_function"); | |
| 94 Add(ExternalReference::math_log_double_function(isolate).address(), | |
| 95 "std::log"); | |
| 96 Add(ExternalReference::store_buffer_top(isolate).address(), | |
| 97 "store_buffer_top"); | |
| 98 Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan"); | |
| 99 Add(ExternalReference::get_date_field_function(isolate).address(), | |
| 100 "JSDate::GetField"); | |
| 101 Add(ExternalReference::date_cache_stamp(isolate).address(), | |
| 102 "date_cache_stamp"); | |
| 103 Add(ExternalReference::address_of_pending_message_obj(isolate).address(), | |
| 104 "address_of_pending_message_obj"); | |
| 105 Add(ExternalReference::get_make_code_young_function(isolate).address(), | |
| 106 "Code::MakeCodeYoung"); | |
| 107 Add(ExternalReference::cpu_features().address(), "cpu_features"); | |
| 108 Add(ExternalReference::old_pointer_space_allocation_top_address(isolate) | |
| 109 .address(), | |
| 110 "Heap::OldPointerSpaceAllocationTopAddress"); | |
| 111 Add(ExternalReference::old_pointer_space_allocation_limit_address(isolate) | |
| 112 .address(), | |
| 113 "Heap::OldPointerSpaceAllocationLimitAddress"); | |
| 114 Add(ExternalReference::old_data_space_allocation_top_address(isolate) | |
| 115 .address(), | |
| 116 "Heap::OldDataSpaceAllocationTopAddress"); | |
| 117 Add(ExternalReference::old_data_space_allocation_limit_address(isolate) | |
| 118 .address(), | |
| 119 "Heap::OldDataSpaceAllocationLimitAddress"); | |
| 120 Add(ExternalReference::allocation_sites_list_address(isolate).address(), | |
| 121 "Heap::allocation_sites_list_address()"); | |
| 122 Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias"); | |
| 123 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(), | |
| 124 "Code::MarkCodeAsExecuted"); | |
| 125 Add(ExternalReference::is_profiling_address(isolate).address(), | |
| 126 "CpuProfiler::is_profiling"); | |
| 127 Add(ExternalReference::scheduled_exception_address(isolate).address(), | |
| 128 "Isolate::scheduled_exception"); | |
| 129 Add(ExternalReference::invoke_function_callback(isolate).address(), | |
| 130 "InvokeFunctionCallback"); | |
| 131 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(), | |
| 132 "InvokeAccessorGetterCallback"); | |
| 133 Add(ExternalReference::flush_icache_function(isolate).address(), | |
| 134 "CpuFeatures::FlushICache"); | |
| 135 Add(ExternalReference::log_enter_external_function(isolate).address(), | |
| 136 "Logger::EnterExternal"); | |
| 137 Add(ExternalReference::log_leave_external_function(isolate).address(), | |
| 138 "Logger::LeaveExternal"); | |
| 139 Add(ExternalReference::address_of_minus_one_half().address(), | |
| 140 "double_constants.minus_one_half"); | |
| 141 Add(ExternalReference::stress_deopt_count(isolate).address(), | |
| 142 "Isolate::stress_deopt_count_address()"); | |
| 143 | |
| 144 // Debug addresses | |
| 145 Add(ExternalReference::debug_after_break_target_address(isolate).address(), | |
| 146 "Debug::after_break_target_address()"); | |
| 147 Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate) | |
| 148 .address(), | |
| 149 "Debug::restarter_frame_function_pointer_address()"); | |
| 150 Add(ExternalReference::debug_is_active_address(isolate).address(), | |
| 151 "Debug::is_active_address()"); | |
| 152 | |
| 153 #ifndef V8_INTERPRETED_REGEXP | |
| 154 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), | |
| 155 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); | |
| 156 Add(ExternalReference::re_check_stack_guard_state(isolate).address(), | |
| 157 "RegExpMacroAssembler*::CheckStackGuardState()"); | |
| 158 Add(ExternalReference::re_grow_stack(isolate).address(), | |
| 159 "NativeRegExpMacroAssembler::GrowStack()"); | |
| 160 Add(ExternalReference::re_word_character_map().address(), | |
| 161 "NativeRegExpMacroAssembler::word_character_map"); | |
| 162 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), | |
| 163 "RegExpStack::limit_address()"); | |
| 164 Add(ExternalReference::address_of_regexp_stack_memory_address(isolate) | |
| 165 .address(), | |
| 166 "RegExpStack::memory_address()"); | |
| 167 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), | |
| 168 "RegExpStack::memory_size()"); | |
| 169 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), | |
| 170 "OffsetsVector::static_offsets_vector"); | |
| 171 #endif // V8_INTERPRETED_REGEXP | |
| 172 | |
| 173 // The following populates all of the different type of external references | |
| 174 // into the ExternalReferenceTable. | |
| 175 // | |
| 176 // NOTE: This function was originally 100k of code. It has since been | |
| 177 // rewritten to be mostly table driven, as the callback macro style tends to | |
| 178 // very easily cause code bloat. Please be careful in the future when adding | |
| 179 // new references. | |
| 180 | |
| 181 struct RefTableEntry { | |
| 182 uint16_t id; | |
| 183 const char* name; | |
| 184 }; | |
| 185 | |
| 186 static const RefTableEntry c_builtins[] = { | |
| 187 #define DEF_ENTRY_C(name, ignored) \ | |
| 188 { Builtins::c_##name, "Builtins::" #name } \ | |
| 189 , | |
| 190 BUILTIN_LIST_C(DEF_ENTRY_C) | |
| 191 #undef DEF_ENTRY_C | |
| 192 }; | |
| 193 | |
| 194 for (unsigned i = 0; i < arraysize(c_builtins); ++i) { | |
| 195 ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id), | |
| 196 isolate); | |
| 197 Add(ref.address(), c_builtins[i].name); | |
| 198 } | |
| 199 | |
| 200 static const RefTableEntry builtins[] = { | |
| 201 #define DEF_ENTRY_C(name, ignored) \ | |
| 202 { Builtins::k##name, "Builtins::" #name } \ | |
| 203 , | |
| 204 #define DEF_ENTRY_A(name, i1, i2, i3) \ | |
| 205 { Builtins::k##name, "Builtins::" #name } \ | |
| 206 , | |
| 207 BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A) | |
| 208 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) | |
| 209 #undef DEF_ENTRY_C | |
| 210 #undef DEF_ENTRY_A | |
| 211 }; | |
| 212 | |
| 213 for (unsigned i = 0; i < arraysize(builtins); ++i) { | |
| 214 ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate); | |
| 215 Add(ref.address(), builtins[i].name); | |
| 216 } | |
| 217 | |
| 218 static const RefTableEntry runtime_functions[] = { | |
| 219 #define RUNTIME_ENTRY(name, i1, i2) \ | |
| 220 { Runtime::k##name, "Runtime::" #name } \ | |
| 221 , | |
| 222 FOR_EACH_INTRINSIC(RUNTIME_ENTRY) | |
| 223 #undef RUNTIME_ENTRY | |
| 224 }; | |
| 225 | |
| 226 for (unsigned i = 0; i < arraysize(runtime_functions); ++i) { | |
| 227 ExternalReference ref( | |
| 228 static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate); | |
| 229 Add(ref.address(), runtime_functions[i].name); | |
| 230 } | |
| 231 | |
| 232 static const RefTableEntry inline_caches[] = { | |
| 233 #define IC_ENTRY(name) \ | |
| 234 { IC::k##name, "IC::" #name } \ | |
| 235 , | |
| 236 IC_UTIL_LIST(IC_ENTRY) | |
| 237 #undef IC_ENTRY | |
| 238 }; | |
| 239 | |
| 240 for (unsigned i = 0; i < arraysize(inline_caches); ++i) { | |
| 241 ExternalReference ref( | |
| 242 IC_Utility(static_cast<IC::UtilityId>(inline_caches[i].id)), isolate); | |
| 243 Add(ref.address(), runtime_functions[i].name); | |
| 244 } | |
| 245 | |
| 246 // Stat counters | |
| 247 struct StatsRefTableEntry { | |
| 248 StatsCounter* (Counters::*counter)(); | |
| 249 const char* name; | |
| 250 }; | |
| 251 | |
| 252 static const StatsRefTableEntry stats_ref_table[] = { | |
| 253 #define COUNTER_ENTRY(name, caption) \ | |
| 254 { &Counters::name, "Counters::" #name } \ | |
| 255 , | |
| 256 STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY) | |
| 257 #undef COUNTER_ENTRY | |
| 258 }; | |
| 259 | |
| 260 Counters* counters = isolate->counters(); | |
| 261 for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) { | |
| 262 // To make sure the indices are not dependent on whether counters are | |
| 263 // enabled, use a dummy address as filler. | |
| 264 Address address = NotAvailable(); | |
| 265 StatsCounter* counter = (counters->*(stats_ref_table[i].counter))(); | |
| 266 if (counter->Enabled()) { | |
| 267 address = reinterpret_cast<Address>(counter->GetInternalPointer()); | |
| 268 } | |
| 269 Add(address, stats_ref_table[i].name); | |
| 270 } | |
| 271 | |
| 272 // Top addresses | |
| 273 static const char* address_names[] = { | |
| 274 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address", | |
| 275 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL | |
| 276 #undef BUILD_NAME_LITERAL | |
| 277 }; | |
| 278 | |
| 279 for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) { | |
| 280 Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)), | |
| 281 address_names[i]); | |
| 282 } | |
| 283 | |
| 284 // Accessors | |
| 285 struct AccessorRefTable { | |
| 286 Address address; | |
| 287 const char* name; | |
| 288 }; | |
| 289 | |
| 290 static const AccessorRefTable accessors[] = { | |
| 291 #define ACCESSOR_INFO_DECLARATION(name) \ | |
| 292 { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \ | |
| 293 , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"}, | |
| 294 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION) | |
| 295 #undef ACCESSOR_INFO_DECLARATION | |
| 296 }; | |
| 297 | |
| 298 for (unsigned i = 0; i < arraysize(accessors); ++i) { | |
| 299 Add(accessors[i].address, accessors[i].name); | |
| 300 } | |
| 301 | |
| 302 StubCache* stub_cache = isolate->stub_cache(); | |
| 303 | |
| 304 // Stub cache tables | |
| 305 Add(stub_cache->key_reference(StubCache::kPrimary).address(), | |
| 306 "StubCache::primary_->key"); | |
| 307 Add(stub_cache->value_reference(StubCache::kPrimary).address(), | |
| 308 "StubCache::primary_->value"); | |
| 309 Add(stub_cache->map_reference(StubCache::kPrimary).address(), | |
| 310 "StubCache::primary_->map"); | |
| 311 Add(stub_cache->key_reference(StubCache::kSecondary).address(), | |
| 312 "StubCache::secondary_->key"); | |
| 313 Add(stub_cache->value_reference(StubCache::kSecondary).address(), | |
| 314 "StubCache::secondary_->value"); | |
| 315 Add(stub_cache->map_reference(StubCache::kSecondary).address(), | |
| 316 "StubCache::secondary_->map"); | |
| 317 | |
| 318 // Runtime entries | |
| 319 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), | |
| 320 "HandleScope::DeleteExtensions"); | |
| 321 Add(ExternalReference::incremental_marking_record_write_function(isolate) | |
| 322 .address(), | |
| 323 "IncrementalMarking::RecordWrite"); | |
| 324 Add(ExternalReference::store_buffer_overflow_function(isolate).address(), | |
| 325 "StoreBuffer::StoreBufferOverflow"); | |
| 326 | |
| 327 // Add a small set of deopt entry addresses to encoder without generating the | |
| 328 // deopt table code, which isn't possible at deserialization time. | |
| 329 HandleScope scope(isolate); | |
| 330 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) { | |
| 331 Address address = Deoptimizer::GetDeoptimizationEntry( | |
| 332 isolate, | |
| 333 entry, | |
| 334 Deoptimizer::LAZY, | |
| 335 Deoptimizer::CALCULATE_ENTRY_ADDRESS); | |
| 336 Add(address, "lazy_deopt"); | |
| 337 } | |
| 338 } | |
| 339 | |
| 340 | |
| 341 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) { | |
| 342 map_ = isolate->external_reference_map(); | |
| 343 if (map_ != NULL) return; | |
| 344 map_ = new HashMap(HashMap::PointersMatch); | |
| 345 ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate); | |
| 346 for (int i = 0; i < table->size(); ++i) { | |
| 347 Address addr = table->address(i); | |
| 348 if (addr == ExternalReferenceTable::NotAvailable()) continue; | |
| 349 // We expect no duplicate external references entries in the table. | |
| 350 DCHECK_NULL(map_->Lookup(addr, Hash(addr), false)); | |
| 351 map_->Lookup(addr, Hash(addr), true)->value = reinterpret_cast<void*>(i); | |
| 352 } | |
| 353 isolate->set_external_reference_map(map_); | |
| 354 } | |
| 355 | |
| 356 | |
| 357 uint32_t ExternalReferenceEncoder::Encode(Address address) const { | |
| 358 DCHECK_NOT_NULL(address); | |
| 359 HashMap::Entry* entry = | |
| 360 const_cast<HashMap*>(map_)->Lookup(address, Hash(address), false); | |
| 361 DCHECK_NOT_NULL(entry); | |
| 362 return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); | |
| 363 } | |
| 364 | |
| 365 | |
| 366 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate, | |
| 367 Address address) const { | |
| 368 HashMap::Entry* entry = | |
| 369 const_cast<HashMap*>(map_)->Lookup(address, Hash(address), false); | |
| 370 if (entry == NULL) return "<unknown>"; | |
| 371 uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); | |
| 372 return ExternalReferenceTable::instance(isolate)->name(i); | |
| 373 } | |
| 374 | |
| 375 | |
| 376 RootIndexMap::RootIndexMap(Isolate* isolate) { | |
| 377 map_ = isolate->root_index_map(); | |
| 378 if (map_ != NULL) return; | |
| 379 map_ = new HashMap(HashMap::PointersMatch); | |
| 380 Object** root_array = isolate->heap()->roots_array_start(); | |
| 381 for (uint32_t i = 0; i < Heap::kStrongRootListLength; i++) { | |
| 382 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i); | |
| 383 Object* root = root_array[root_index]; | |
| 384 // Omit root entries that can be written after initialization. They must | |
| 385 // not be referenced through the root list in the snapshot. | |
| 386 if (root->IsHeapObject() && | |
| 387 isolate->heap()->RootCanBeTreatedAsConstant(root_index)) { | |
| 388 HeapObject* heap_object = HeapObject::cast(root); | |
| 389 HashMap::Entry* entry = LookupEntry(map_, heap_object, false); | |
| 390 if (entry != NULL) { | |
| 391 // Some are initialized to a previous value in the root list. | |
| 392 DCHECK_LT(GetValue(entry), i); | |
| 393 } else { | |
| 394 SetValue(LookupEntry(map_, heap_object, true), i); | |
| 395 } | |
| 396 } | |
| 397 } | |
| 398 isolate->set_root_index_map(map_); | |
| 399 } | |
| 400 | |
| 401 | |
| 402 class CodeAddressMap: public CodeEventLogger { | |
| 403 public: | |
| 404 explicit CodeAddressMap(Isolate* isolate) | |
| 405 : isolate_(isolate) { | |
| 406 isolate->logger()->addCodeEventListener(this); | |
| 407 } | |
| 408 | |
| 409 virtual ~CodeAddressMap() { | |
| 410 isolate_->logger()->removeCodeEventListener(this); | |
| 411 } | |
| 412 | |
| 413 virtual void CodeMoveEvent(Address from, Address to) { | |
| 414 address_to_name_map_.Move(from, to); | |
| 415 } | |
| 416 | |
| 417 virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) { | |
| 418 } | |
| 419 | |
| 420 virtual void CodeDeleteEvent(Address from) { | |
| 421 address_to_name_map_.Remove(from); | |
| 422 } | |
| 423 | |
| 424 const char* Lookup(Address address) { | |
| 425 return address_to_name_map_.Lookup(address); | |
| 426 } | |
| 427 | |
| 428 private: | |
| 429 class NameMap { | |
| 430 public: | |
| 431 NameMap() : impl_(HashMap::PointersMatch) {} | |
| 432 | |
| 433 ~NameMap() { | |
| 434 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { | |
| 435 DeleteArray(static_cast<const char*>(p->value)); | |
| 436 } | |
| 437 } | |
| 438 | |
| 439 void Insert(Address code_address, const char* name, int name_size) { | |
| 440 HashMap::Entry* entry = FindOrCreateEntry(code_address); | |
| 441 if (entry->value == NULL) { | |
| 442 entry->value = CopyName(name, name_size); | |
| 443 } | |
| 444 } | |
| 445 | |
| 446 const char* Lookup(Address code_address) { | |
| 447 HashMap::Entry* entry = FindEntry(code_address); | |
| 448 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; | |
| 449 } | |
| 450 | |
| 451 void Remove(Address code_address) { | |
| 452 HashMap::Entry* entry = FindEntry(code_address); | |
| 453 if (entry != NULL) { | |
| 454 DeleteArray(static_cast<char*>(entry->value)); | |
| 455 RemoveEntry(entry); | |
| 456 } | |
| 457 } | |
| 458 | |
| 459 void Move(Address from, Address to) { | |
| 460 if (from == to) return; | |
| 461 HashMap::Entry* from_entry = FindEntry(from); | |
| 462 DCHECK(from_entry != NULL); | |
| 463 void* value = from_entry->value; | |
| 464 RemoveEntry(from_entry); | |
| 465 HashMap::Entry* to_entry = FindOrCreateEntry(to); | |
| 466 DCHECK(to_entry->value == NULL); | |
| 467 to_entry->value = value; | |
| 468 } | |
| 469 | |
| 470 private: | |
| 471 static char* CopyName(const char* name, int name_size) { | |
| 472 char* result = NewArray<char>(name_size + 1); | |
| 473 for (int i = 0; i < name_size; ++i) { | |
| 474 char c = name[i]; | |
| 475 if (c == '\0') c = ' '; | |
| 476 result[i] = c; | |
| 477 } | |
| 478 result[name_size] = '\0'; | |
| 479 return result; | |
| 480 } | |
| 481 | |
| 482 HashMap::Entry* FindOrCreateEntry(Address code_address) { | |
| 483 return impl_.Lookup(code_address, ComputePointerHash(code_address), true); | |
| 484 } | |
| 485 | |
| 486 HashMap::Entry* FindEntry(Address code_address) { | |
| 487 return impl_.Lookup(code_address, | |
| 488 ComputePointerHash(code_address), | |
| 489 false); | |
| 490 } | |
| 491 | |
| 492 void RemoveEntry(HashMap::Entry* entry) { | |
| 493 impl_.Remove(entry->key, entry->hash); | |
| 494 } | |
| 495 | |
| 496 HashMap impl_; | |
| 497 | |
| 498 DISALLOW_COPY_AND_ASSIGN(NameMap); | |
| 499 }; | |
| 500 | |
| 501 virtual void LogRecordedBuffer(Code* code, | |
| 502 SharedFunctionInfo*, | |
| 503 const char* name, | |
| 504 int length) { | |
| 505 address_to_name_map_.Insert(code->address(), name, length); | |
| 506 } | |
| 507 | |
| 508 NameMap address_to_name_map_; | |
| 509 Isolate* isolate_; | |
| 510 }; | |
| 511 | |
| 512 | |
| 513 void Deserializer::DecodeReservation( | |
| 514 Vector<const SerializedData::Reservation> res) { | |
| 515 DCHECK_EQ(0, reservations_[NEW_SPACE].length()); | |
| 516 STATIC_ASSERT(NEW_SPACE == 0); | |
| 517 int current_space = NEW_SPACE; | |
| 518 for (auto& r : res) { | |
| 519 reservations_[current_space].Add({r.chunk_size(), NULL, NULL}); | |
| 520 if (r.is_last()) current_space++; | |
| 521 } | |
| 522 DCHECK_EQ(kNumberOfSpaces, current_space); | |
| 523 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; | |
| 524 } | |
| 525 | |
| 526 | |
| 527 void Deserializer::FlushICacheForNewCodeObjects() { | |
| 528 PageIterator it(isolate_->heap()->code_space()); | |
| 529 while (it.has_next()) { | |
| 530 Page* p = it.next(); | |
| 531 CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start()); | |
| 532 } | |
| 533 } | |
| 534 | |
| 535 | |
| 536 bool Deserializer::ReserveSpace() { | |
| 537 #ifdef DEBUG | |
| 538 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { | |
| 539 CHECK(reservations_[i].length() > 0); | |
| 540 } | |
| 541 #endif // DEBUG | |
| 542 if (!isolate_->heap()->ReserveSpace(reservations_)) return false; | |
| 543 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { | |
| 544 high_water_[i] = reservations_[i][0].start; | |
| 545 } | |
| 546 return true; | |
| 547 } | |
| 548 | |
| 549 | |
| 550 void Deserializer::Initialize(Isolate* isolate) { | |
| 551 DCHECK_NULL(isolate_); | |
| 552 DCHECK_NOT_NULL(isolate); | |
| 553 isolate_ = isolate; | |
| 554 DCHECK_NULL(external_reference_table_); | |
| 555 external_reference_table_ = ExternalReferenceTable::instance(isolate); | |
| 556 CHECK_EQ(magic_number_, | |
| 557 SerializedData::ComputeMagicNumber(external_reference_table_)); | |
| 558 } | |
| 559 | |
| 560 | |
| 561 void Deserializer::Deserialize(Isolate* isolate) { | |
| 562 Initialize(isolate); | |
| 563 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context"); | |
| 564 // No active threads. | |
| 565 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse()); | |
| 566 // No active handles. | |
| 567 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty()); | |
| 568 isolate_->heap()->IterateSmiRoots(this); | |
| 569 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); | |
| 570 isolate_->heap()->RepairFreeListsAfterDeserialization(); | |
| 571 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); | |
| 572 | |
| 573 isolate_->heap()->set_native_contexts_list( | |
| 574 isolate_->heap()->undefined_value()); | |
| 575 isolate_->heap()->set_array_buffers_list( | |
| 576 isolate_->heap()->undefined_value()); | |
| 577 isolate->heap()->set_new_array_buffer_views_list( | |
| 578 isolate_->heap()->undefined_value()); | |
| 579 | |
| 580 // The allocation site list is build during root iteration, but if no sites | |
| 581 // were encountered then it needs to be initialized to undefined. | |
| 582 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { | |
| 583 isolate_->heap()->set_allocation_sites_list( | |
| 584 isolate_->heap()->undefined_value()); | |
| 585 } | |
| 586 | |
| 587 // Update data pointers to the external strings containing natives sources. | |
| 588 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { | |
| 589 Object* source = isolate_->heap()->natives_source_cache()->get(i); | |
| 590 if (!source->IsUndefined()) { | |
| 591 ExternalOneByteString::cast(source)->update_data_cache(); | |
| 592 } | |
| 593 } | |
| 594 | |
| 595 FlushICacheForNewCodeObjects(); | |
| 596 | |
| 597 // Issue code events for newly deserialized code objects. | |
| 598 LOG_CODE_EVENT(isolate_, LogCodeObjects()); | |
| 599 LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); | |
| 600 } | |
| 601 | |
| 602 | |
| 603 MaybeHandle<Object> Deserializer::DeserializePartial( | |
| 604 Isolate* isolate, Handle<JSGlobalProxy> global_proxy, | |
| 605 Handle<FixedArray>* outdated_contexts_out) { | |
| 606 Initialize(isolate); | |
| 607 if (!ReserveSpace()) { | |
| 608 V8::FatalProcessOutOfMemory("deserialize context"); | |
| 609 return MaybeHandle<Object>(); | |
| 610 } | |
| 611 | |
| 612 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1); | |
| 613 attached_objects[kGlobalProxyReference] = global_proxy; | |
| 614 SetAttachedObjects(attached_objects); | |
| 615 | |
| 616 DisallowHeapAllocation no_gc; | |
| 617 // Keep track of the code space start and end pointers in case new | |
| 618 // code objects were unserialized | |
| 619 OldSpace* code_space = isolate_->heap()->code_space(); | |
| 620 Address start_address = code_space->top(); | |
| 621 Object* root; | |
| 622 Object* outdated_contexts; | |
| 623 VisitPointer(&root); | |
| 624 VisitPointer(&outdated_contexts); | |
| 625 | |
| 626 // There's no code deserialized here. If this assert fires | |
| 627 // then that's changed and logging should be added to notify | |
| 628 // the profiler et al of the new code. | |
| 629 CHECK_EQ(start_address, code_space->top()); | |
| 630 CHECK(outdated_contexts->IsFixedArray()); | |
| 631 *outdated_contexts_out = | |
| 632 Handle<FixedArray>(FixedArray::cast(outdated_contexts), isolate); | |
| 633 return Handle<Object>(root, isolate); | |
| 634 } | |
| 635 | |
| 636 | |
| 637 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode( | |
| 638 Isolate* isolate) { | |
| 639 Initialize(isolate); | |
| 640 if (!ReserveSpace()) { | |
| 641 return Handle<SharedFunctionInfo>(); | |
| 642 } else { | |
| 643 deserializing_user_code_ = true; | |
| 644 DisallowHeapAllocation no_gc; | |
| 645 Object* root; | |
| 646 VisitPointer(&root); | |
| 647 return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root)); | |
| 648 } | |
| 649 } | |
| 650 | |
| 651 | |
| 652 Deserializer::~Deserializer() { | |
| 653 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. | |
| 654 // DCHECK(source_.AtEOF()); | |
| 655 attached_objects_.Dispose(); | |
| 656 } | |
| 657 | |
| 658 | |
| 659 // This is called on the roots. It is the driver of the deserialization | |
| 660 // process. It is also called on the body of each function. | |
| 661 void Deserializer::VisitPointers(Object** start, Object** end) { | |
| 662 // The space must be new space. Any other space would cause ReadChunk to try | |
| 663 // to update the remembered using NULL as the address. | |
| 664 ReadData(start, end, NEW_SPACE, NULL); | |
| 665 } | |
| 666 | |
| 667 | |
| 668 void Deserializer::RelinkAllocationSite(AllocationSite* site) { | |
| 669 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { | |
| 670 site->set_weak_next(isolate_->heap()->undefined_value()); | |
| 671 } else { | |
| 672 site->set_weak_next(isolate_->heap()->allocation_sites_list()); | |
| 673 } | |
| 674 isolate_->heap()->set_allocation_sites_list(site); | |
| 675 } | |
| 676 | |
| 677 | |
| 678 // Used to insert a deserialized internalized string into the string table. | |
| 679 class StringTableInsertionKey : public HashTableKey { | |
| 680 public: | |
| 681 explicit StringTableInsertionKey(String* string) | |
| 682 : string_(string), hash_(HashForObject(string)) { | |
| 683 DCHECK(string->IsInternalizedString()); | |
| 684 } | |
| 685 | |
| 686 bool IsMatch(Object* string) OVERRIDE { | |
| 687 // We know that all entries in a hash table had their hash keys created. | |
| 688 // Use that knowledge to have fast failure. | |
| 689 if (hash_ != HashForObject(string)) return false; | |
| 690 // We want to compare the content of two internalized strings here. | |
| 691 return string_->SlowEquals(String::cast(string)); | |
| 692 } | |
| 693 | |
| 694 uint32_t Hash() OVERRIDE { return hash_; } | |
| 695 | |
| 696 uint32_t HashForObject(Object* key) OVERRIDE { | |
| 697 return String::cast(key)->Hash(); | |
| 698 } | |
| 699 | |
| 700 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) | |
| 701 OVERRIDE { | |
| 702 return handle(string_, isolate); | |
| 703 } | |
| 704 | |
| 705 String* string_; | |
| 706 uint32_t hash_; | |
| 707 }; | |
| 708 | |
| 709 | |
| 710 HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) { | |
| 711 if (obj->IsString()) { | |
| 712 String* string = String::cast(obj); | |
| 713 // Uninitialize hash field as the hash seed may have changed. | |
| 714 string->set_hash_field(String::kEmptyHashField); | |
| 715 if (string->IsInternalizedString()) { | |
| 716 DisallowHeapAllocation no_gc; | |
| 717 HandleScope scope(isolate_); | |
| 718 StringTableInsertionKey key(string); | |
| 719 String* canonical = *StringTable::LookupKey(isolate_, &key); | |
| 720 string->SetForwardedInternalizedString(canonical); | |
| 721 return canonical; | |
| 722 } | |
| 723 } else if (obj->IsScript()) { | |
| 724 Script::cast(obj)->set_id(isolate_->heap()->NextScriptId()); | |
| 725 } | |
| 726 return obj; | |
| 727 } | |
| 728 | |
| 729 | |
| 730 HeapObject* Deserializer::GetBackReferencedObject(int space) { | |
| 731 HeapObject* obj; | |
| 732 BackReference back_reference(source_.GetInt()); | |
| 733 if (space == LO_SPACE) { | |
| 734 CHECK(back_reference.chunk_index() == 0); | |
| 735 uint32_t index = back_reference.large_object_index(); | |
| 736 obj = deserialized_large_objects_[index]; | |
| 737 } else { | |
| 738 DCHECK(space < kNumberOfPreallocatedSpaces); | |
| 739 uint32_t chunk_index = back_reference.chunk_index(); | |
| 740 DCHECK_LE(chunk_index, current_chunk_[space]); | |
| 741 uint32_t chunk_offset = back_reference.chunk_offset(); | |
| 742 obj = HeapObject::FromAddress(reservations_[space][chunk_index].start + | |
| 743 chunk_offset); | |
| 744 } | |
| 745 if (deserializing_user_code() && obj->IsInternalizedString()) { | |
| 746 obj = String::cast(obj)->GetForwardedInternalizedString(); | |
| 747 } | |
| 748 hot_objects_.Add(obj); | |
| 749 return obj; | |
| 750 } | |
| 751 | |
| 752 | |
| 753 // This routine writes the new object into the pointer provided and then | |
| 754 // returns true if the new object was in young space and false otherwise. | |
| 755 // The reason for this strange interface is that otherwise the object is | |
| 756 // written very late, which means the FreeSpace map is not set up by the | |
| 757 // time we need to use it to mark the space at the end of a page free. | |
| 758 void Deserializer::ReadObject(int space_number, Object** write_back) { | |
| 759 Address address; | |
| 760 HeapObject* obj; | |
| 761 int next_int = source_.GetInt(); | |
| 762 | |
| 763 bool double_align = false; | |
| 764 #ifndef V8_HOST_ARCH_64_BIT | |
| 765 double_align = next_int == kDoubleAlignmentSentinel; | |
| 766 if (double_align) next_int = source_.GetInt(); | |
| 767 #endif | |
| 768 | |
| 769 DCHECK_NE(kDoubleAlignmentSentinel, next_int); | |
| 770 int size = next_int << kObjectAlignmentBits; | |
| 771 int reserved_size = size + (double_align ? kPointerSize : 0); | |
| 772 address = Allocate(space_number, reserved_size); | |
| 773 obj = HeapObject::FromAddress(address); | |
| 774 if (double_align) { | |
| 775 obj = isolate_->heap()->DoubleAlignForDeserialization(obj, reserved_size); | |
| 776 address = obj->address(); | |
| 777 } | |
| 778 | |
| 779 isolate_->heap()->OnAllocationEvent(obj, size); | |
| 780 Object** current = reinterpret_cast<Object**>(address); | |
| 781 Object** limit = current + (size >> kPointerSizeLog2); | |
| 782 if (FLAG_log_snapshot_positions) { | |
| 783 LOG(isolate_, SnapshotPositionEvent(address, source_.position())); | |
| 784 } | |
| 785 ReadData(current, limit, space_number, address); | |
| 786 | |
| 787 // TODO(mvstanton): consider treating the heap()->allocation_sites_list() | |
| 788 // as a (weak) root. If this root is relocated correctly, | |
| 789 // RelinkAllocationSite() isn't necessary. | |
| 790 if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj)); | |
| 791 | |
| 792 // Fix up strings from serialized user code. | |
| 793 if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj); | |
| 794 | |
| 795 Object* write_back_obj = obj; | |
| 796 UnalignedCopy(write_back, &write_back_obj); | |
| 797 #ifdef DEBUG | |
| 798 if (obj->IsCode()) { | |
| 799 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); | |
| 800 #ifdef VERIFY_HEAP | |
| 801 obj->ObjectVerify(); | |
| 802 #endif // VERIFY_HEAP | |
| 803 } else { | |
| 804 DCHECK(space_number != CODE_SPACE); | |
| 805 } | |
| 806 #endif // DEBUG | |
| 807 } | |
| 808 | |
| 809 | |
| 810 // We know the space requirements before deserialization and can | |
| 811 // pre-allocate that reserved space. During deserialization, all we need | |
| 812 // to do is to bump up the pointer for each space in the reserved | |
| 813 // space. This is also used for fixing back references. | |
| 814 // We may have to split up the pre-allocation into several chunks | |
| 815 // because it would not fit onto a single page. We do not have to keep | |
| 816 // track of when to move to the next chunk. An opcode will signal this. | |
| 817 // Since multiple large objects cannot be folded into one large object | |
| 818 // space allocation, we have to do an actual allocation when deserializing | |
| 819 // each large object. Instead of tracking offset for back references, we | |
| 820 // reference large objects by index. | |
| 821 Address Deserializer::Allocate(int space_index, int size) { | |
| 822 if (space_index == LO_SPACE) { | |
| 823 AlwaysAllocateScope scope(isolate_); | |
| 824 LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); | |
| 825 Executability exec = static_cast<Executability>(source_.Get()); | |
| 826 AllocationResult result = lo_space->AllocateRaw(size, exec); | |
| 827 HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); | |
| 828 deserialized_large_objects_.Add(obj); | |
| 829 return obj->address(); | |
| 830 } else { | |
| 831 DCHECK(space_index < kNumberOfPreallocatedSpaces); | |
| 832 Address address = high_water_[space_index]; | |
| 833 DCHECK_NOT_NULL(address); | |
| 834 high_water_[space_index] += size; | |
| 835 #ifdef DEBUG | |
| 836 // Assert that the current reserved chunk is still big enough. | |
| 837 const Heap::Reservation& reservation = reservations_[space_index]; | |
| 838 int chunk_index = current_chunk_[space_index]; | |
| 839 CHECK_LE(high_water_[space_index], reservation[chunk_index].end); | |
| 840 #endif | |
| 841 return address; | |
| 842 } | |
| 843 } | |
| 844 | |
| 845 | |
| 846 void Deserializer::ReadData(Object** current, Object** limit, int source_space, | |
| 847 Address current_object_address) { | |
| 848 Isolate* const isolate = isolate_; | |
| 849 // Write barrier support costs around 1% in startup time. In fact there | |
| 850 // are no new space objects in current boot snapshots, so it's not needed, | |
| 851 // but that may change. | |
| 852 bool write_barrier_needed = | |
| 853 (current_object_address != NULL && source_space != NEW_SPACE && | |
| 854 source_space != CELL_SPACE && source_space != CODE_SPACE && | |
| 855 source_space != OLD_DATA_SPACE); | |
| 856 while (current < limit) { | |
| 857 byte data = source_.Get(); | |
| 858 switch (data) { | |
| 859 #define CASE_STATEMENT(where, how, within, space_number) \ | |
| 860 case where + how + within + space_number: \ | |
| 861 STATIC_ASSERT((where & ~kWhereMask) == 0); \ | |
| 862 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ | |
| 863 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ | |
| 864 STATIC_ASSERT((space_number & ~kSpaceMask) == 0); | |
| 865 | |
| 866 #define CASE_BODY(where, how, within, space_number_if_any) \ | |
| 867 { \ | |
| 868 bool emit_write_barrier = false; \ | |
| 869 bool current_was_incremented = false; \ | |
| 870 int space_number = space_number_if_any == kAnyOldSpace \ | |
| 871 ? (data & kSpaceMask) \ | |
| 872 : space_number_if_any; \ | |
| 873 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \ | |
| 874 ReadObject(space_number, current); \ | |
| 875 emit_write_barrier = (space_number == NEW_SPACE); \ | |
| 876 } else { \ | |
| 877 Object* new_object = NULL; /* May not be a real Object pointer. */ \ | |
| 878 if (where == kNewObject) { \ | |
| 879 ReadObject(space_number, &new_object); \ | |
| 880 } else if (where == kBackref) { \ | |
| 881 emit_write_barrier = (space_number == NEW_SPACE); \ | |
| 882 new_object = GetBackReferencedObject(data & kSpaceMask); \ | |
| 883 } else if (where == kBackrefWithSkip) { \ | |
| 884 int skip = source_.GetInt(); \ | |
| 885 current = reinterpret_cast<Object**>( \ | |
| 886 reinterpret_cast<Address>(current) + skip); \ | |
| 887 emit_write_barrier = (space_number == NEW_SPACE); \ | |
| 888 new_object = GetBackReferencedObject(data & kSpaceMask); \ | |
| 889 } else if (where == kRootArray) { \ | |
| 890 int root_id = source_.GetInt(); \ | |
| 891 new_object = isolate->heap()->roots_array_start()[root_id]; \ | |
| 892 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ | |
| 893 } else if (where == kPartialSnapshotCache) { \ | |
| 894 int cache_index = source_.GetInt(); \ | |
| 895 new_object = isolate->partial_snapshot_cache()->at(cache_index); \ | |
| 896 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ | |
| 897 } else if (where == kExternalReference) { \ | |
| 898 int skip = source_.GetInt(); \ | |
| 899 current = reinterpret_cast<Object**>( \ | |
| 900 reinterpret_cast<Address>(current) + skip); \ | |
| 901 int reference_id = source_.GetInt(); \ | |
| 902 Address address = external_reference_table_->address(reference_id); \ | |
| 903 new_object = reinterpret_cast<Object*>(address); \ | |
| 904 } else if (where == kAttachedReference) { \ | |
| 905 int index = source_.GetInt(); \ | |
| 906 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \ | |
| 907 new_object = *attached_objects_[index]; \ | |
| 908 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ | |
| 909 } else { \ | |
| 910 DCHECK(where == kBuiltin); \ | |
| 911 DCHECK(deserializing_user_code()); \ | |
| 912 int builtin_id = source_.GetInt(); \ | |
| 913 DCHECK_LE(0, builtin_id); \ | |
| 914 DCHECK_LT(builtin_id, Builtins::builtin_count); \ | |
| 915 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \ | |
| 916 new_object = isolate->builtins()->builtin(name); \ | |
| 917 emit_write_barrier = false; \ | |
| 918 } \ | |
| 919 if (within == kInnerPointer) { \ | |
| 920 if (space_number != CODE_SPACE || new_object->IsCode()) { \ | |
| 921 Code* new_code_object = reinterpret_cast<Code*>(new_object); \ | |
| 922 new_object = \ | |
| 923 reinterpret_cast<Object*>(new_code_object->instruction_start()); \ | |
| 924 } else { \ | |
| 925 DCHECK(space_number == CODE_SPACE); \ | |
| 926 Cell* cell = Cell::cast(new_object); \ | |
| 927 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \ | |
| 928 } \ | |
| 929 } \ | |
| 930 if (how == kFromCode) { \ | |
| 931 Address location_of_branch_data = reinterpret_cast<Address>(current); \ | |
| 932 Assembler::deserialization_set_special_target_at( \ | |
| 933 location_of_branch_data, \ | |
| 934 Code::cast(HeapObject::FromAddress(current_object_address)), \ | |
| 935 reinterpret_cast<Address>(new_object)); \ | |
| 936 location_of_branch_data += Assembler::kSpecialTargetSize; \ | |
| 937 current = reinterpret_cast<Object**>(location_of_branch_data); \ | |
| 938 current_was_incremented = true; \ | |
| 939 } else { \ | |
| 940 UnalignedCopy(current, &new_object); \ | |
| 941 } \ | |
| 942 } \ | |
| 943 if (emit_write_barrier && write_barrier_needed) { \ | |
| 944 Address current_address = reinterpret_cast<Address>(current); \ | |
| 945 isolate->heap()->RecordWrite( \ | |
| 946 current_object_address, \ | |
| 947 static_cast<int>(current_address - current_object_address)); \ | |
| 948 } \ | |
| 949 if (!current_was_incremented) { \ | |
| 950 current++; \ | |
| 951 } \ | |
| 952 break; \ | |
| 953 } | |
| 954 | |
| 955 // This generates a case and a body for the new space (which has to do extra | |
| 956 // write barrier handling) and handles the other spaces with fall-through cases | |
| 957 // and one body. | |
| 958 #define ALL_SPACES(where, how, within) \ | |
| 959 CASE_STATEMENT(where, how, within, NEW_SPACE) \ | |
| 960 CASE_BODY(where, how, within, NEW_SPACE) \ | |
| 961 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \ | |
| 962 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \ | |
| 963 CASE_STATEMENT(where, how, within, CODE_SPACE) \ | |
| 964 CASE_STATEMENT(where, how, within, MAP_SPACE) \ | |
| 965 CASE_STATEMENT(where, how, within, CELL_SPACE) \ | |
| 966 CASE_STATEMENT(where, how, within, LO_SPACE) \ | |
| 967 CASE_BODY(where, how, within, kAnyOldSpace) | |
| 968 | |
| 969 #define FOUR_CASES(byte_code) \ | |
| 970 case byte_code: \ | |
| 971 case byte_code + 1: \ | |
| 972 case byte_code + 2: \ | |
| 973 case byte_code + 3: | |
| 974 | |
| 975 #define SIXTEEN_CASES(byte_code) \ | |
| 976 FOUR_CASES(byte_code) \ | |
| 977 FOUR_CASES(byte_code + 4) \ | |
| 978 FOUR_CASES(byte_code + 8) \ | |
| 979 FOUR_CASES(byte_code + 12) | |
| 980 | |
| 981 // Deserialize a new object and write a pointer to it to the current | |
| 982 // object. | |
| 983 ALL_SPACES(kNewObject, kPlain, kStartOfObject) | |
| 984 // Support for direct instruction pointers in functions. It's an inner | |
| 985 // pointer because it points at the entry point, not at the start of the | |
| 986 // code object. | |
| 987 CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE) | |
| 988 CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE) | |
| 989 // Deserialize a new code object and write a pointer to its first | |
| 990 // instruction to the current code object. | |
| 991 ALL_SPACES(kNewObject, kFromCode, kInnerPointer) | |
| 992 // Find a recently deserialized object using its offset from the current | |
| 993 // allocation point and write a pointer to it to the current object. | |
| 994 ALL_SPACES(kBackref, kPlain, kStartOfObject) | |
| 995 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) | |
| 996 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ | |
| 997 defined(V8_TARGET_ARCH_PPC) || V8_OOL_CONSTANT_POOL | |
| 998 // Deserialize a new object from pointer found in code and write | |
| 999 // a pointer to it to the current object. Required only for MIPS, PPC or | |
| 1000 // ARM with ool constant pool, and omitted on the other architectures | |
| 1001 // because it is fully unrolled and would cause bloat. | |
| 1002 ALL_SPACES(kNewObject, kFromCode, kStartOfObject) | |
| 1003 // Find a recently deserialized code object using its offset from the | |
| 1004 // current allocation point and write a pointer to it to the current | |
| 1005 // object. Required only for MIPS, PPC or ARM with ool constant pool. | |
| 1006 ALL_SPACES(kBackref, kFromCode, kStartOfObject) | |
| 1007 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) | |
| 1008 #endif | |
| 1009 // Find a recently deserialized code object using its offset from the | |
| 1010 // current allocation point and write a pointer to its first instruction | |
| 1011 // to the current code object or the instruction pointer in a function | |
| 1012 // object. | |
| 1013 ALL_SPACES(kBackref, kFromCode, kInnerPointer) | |
| 1014 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) | |
| 1015 ALL_SPACES(kBackref, kPlain, kInnerPointer) | |
| 1016 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) | |
| 1017 // Find an object in the roots array and write a pointer to it to the | |
| 1018 // current object. | |
| 1019 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0) | |
| 1020 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0) | |
| 1021 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \ | |
| 1022 defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) | |
| 1023 // Find an object in the roots array and write a pointer to it to in code. | |
| 1024 CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0) | |
| 1025 CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0) | |
| 1026 #endif | |
| 1027 // Find an object in the partial snapshots cache and write a pointer to it | |
| 1028 // to the current object. | |
| 1029 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0) | |
| 1030 CASE_BODY(kPartialSnapshotCache, kPlain, kStartOfObject, 0) | |
| 1031 // Find an code entry in the partial snapshots cache and | |
| 1032 // write a pointer to it to the current object. | |
| 1033 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0) | |
| 1034 CASE_BODY(kPartialSnapshotCache, kPlain, kInnerPointer, 0) | |
| 1035 // Find an external reference and write a pointer to it to the current | |
| 1036 // object. | |
| 1037 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0) | |
| 1038 CASE_BODY(kExternalReference, kPlain, kStartOfObject, 0) | |
| 1039 // Find an external reference and write a pointer to it in the current | |
| 1040 // code object. | |
| 1041 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0) | |
| 1042 CASE_BODY(kExternalReference, kFromCode, kStartOfObject, 0) | |
| 1043 // Find an object in the attached references and write a pointer to it to | |
| 1044 // the current object. | |
| 1045 CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0) | |
| 1046 CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0) | |
| 1047 CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0) | |
| 1048 CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0) | |
| 1049 CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0) | |
| 1050 CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0) | |
| 1051 // Find a builtin and write a pointer to it to the current object. | |
| 1052 CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0) | |
| 1053 CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0) | |
| 1054 CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0) | |
| 1055 CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0) | |
| 1056 CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0) | |
| 1057 CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0) | |
| 1058 | |
| 1059 #undef CASE_STATEMENT | |
| 1060 #undef CASE_BODY | |
| 1061 #undef ALL_SPACES | |
| 1062 | |
| 1063 case kSkip: { | |
| 1064 int size = source_.GetInt(); | |
| 1065 current = reinterpret_cast<Object**>( | |
| 1066 reinterpret_cast<intptr_t>(current) + size); | |
| 1067 break; | |
| 1068 } | |
| 1069 | |
| 1070 case kInternalReferenceEncoded: | |
| 1071 case kInternalReference: { | |
| 1072 // Internal reference address is not encoded via skip, but by offset | |
| 1073 // from code entry. | |
| 1074 int pc_offset = source_.GetInt(); | |
| 1075 int target_offset = source_.GetInt(); | |
| 1076 Code* code = | |
| 1077 Code::cast(HeapObject::FromAddress(current_object_address)); | |
| 1078 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); | |
| 1079 DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); | |
| 1080 Address pc = code->entry() + pc_offset; | |
| 1081 Address target = code->entry() + target_offset; | |
| 1082 Assembler::deserialization_set_target_internal_reference_at( | |
| 1083 pc, target, data == kInternalReference | |
| 1084 ? RelocInfo::INTERNAL_REFERENCE | |
| 1085 : RelocInfo::INTERNAL_REFERENCE_ENCODED); | |
| 1086 break; | |
| 1087 } | |
| 1088 | |
| 1089 case kNop: | |
| 1090 break; | |
| 1091 | |
| 1092 case kNextChunk: { | |
| 1093 int space = source_.Get(); | |
| 1094 DCHECK(space < kNumberOfPreallocatedSpaces); | |
| 1095 int chunk_index = current_chunk_[space]; | |
| 1096 const Heap::Reservation& reservation = reservations_[space]; | |
| 1097 // Make sure the current chunk is indeed exhausted. | |
| 1098 CHECK_EQ(reservation[chunk_index].end, high_water_[space]); | |
| 1099 // Move to next reserved chunk. | |
| 1100 chunk_index = ++current_chunk_[space]; | |
| 1101 CHECK_LT(chunk_index, reservation.length()); | |
| 1102 high_water_[space] = reservation[chunk_index].start; | |
| 1103 break; | |
| 1104 } | |
| 1105 | |
| 1106 case kSynchronize: | |
| 1107 // If we get here then that indicates that you have a mismatch between | |
| 1108 // the number of GC roots when serializing and deserializing. | |
| 1109 CHECK(false); | |
| 1110 break; | |
| 1111 | |
| 1112 case kNativesStringResource: { | |
| 1113 DCHECK(!isolate_->heap()->deserialization_complete()); | |
| 1114 int index = source_.Get(); | |
| 1115 Vector<const char> source_vector = Natives::GetScriptSource(index); | |
| 1116 NativesExternalStringResource* resource = | |
| 1117 new NativesExternalStringResource(source_vector.start(), | |
| 1118 source_vector.length()); | |
| 1119 Object* resource_obj = reinterpret_cast<Object*>(resource); | |
| 1120 UnalignedCopy(current++, &resource_obj); | |
| 1121 break; | |
| 1122 } | |
| 1123 | |
| 1124 // Deserialize raw data of variable length. | |
| 1125 case kVariableRawData: { | |
| 1126 int size_in_bytes = source_.GetInt(); | |
| 1127 byte* raw_data_out = reinterpret_cast<byte*>(current); | |
| 1128 source_.CopyRaw(raw_data_out, size_in_bytes); | |
| 1129 break; | |
| 1130 } | |
| 1131 | |
| 1132 case kVariableRepeat: { | |
| 1133 int repeats = source_.GetInt(); | |
| 1134 Object* object = current[-1]; | |
| 1135 DCHECK(!isolate->heap()->InNewSpace(object)); | |
| 1136 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); | |
| 1137 break; | |
| 1138 } | |
| 1139 | |
| 1140 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); | |
| 1141 STATIC_ASSERT(kNumberOfRootArrayConstants == 32); | |
| 1142 SIXTEEN_CASES(kRootArrayConstantsWithSkip) | |
| 1143 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { | |
| 1144 int skip = source_.GetInt(); | |
| 1145 current = reinterpret_cast<Object**>( | |
| 1146 reinterpret_cast<intptr_t>(current) + skip); | |
| 1147 // Fall through. | |
| 1148 } | |
| 1149 | |
| 1150 SIXTEEN_CASES(kRootArrayConstants) | |
| 1151 SIXTEEN_CASES(kRootArrayConstants + 16) { | |
| 1152 int root_id = data & kRootArrayConstantsMask; | |
| 1153 Object* object = isolate->heap()->roots_array_start()[root_id]; | |
| 1154 DCHECK(!isolate->heap()->InNewSpace(object)); | |
| 1155 UnalignedCopy(current++, &object); | |
| 1156 break; | |
| 1157 } | |
| 1158 | |
| 1159 STATIC_ASSERT(kNumberOfHotObjects == 8); | |
| 1160 FOUR_CASES(kHotObjectWithSkip) | |
| 1161 FOUR_CASES(kHotObjectWithSkip + 4) { | |
| 1162 int skip = source_.GetInt(); | |
| 1163 current = reinterpret_cast<Object**>( | |
| 1164 reinterpret_cast<Address>(current) + skip); | |
| 1165 // Fall through. | |
| 1166 } | |
| 1167 | |
| 1168 FOUR_CASES(kHotObject) | |
| 1169 FOUR_CASES(kHotObject + 4) { | |
| 1170 int index = data & kHotObjectMask; | |
| 1171 Object* hot_object = hot_objects_.Get(index); | |
| 1172 UnalignedCopy(current, &hot_object); | |
| 1173 if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) { | |
| 1174 Address current_address = reinterpret_cast<Address>(current); | |
| 1175 isolate->heap()->RecordWrite( | |
| 1176 current_object_address, | |
| 1177 static_cast<int>(current_address - current_object_address)); | |
| 1178 } | |
| 1179 current++; | |
| 1180 break; | |
| 1181 } | |
| 1182 | |
| 1183 // Deserialize raw data of fixed length from 1 to 32 words. | |
| 1184 STATIC_ASSERT(kNumberOfFixedRawData == 32); | |
| 1185 SIXTEEN_CASES(kFixedRawData) | |
| 1186 SIXTEEN_CASES(kFixedRawData + 16) { | |
| 1187 byte* raw_data_out = reinterpret_cast<byte*>(current); | |
| 1188 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; | |
| 1189 source_.CopyRaw(raw_data_out, size_in_bytes); | |
| 1190 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); | |
| 1191 break; | |
| 1192 } | |
| 1193 | |
| 1194 STATIC_ASSERT(kNumberOfFixedRepeat == 16); | |
| 1195 SIXTEEN_CASES(kFixedRepeat) { | |
| 1196 int repeats = data - kFixedRepeatStart; | |
| 1197 Object* object; | |
| 1198 UnalignedCopy(&object, current - 1); | |
| 1199 DCHECK(!isolate->heap()->InNewSpace(object)); | |
| 1200 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); | |
| 1201 break; | |
| 1202 } | |
| 1203 | |
| 1204 #undef SIXTEEN_CASES | |
| 1205 #undef FOUR_CASES | |
| 1206 | |
| 1207 default: | |
| 1208 CHECK(false); | |
| 1209 } | |
| 1210 } | |
| 1211 CHECK_EQ(limit, current); | |
| 1212 } | |
| 1213 | |
| 1214 | |
| 1215 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) | |
| 1216 : isolate_(isolate), | |
| 1217 sink_(sink), | |
| 1218 external_reference_encoder_(isolate), | |
| 1219 root_index_map_(isolate), | |
| 1220 code_address_map_(NULL), | |
| 1221 large_objects_total_size_(0), | |
| 1222 seen_large_objects_index_(0) { | |
| 1223 // The serializer is meant to be used only to generate initial heap images | |
| 1224 // from a context in which there is only one isolate. | |
| 1225 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { | |
| 1226 pending_chunk_[i] = 0; | |
| 1227 max_chunk_size_[i] = static_cast<uint32_t>( | |
| 1228 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i))); | |
| 1229 } | |
| 1230 } | |
| 1231 | |
| 1232 | |
| 1233 Serializer::~Serializer() { | |
| 1234 if (code_address_map_ != NULL) delete code_address_map_; | |
| 1235 } | |
| 1236 | |
| 1237 | |
| 1238 void StartupSerializer::SerializeStrongReferences() { | |
| 1239 Isolate* isolate = this->isolate(); | |
| 1240 // No active threads. | |
| 1241 CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse()); | |
| 1242 // No active or weak handles. | |
| 1243 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); | |
| 1244 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); | |
| 1245 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); | |
| 1246 // We don't support serializing installed extensions. | |
| 1247 CHECK(!isolate->has_installed_extensions()); | |
| 1248 isolate->heap()->IterateSmiRoots(this); | |
| 1249 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); | |
| 1250 } | |
| 1251 | |
| 1252 | |
| 1253 void StartupSerializer::VisitPointers(Object** start, Object** end) { | |
| 1254 for (Object** current = start; current < end; current++) { | |
| 1255 if (start == isolate()->heap()->roots_array_start()) { | |
| 1256 root_index_wave_front_ = | |
| 1257 Max(root_index_wave_front_, static_cast<intptr_t>(current - start)); | |
| 1258 } | |
| 1259 if (ShouldBeSkipped(current)) { | |
| 1260 sink_->Put(kSkip, "Skip"); | |
| 1261 sink_->PutInt(kPointerSize, "SkipOneWord"); | |
| 1262 } else if ((*current)->IsSmi()) { | |
| 1263 sink_->Put(kOnePointerRawData, "Smi"); | |
| 1264 for (int i = 0; i < kPointerSize; i++) { | |
| 1265 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); | |
| 1266 } | |
| 1267 } else { | |
| 1268 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); | |
| 1269 } | |
| 1270 } | |
| 1271 } | |
| 1272 | |
| 1273 | |
| 1274 void PartialSerializer::Serialize(Object** o) { | |
| 1275 if ((*o)->IsContext()) { | |
| 1276 Context* context = Context::cast(*o); | |
| 1277 global_object_ = context->global_object(); | |
| 1278 back_reference_map()->AddGlobalProxy(context->global_proxy()); | |
| 1279 } | |
| 1280 VisitPointer(o); | |
| 1281 SerializeOutdatedContextsAsFixedArray(); | |
| 1282 Pad(); | |
| 1283 } | |
| 1284 | |
| 1285 | |
| 1286 void PartialSerializer::SerializeOutdatedContextsAsFixedArray() { | |
| 1287 int length = outdated_contexts_.length(); | |
| 1288 if (length == 0) { | |
| 1289 FixedArray* empty = isolate_->heap()->empty_fixed_array(); | |
| 1290 SerializeObject(empty, kPlain, kStartOfObject, 0); | |
| 1291 } else { | |
| 1292 // Serialize an imaginary fixed array containing outdated contexts. | |
| 1293 int size = FixedArray::SizeFor(length); | |
| 1294 Allocate(NEW_SPACE, size); | |
| 1295 sink_->Put(kNewObject + NEW_SPACE, "emulated FixedArray"); | |
| 1296 sink_->PutInt(size >> kObjectAlignmentBits, "FixedArray size in words"); | |
| 1297 Map* map = isolate_->heap()->fixed_array_map(); | |
| 1298 SerializeObject(map, kPlain, kStartOfObject, 0); | |
| 1299 Smi* length_smi = Smi::FromInt(length); | |
| 1300 sink_->Put(kOnePointerRawData, "Smi"); | |
| 1301 for (int i = 0; i < kPointerSize; i++) { | |
| 1302 sink_->Put(reinterpret_cast<byte*>(&length_smi)[i], "Byte"); | |
| 1303 } | |
| 1304 for (int i = 0; i < length; i++) { | |
| 1305 BackReference back_ref = outdated_contexts_[i]; | |
| 1306 DCHECK(BackReferenceIsAlreadyAllocated(back_ref)); | |
| 1307 sink_->Put(kBackref + back_ref.space(), "BackRef"); | |
| 1308 sink_->PutInt(back_ref.reference(), "BackRefValue"); | |
| 1309 } | |
| 1310 } | |
| 1311 } | |
| 1312 | |
| 1313 | |
| 1314 bool Serializer::ShouldBeSkipped(Object** current) { | |
| 1315 Object** roots = isolate()->heap()->roots_array_start(); | |
| 1316 return current == &roots[Heap::kStoreBufferTopRootIndex] | |
| 1317 || current == &roots[Heap::kStackLimitRootIndex] | |
| 1318 || current == &roots[Heap::kRealStackLimitRootIndex]; | |
| 1319 } | |
| 1320 | |
| 1321 | |
| 1322 void Serializer::VisitPointers(Object** start, Object** end) { | |
| 1323 for (Object** current = start; current < end; current++) { | |
| 1324 if ((*current)->IsSmi()) { | |
| 1325 sink_->Put(kOnePointerRawData, "Smi"); | |
| 1326 for (int i = 0; i < kPointerSize; i++) { | |
| 1327 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); | |
| 1328 } | |
| 1329 } else { | |
| 1330 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); | |
| 1331 } | |
| 1332 } | |
| 1333 } | |
| 1334 | |
| 1335 | |
| 1336 void Serializer::EncodeReservations( | |
| 1337 List<SerializedData::Reservation>* out) const { | |
| 1338 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { | |
| 1339 for (int j = 0; j < completed_chunks_[i].length(); j++) { | |
| 1340 out->Add(SerializedData::Reservation(completed_chunks_[i][j])); | |
| 1341 } | |
| 1342 | |
| 1343 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) { | |
| 1344 out->Add(SerializedData::Reservation(pending_chunk_[i])); | |
| 1345 } | |
| 1346 out->last().mark_as_last(); | |
| 1347 } | |
| 1348 | |
| 1349 out->Add(SerializedData::Reservation(large_objects_total_size_)); | |
| 1350 out->last().mark_as_last(); | |
| 1351 } | |
| 1352 | |
| 1353 | |
| 1354 // This ensures that the partial snapshot cache keeps things alive during GC and | |
| 1355 // tracks their movement. When it is called during serialization of the startup | |
| 1356 // snapshot nothing happens. When the partial (context) snapshot is created, | |
| 1357 // this array is populated with the pointers that the partial snapshot will | |
| 1358 // need. As that happens we emit serialized objects to the startup snapshot | |
| 1359 // that correspond to the elements of this cache array. On deserialization we | |
| 1360 // therefore need to visit the cache array. This fills it up with pointers to | |
| 1361 // deserialized objects. | |
| 1362 void SerializerDeserializer::Iterate(Isolate* isolate, | |
| 1363 ObjectVisitor* visitor) { | |
| 1364 if (isolate->serializer_enabled()) return; | |
| 1365 List<Object*>* cache = isolate->partial_snapshot_cache(); | |
| 1366 for (int i = 0;; ++i) { | |
| 1367 // Extend the array ready to get a value when deserializing. | |
| 1368 if (cache->length() <= i) cache->Add(Smi::FromInt(0)); | |
| 1369 visitor->VisitPointer(&cache->at(i)); | |
| 1370 // Sentinel is the undefined object, which is a root so it will not normally | |
| 1371 // be found in the cache. | |
| 1372 if (cache->at(i)->IsUndefined()) break; | |
| 1373 } | |
| 1374 } | |
| 1375 | |
| 1376 | |
| 1377 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { | |
| 1378 Isolate* isolate = this->isolate(); | |
| 1379 List<Object*>* cache = isolate->partial_snapshot_cache(); | |
| 1380 int new_index = cache->length(); | |
| 1381 | |
| 1382 int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index); | |
| 1383 if (index == PartialCacheIndexMap::kInvalidIndex) { | |
| 1384 // We didn't find the object in the cache. So we add it to the cache and | |
| 1385 // then visit the pointer so that it becomes part of the startup snapshot | |
| 1386 // and we can refer to it from the partial snapshot. | |
| 1387 cache->Add(heap_object); | |
| 1388 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); | |
| 1389 // We don't recurse from the startup snapshot generator into the partial | |
| 1390 // snapshot generator. | |
| 1391 return new_index; | |
| 1392 } | |
| 1393 return index; | |
| 1394 } | |
| 1395 | |
| 1396 | |
| 1397 #ifdef DEBUG | |
| 1398 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) { | |
| 1399 DCHECK(reference.is_valid()); | |
| 1400 DCHECK(!reference.is_source()); | |
| 1401 DCHECK(!reference.is_global_proxy()); | |
| 1402 AllocationSpace space = reference.space(); | |
| 1403 int chunk_index = reference.chunk_index(); | |
| 1404 if (space == LO_SPACE) { | |
| 1405 return chunk_index == 0 && | |
| 1406 reference.large_object_index() < seen_large_objects_index_; | |
| 1407 } else if (chunk_index == completed_chunks_[space].length()) { | |
| 1408 return reference.chunk_offset() < pending_chunk_[space]; | |
| 1409 } else { | |
| 1410 return chunk_index < completed_chunks_[space].length() && | |
| 1411 reference.chunk_offset() < completed_chunks_[space][chunk_index]; | |
| 1412 } | |
| 1413 } | |
| 1414 #endif // DEBUG | |
| 1415 | |
| 1416 | |
| 1417 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, | |
| 1418 WhereToPoint where_to_point, int skip) { | |
| 1419 if (how_to_code == kPlain && where_to_point == kStartOfObject) { | |
| 1420 // Encode a reference to a hot object by its index in the working set. | |
| 1421 int index = hot_objects_.Find(obj); | |
| 1422 if (index != HotObjectsList::kNotFound) { | |
| 1423 DCHECK(index >= 0 && index < kNumberOfHotObjects); | |
| 1424 if (FLAG_trace_serializer) { | |
| 1425 PrintF(" Encoding hot object %d:", index); | |
| 1426 obj->ShortPrint(); | |
| 1427 PrintF("\n"); | |
| 1428 } | |
| 1429 if (skip != 0) { | |
| 1430 sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip"); | |
| 1431 sink_->PutInt(skip, "HotObjectSkipDistance"); | |
| 1432 } else { | |
| 1433 sink_->Put(kHotObject + index, "HotObject"); | |
| 1434 } | |
| 1435 return true; | |
| 1436 } | |
| 1437 } | |
| 1438 BackReference back_reference = back_reference_map_.Lookup(obj); | |
| 1439 if (back_reference.is_valid()) { | |
| 1440 // Encode the location of an already deserialized object in order to write | |
| 1441 // its location into a later object. We can encode the location as an | |
| 1442 // offset fromthe start of the deserialized objects or as an offset | |
| 1443 // backwards from thecurrent allocation pointer. | |
| 1444 if (back_reference.is_source()) { | |
| 1445 FlushSkip(skip); | |
| 1446 if (FLAG_trace_serializer) PrintF(" Encoding source object\n"); | |
| 1447 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); | |
| 1448 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source"); | |
| 1449 sink_->PutInt(kSourceObjectReference, "kSourceObjectReference"); | |
| 1450 } else if (back_reference.is_global_proxy()) { | |
| 1451 FlushSkip(skip); | |
| 1452 if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n"); | |
| 1453 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); | |
| 1454 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy"); | |
| 1455 sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference"); | |
| 1456 } else { | |
| 1457 if (FLAG_trace_serializer) { | |
| 1458 PrintF(" Encoding back reference to: "); | |
| 1459 obj->ShortPrint(); | |
| 1460 PrintF("\n"); | |
| 1461 } | |
| 1462 | |
| 1463 AllocationSpace space = back_reference.space(); | |
| 1464 if (skip == 0) { | |
| 1465 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef"); | |
| 1466 } else { | |
| 1467 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, | |
| 1468 "BackRefWithSkip"); | |
| 1469 sink_->PutInt(skip, "BackRefSkipDistance"); | |
| 1470 } | |
| 1471 DCHECK(BackReferenceIsAlreadyAllocated(back_reference)); | |
| 1472 sink_->PutInt(back_reference.reference(), "BackRefValue"); | |
| 1473 | |
| 1474 hot_objects_.Add(obj); | |
| 1475 } | |
| 1476 return true; | |
| 1477 } | |
| 1478 return false; | |
| 1479 } | |
| 1480 | |
| 1481 | |
| 1482 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, | |
| 1483 WhereToPoint where_to_point, int skip) { | |
| 1484 DCHECK(!obj->IsJSFunction()); | |
| 1485 | |
| 1486 int root_index = root_index_map_.Lookup(obj); | |
| 1487 // We can only encode roots as such if it has already been serialized. | |
| 1488 // That applies to root indices below the wave front. | |
| 1489 if (root_index != RootIndexMap::kInvalidRootIndex && | |
| 1490 root_index < root_index_wave_front_) { | |
| 1491 PutRoot(root_index, obj, how_to_code, where_to_point, skip); | |
| 1492 return; | |
| 1493 } | |
| 1494 | |
| 1495 if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) { | |
| 1496 obj = isolate()->builtins()->builtin(Builtins::kCompileLazy); | |
| 1497 } | |
| 1498 | |
| 1499 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; | |
| 1500 | |
| 1501 FlushSkip(skip); | |
| 1502 | |
| 1503 // Object has not yet been serialized. Serialize it here. | |
| 1504 ObjectSerializer object_serializer(this, obj, sink_, how_to_code, | |
| 1505 where_to_point); | |
| 1506 object_serializer.Serialize(); | |
| 1507 } | |
| 1508 | |
| 1509 | |
| 1510 void StartupSerializer::SerializeWeakReferences() { | |
| 1511 // This phase comes right after the serialization (of the snapshot). | |
| 1512 // After we have done the partial serialization the partial snapshot cache | |
| 1513 // will contain some references needed to decode the partial snapshot. We | |
| 1514 // add one entry with 'undefined' which is the sentinel that the deserializer | |
| 1515 // uses to know it is done deserializing the array. | |
| 1516 Object* undefined = isolate()->heap()->undefined_value(); | |
| 1517 VisitPointer(&undefined); | |
| 1518 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); | |
| 1519 Pad(); | |
| 1520 } | |
| 1521 | |
| 1522 | |
| 1523 void Serializer::PutRoot(int root_index, | |
| 1524 HeapObject* object, | |
| 1525 SerializerDeserializer::HowToCode how_to_code, | |
| 1526 SerializerDeserializer::WhereToPoint where_to_point, | |
| 1527 int skip) { | |
| 1528 if (FLAG_trace_serializer) { | |
| 1529 PrintF(" Encoding root %d:", root_index); | |
| 1530 object->ShortPrint(); | |
| 1531 PrintF("\n"); | |
| 1532 } | |
| 1533 | |
| 1534 if (how_to_code == kPlain && where_to_point == kStartOfObject && | |
| 1535 root_index < kNumberOfRootArrayConstants && | |
| 1536 !isolate()->heap()->InNewSpace(object)) { | |
| 1537 if (skip == 0) { | |
| 1538 sink_->Put(kRootArrayConstants + root_index, "RootConstant"); | |
| 1539 } else { | |
| 1540 sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant"); | |
| 1541 sink_->PutInt(skip, "SkipInPutRoot"); | |
| 1542 } | |
| 1543 } else { | |
| 1544 FlushSkip(skip); | |
| 1545 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); | |
| 1546 sink_->PutInt(root_index, "root_index"); | |
| 1547 } | |
| 1548 } | |
| 1549 | |
| 1550 | |
| 1551 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, | |
| 1552 WhereToPoint where_to_point, int skip) { | |
| 1553 if (obj->IsMap()) { | |
| 1554 // The code-caches link to context-specific code objects, which | |
| 1555 // the startup and context serializes cannot currently handle. | |
| 1556 DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array()); | |
| 1557 } | |
| 1558 | |
| 1559 // Replace typed arrays by undefined. | |
| 1560 if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value(); | |
| 1561 | |
| 1562 int root_index = root_index_map_.Lookup(obj); | |
| 1563 if (root_index != RootIndexMap::kInvalidRootIndex) { | |
| 1564 PutRoot(root_index, obj, how_to_code, where_to_point, skip); | |
| 1565 return; | |
| 1566 } | |
| 1567 | |
| 1568 if (ShouldBeInThePartialSnapshotCache(obj)) { | |
| 1569 FlushSkip(skip); | |
| 1570 | |
| 1571 int cache_index = PartialSnapshotCacheIndex(obj); | |
| 1572 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, | |
| 1573 "PartialSnapshotCache"); | |
| 1574 sink_->PutInt(cache_index, "partial_snapshot_cache_index"); | |
| 1575 return; | |
| 1576 } | |
| 1577 | |
| 1578 // Pointers from the partial snapshot to the objects in the startup snapshot | |
| 1579 // should go through the root array or through the partial snapshot cache. | |
| 1580 // If this is not the case you may have to add something to the root array. | |
| 1581 DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid()); | |
| 1582 // All the internalized strings that the partial snapshot needs should be | |
| 1583 // either in the root table or in the partial snapshot cache. | |
| 1584 DCHECK(!obj->IsInternalizedString()); | |
| 1585 | |
| 1586 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; | |
| 1587 | |
| 1588 FlushSkip(skip); | |
| 1589 | |
| 1590 // Object has not yet been serialized. Serialize it here. | |
| 1591 ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point); | |
| 1592 serializer.Serialize(); | |
| 1593 | |
| 1594 if (obj->IsContext() && | |
| 1595 Context::cast(obj)->global_object() == global_object_) { | |
| 1596 // Context refers to the current global object. This reference will | |
| 1597 // become outdated after deserialization. | |
| 1598 BackReference back_reference = back_reference_map_.Lookup(obj); | |
| 1599 DCHECK(back_reference.is_valid()); | |
| 1600 outdated_contexts_.Add(back_reference); | |
| 1601 } | |
| 1602 } | |
| 1603 | |
| 1604 | |
| 1605 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space, | |
| 1606 int size, Map* map) { | |
| 1607 if (serializer_->code_address_map_) { | |
| 1608 const char* code_name = | |
| 1609 serializer_->code_address_map_->Lookup(object_->address()); | |
| 1610 LOG(serializer_->isolate_, | |
| 1611 CodeNameEvent(object_->address(), sink_->Position(), code_name)); | |
| 1612 LOG(serializer_->isolate_, | |
| 1613 SnapshotPositionEvent(object_->address(), sink_->Position())); | |
| 1614 } | |
| 1615 | |
| 1616 BackReference back_reference; | |
| 1617 if (space == LO_SPACE) { | |
| 1618 sink_->Put(kNewObject + reference_representation_ + space, | |
| 1619 "NewLargeObject"); | |
| 1620 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); | |
| 1621 if (object_->IsCode()) { | |
| 1622 sink_->Put(EXECUTABLE, "executable large object"); | |
| 1623 } else { | |
| 1624 sink_->Put(NOT_EXECUTABLE, "not executable large object"); | |
| 1625 } | |
| 1626 back_reference = serializer_->AllocateLargeObject(size); | |
| 1627 } else { | |
| 1628 bool needs_double_align = false; | |
| 1629 if (object_->NeedsToEnsureDoubleAlignment()) { | |
| 1630 // Add wriggle room for double alignment padding. | |
| 1631 back_reference = serializer_->Allocate(space, size + kPointerSize); | |
| 1632 needs_double_align = true; | |
| 1633 } else { | |
| 1634 back_reference = serializer_->Allocate(space, size); | |
| 1635 } | |
| 1636 sink_->Put(kNewObject + reference_representation_ + space, "NewObject"); | |
| 1637 if (needs_double_align) | |
| 1638 sink_->PutInt(kDoubleAlignmentSentinel, "DoubleAlignSentinel"); | |
| 1639 int encoded_size = size >> kObjectAlignmentBits; | |
| 1640 DCHECK_NE(kDoubleAlignmentSentinel, encoded_size); | |
| 1641 sink_->PutInt(encoded_size, "ObjectSizeInWords"); | |
| 1642 } | |
| 1643 | |
| 1644 // Mark this object as already serialized. | |
| 1645 serializer_->back_reference_map()->Add(object_, back_reference); | |
| 1646 | |
| 1647 // Serialize the map (first word of the object). | |
| 1648 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0); | |
| 1649 } | |
| 1650 | |
| 1651 | |
| 1652 void Serializer::ObjectSerializer::SerializeExternalString() { | |
| 1653 // Instead of serializing this as an external string, we serialize | |
| 1654 // an imaginary sequential string with the same content. | |
| 1655 Isolate* isolate = serializer_->isolate(); | |
| 1656 DCHECK(object_->IsExternalString()); | |
| 1657 DCHECK(object_->map() != isolate->heap()->native_source_string_map()); | |
| 1658 ExternalString* string = ExternalString::cast(object_); | |
| 1659 int length = string->length(); | |
| 1660 Map* map; | |
| 1661 int content_size; | |
| 1662 int allocation_size; | |
| 1663 const byte* resource; | |
| 1664 // Find the map and size for the imaginary sequential string. | |
| 1665 bool internalized = object_->IsInternalizedString(); | |
| 1666 if (object_->IsExternalOneByteString()) { | |
| 1667 map = internalized ? isolate->heap()->one_byte_internalized_string_map() | |
| 1668 : isolate->heap()->one_byte_string_map(); | |
| 1669 allocation_size = SeqOneByteString::SizeFor(length); | |
| 1670 content_size = length * kCharSize; | |
| 1671 resource = reinterpret_cast<const byte*>( | |
| 1672 ExternalOneByteString::cast(string)->resource()->data()); | |
| 1673 } else { | |
| 1674 map = internalized ? isolate->heap()->internalized_string_map() | |
| 1675 : isolate->heap()->string_map(); | |
| 1676 allocation_size = SeqTwoByteString::SizeFor(length); | |
| 1677 content_size = length * kShortSize; | |
| 1678 resource = reinterpret_cast<const byte*>( | |
| 1679 ExternalTwoByteString::cast(string)->resource()->data()); | |
| 1680 } | |
| 1681 | |
| 1682 AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize) | |
| 1683 ? LO_SPACE | |
| 1684 : OLD_DATA_SPACE; | |
| 1685 SerializePrologue(space, allocation_size, map); | |
| 1686 | |
| 1687 // Output the rest of the imaginary string. | |
| 1688 int bytes_to_output = allocation_size - HeapObject::kHeaderSize; | |
| 1689 | |
| 1690 // Output raw data header. Do not bother with common raw length cases here. | |
| 1691 sink_->Put(kVariableRawData, "RawDataForString"); | |
| 1692 sink_->PutInt(bytes_to_output, "length"); | |
| 1693 | |
| 1694 // Serialize string header (except for map). | |
| 1695 Address string_start = string->address(); | |
| 1696 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) { | |
| 1697 sink_->PutSection(string_start[i], "StringHeader"); | |
| 1698 } | |
| 1699 | |
| 1700 // Serialize string content. | |
| 1701 sink_->PutRaw(resource, content_size, "StringContent"); | |
| 1702 | |
| 1703 // Since the allocation size is rounded up to object alignment, there | |
| 1704 // maybe left-over bytes that need to be padded. | |
| 1705 int padding_size = allocation_size - SeqString::kHeaderSize - content_size; | |
| 1706 DCHECK(0 <= padding_size && padding_size < kObjectAlignment); | |
| 1707 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding"); | |
| 1708 | |
| 1709 sink_->Put(kSkip, "SkipAfterString"); | |
| 1710 sink_->PutInt(bytes_to_output, "SkipDistance"); | |
| 1711 } | |
| 1712 | |
| 1713 | |
| 1714 void Serializer::ObjectSerializer::Serialize() { | |
| 1715 if (FLAG_trace_serializer) { | |
| 1716 PrintF(" Encoding heap object: "); | |
| 1717 object_->ShortPrint(); | |
| 1718 PrintF("\n"); | |
| 1719 } | |
| 1720 | |
| 1721 // We cannot serialize typed array objects correctly. | |
| 1722 DCHECK(!object_->IsJSTypedArray()); | |
| 1723 | |
| 1724 if (object_->IsScript()) { | |
| 1725 // Clear cached line ends. | |
| 1726 Object* undefined = serializer_->isolate()->heap()->undefined_value(); | |
| 1727 Script::cast(object_)->set_line_ends(undefined); | |
| 1728 } | |
| 1729 | |
| 1730 if (object_->IsExternalString()) { | |
| 1731 Heap* heap = serializer_->isolate()->heap(); | |
| 1732 if (object_->map() != heap->native_source_string_map()) { | |
| 1733 // Usually we cannot recreate resources for external strings. To work | |
| 1734 // around this, external strings are serialized to look like ordinary | |
| 1735 // sequential strings. | |
| 1736 // The exception are native source code strings, since we can recreate | |
| 1737 // their resources. In that case we fall through and leave it to | |
| 1738 // VisitExternalOneByteString further down. | |
| 1739 SerializeExternalString(); | |
| 1740 return; | |
| 1741 } | |
| 1742 } | |
| 1743 | |
| 1744 int size = object_->Size(); | |
| 1745 Map* map = object_->map(); | |
| 1746 AllocationSpace space = | |
| 1747 MemoryChunk::FromAddress(object_->address())->owner()->identity(); | |
| 1748 SerializePrologue(space, size, map); | |
| 1749 | |
| 1750 // Serialize the rest of the object. | |
| 1751 CHECK_EQ(0, bytes_processed_so_far_); | |
| 1752 bytes_processed_so_far_ = kPointerSize; | |
| 1753 | |
| 1754 object_->IterateBody(map->instance_type(), size, this); | |
| 1755 OutputRawData(object_->address() + size); | |
| 1756 } | |
| 1757 | |
| 1758 | |
| 1759 void Serializer::ObjectSerializer::VisitPointers(Object** start, | |
| 1760 Object** end) { | |
| 1761 Object** current = start; | |
| 1762 while (current < end) { | |
| 1763 while (current < end && (*current)->IsSmi()) current++; | |
| 1764 if (current < end) OutputRawData(reinterpret_cast<Address>(current)); | |
| 1765 | |
| 1766 while (current < end && !(*current)->IsSmi()) { | |
| 1767 HeapObject* current_contents = HeapObject::cast(*current); | |
| 1768 int root_index = serializer_->root_index_map()->Lookup(current_contents); | |
| 1769 // Repeats are not subject to the write barrier so we can only use | |
| 1770 // immortal immovable root members. They are never in new space. | |
| 1771 if (current != start && root_index != RootIndexMap::kInvalidRootIndex && | |
| 1772 Heap::RootIsImmortalImmovable(root_index) && | |
| 1773 current_contents == current[-1]) { | |
| 1774 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents)); | |
| 1775 int repeat_count = 1; | |
| 1776 while (¤t[repeat_count] < end - 1 && | |
| 1777 current[repeat_count] == current_contents) { | |
| 1778 repeat_count++; | |
| 1779 } | |
| 1780 current += repeat_count; | |
| 1781 bytes_processed_so_far_ += repeat_count * kPointerSize; | |
| 1782 if (repeat_count > kNumberOfFixedRepeat) { | |
| 1783 sink_->Put(kVariableRepeat, "VariableRepeat"); | |
| 1784 sink_->PutInt(repeat_count, "repeat count"); | |
| 1785 } else { | |
| 1786 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat"); | |
| 1787 } | |
| 1788 } else { | |
| 1789 serializer_->SerializeObject( | |
| 1790 current_contents, kPlain, kStartOfObject, 0); | |
| 1791 bytes_processed_so_far_ += kPointerSize; | |
| 1792 current++; | |
| 1793 } | |
| 1794 } | |
| 1795 } | |
| 1796 } | |
| 1797 | |
| 1798 | |
| 1799 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { | |
| 1800 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. | |
| 1801 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; | |
| 1802 | |
| 1803 int skip = OutputRawData(rinfo->target_address_address(), | |
| 1804 kCanReturnSkipInsteadOfSkipping); | |
| 1805 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; | |
| 1806 Object* object = rinfo->target_object(); | |
| 1807 serializer_->SerializeObject(HeapObject::cast(object), how_to_code, | |
| 1808 kStartOfObject, skip); | |
| 1809 bytes_processed_so_far_ += rinfo->target_address_size(); | |
| 1810 } | |
| 1811 | |
| 1812 | |
| 1813 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { | |
| 1814 int skip = OutputRawData(reinterpret_cast<Address>(p), | |
| 1815 kCanReturnSkipInsteadOfSkipping); | |
| 1816 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); | |
| 1817 sink_->PutInt(skip, "SkipB4ExternalRef"); | |
| 1818 Address target = *p; | |
| 1819 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); | |
| 1820 bytes_processed_so_far_ += kPointerSize; | |
| 1821 } | |
| 1822 | |
| 1823 | |
| 1824 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { | |
| 1825 int skip = OutputRawData(rinfo->target_address_address(), | |
| 1826 kCanReturnSkipInsteadOfSkipping); | |
| 1827 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; | |
| 1828 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); | |
| 1829 sink_->PutInt(skip, "SkipB4ExternalRef"); | |
| 1830 Address target = rinfo->target_external_reference(); | |
| 1831 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); | |
| 1832 bytes_processed_so_far_ += rinfo->target_address_size(); | |
| 1833 } | |
| 1834 | |
| 1835 | |
| 1836 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) { | |
| 1837 // We can only reference to internal references of code that has been output. | |
| 1838 DCHECK(is_code_object_ && code_has_been_output_); | |
| 1839 // We do not use skip from last patched pc to find the pc to patch, since | |
| 1840 // target_address_address may not return addresses in ascending order when | |
| 1841 // used for internal references. External references may be stored at the | |
| 1842 // end of the code in the constant pool, whereas internal references are | |
| 1843 // inline. That would cause the skip to be negative. Instead, we store the | |
| 1844 // offset from code entry. | |
| 1845 Address entry = Code::cast(object_)->entry(); | |
| 1846 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry; | |
| 1847 intptr_t target_offset = rinfo->target_internal_reference() - entry; | |
| 1848 DCHECK(0 <= pc_offset && | |
| 1849 pc_offset <= Code::cast(object_)->instruction_size()); | |
| 1850 DCHECK(0 <= target_offset && | |
| 1851 target_offset <= Code::cast(object_)->instruction_size()); | |
| 1852 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE | |
| 1853 ? kInternalReference | |
| 1854 : kInternalReferenceEncoded, | |
| 1855 "InternalRef"); | |
| 1856 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address"); | |
| 1857 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value"); | |
| 1858 } | |
| 1859 | |
| 1860 | |
| 1861 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { | |
| 1862 int skip = OutputRawData(rinfo->target_address_address(), | |
| 1863 kCanReturnSkipInsteadOfSkipping); | |
| 1864 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; | |
| 1865 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); | |
| 1866 sink_->PutInt(skip, "SkipB4ExternalRef"); | |
| 1867 Address target = rinfo->target_address(); | |
| 1868 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); | |
| 1869 bytes_processed_so_far_ += rinfo->target_address_size(); | |
| 1870 } | |
| 1871 | |
| 1872 | |
| 1873 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { | |
| 1874 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. | |
| 1875 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; | |
| 1876 | |
| 1877 int skip = OutputRawData(rinfo->target_address_address(), | |
| 1878 kCanReturnSkipInsteadOfSkipping); | |
| 1879 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); | |
| 1880 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); | |
| 1881 bytes_processed_so_far_ += rinfo->target_address_size(); | |
| 1882 } | |
| 1883 | |
| 1884 | |
| 1885 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { | |
| 1886 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); | |
| 1887 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); | |
| 1888 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); | |
| 1889 bytes_processed_so_far_ += kPointerSize; | |
| 1890 } | |
| 1891 | |
| 1892 | |
| 1893 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { | |
| 1894 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. | |
| 1895 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; | |
| 1896 | |
| 1897 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); | |
| 1898 Cell* object = Cell::cast(rinfo->target_cell()); | |
| 1899 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); | |
| 1900 bytes_processed_so_far_ += kPointerSize; | |
| 1901 } | |
| 1902 | |
| 1903 | |
| 1904 void Serializer::ObjectSerializer::VisitExternalOneByteString( | |
| 1905 v8::String::ExternalOneByteStringResource** resource_pointer) { | |
| 1906 Address references_start = reinterpret_cast<Address>(resource_pointer); | |
| 1907 OutputRawData(references_start); | |
| 1908 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { | |
| 1909 Object* source = | |
| 1910 serializer_->isolate()->heap()->natives_source_cache()->get(i); | |
| 1911 if (!source->IsUndefined()) { | |
| 1912 ExternalOneByteString* string = ExternalOneByteString::cast(source); | |
| 1913 typedef v8::String::ExternalOneByteStringResource Resource; | |
| 1914 const Resource* resource = string->resource(); | |
| 1915 if (resource == *resource_pointer) { | |
| 1916 sink_->Put(kNativesStringResource, "NativesStringResource"); | |
| 1917 sink_->PutSection(i, "NativesStringResourceEnd"); | |
| 1918 bytes_processed_so_far_ += sizeof(resource); | |
| 1919 return; | |
| 1920 } | |
| 1921 } | |
| 1922 } | |
| 1923 // One of the strings in the natives cache should match the resource. We | |
| 1924 // don't expect any other kinds of external strings here. | |
| 1925 UNREACHABLE(); | |
| 1926 } | |
| 1927 | |
| 1928 | |
| 1929 Address Serializer::ObjectSerializer::PrepareCode() { | |
| 1930 // To make snapshots reproducible, we make a copy of the code object | |
| 1931 // and wipe all pointers in the copy, which we then serialize. | |
| 1932 Code* original = Code::cast(object_); | |
| 1933 Code* code = serializer_->CopyCode(original); | |
| 1934 // Code age headers are not serializable. | |
| 1935 code->MakeYoung(serializer_->isolate()); | |
| 1936 int mode_mask = RelocInfo::kCodeTargetMask | | |
| 1937 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | | |
| 1938 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | | |
| 1939 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | | |
| 1940 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | | |
| 1941 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); | |
| 1942 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { | |
| 1943 RelocInfo* rinfo = it.rinfo(); | |
| 1944 if (!(FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool())) { | |
| 1945 rinfo->WipeOut(); | |
| 1946 } | |
| 1947 } | |
| 1948 // We need to wipe out the header fields *after* wiping out the | |
| 1949 // relocations, because some of these fields are needed for the latter. | |
| 1950 code->WipeOutHeader(); | |
| 1951 return code->address(); | |
| 1952 } | |
| 1953 | |
| 1954 | |
| 1955 int Serializer::ObjectSerializer::OutputRawData( | |
| 1956 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { | |
| 1957 Address object_start = object_->address(); | |
| 1958 int base = bytes_processed_so_far_; | |
| 1959 int up_to_offset = static_cast<int>(up_to - object_start); | |
| 1960 int to_skip = up_to_offset - bytes_processed_so_far_; | |
| 1961 int bytes_to_output = to_skip; | |
| 1962 bytes_processed_so_far_ += to_skip; | |
| 1963 // This assert will fail if the reloc info gives us the target_address_address | |
| 1964 // locations in a non-ascending order. Luckily that doesn't happen. | |
| 1965 DCHECK(to_skip >= 0); | |
| 1966 bool outputting_code = false; | |
| 1967 if (to_skip != 0 && is_code_object_ && !code_has_been_output_) { | |
| 1968 // Output the code all at once and fix later. | |
| 1969 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; | |
| 1970 outputting_code = true; | |
| 1971 code_has_been_output_ = true; | |
| 1972 } | |
| 1973 if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) { | |
| 1974 if (!outputting_code && bytes_to_output == to_skip && | |
| 1975 IsAligned(bytes_to_output, kPointerAlignment) && | |
| 1976 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) { | |
| 1977 int size_in_words = bytes_to_output >> kPointerSizeLog2; | |
| 1978 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData"); | |
| 1979 to_skip = 0; // This instruction includes skip. | |
| 1980 } else { | |
| 1981 // We always end up here if we are outputting the code of a code object. | |
| 1982 sink_->Put(kVariableRawData, "VariableRawData"); | |
| 1983 sink_->PutInt(bytes_to_output, "length"); | |
| 1984 } | |
| 1985 | |
| 1986 if (is_code_object_) object_start = PrepareCode(); | |
| 1987 | |
| 1988 const char* description = is_code_object_ ? "Code" : "Byte"; | |
| 1989 #ifdef MEMORY_SANITIZER | |
| 1990 // Object sizes are usually rounded up with uninitialized padding space. | |
| 1991 MSAN_MEMORY_IS_INITIALIZED(object_start + base, bytes_to_output); | |
| 1992 #endif // MEMORY_SANITIZER | |
| 1993 sink_->PutRaw(object_start + base, bytes_to_output, description); | |
| 1994 } | |
| 1995 if (to_skip != 0 && return_skip == kIgnoringReturn) { | |
| 1996 sink_->Put(kSkip, "Skip"); | |
| 1997 sink_->PutInt(to_skip, "SkipDistance"); | |
| 1998 to_skip = 0; | |
| 1999 } | |
| 2000 return to_skip; | |
| 2001 } | |
| 2002 | |
| 2003 | |
| 2004 BackReference Serializer::AllocateLargeObject(int size) { | |
| 2005 // Large objects are allocated one-by-one when deserializing. We do not | |
| 2006 // have to keep track of multiple chunks. | |
| 2007 large_objects_total_size_ += size; | |
| 2008 return BackReference::LargeObjectReference(seen_large_objects_index_++); | |
| 2009 } | |
| 2010 | |
| 2011 | |
| 2012 BackReference Serializer::Allocate(AllocationSpace space, int size) { | |
| 2013 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces); | |
| 2014 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space))); | |
| 2015 uint32_t new_chunk_size = pending_chunk_[space] + size; | |
| 2016 if (new_chunk_size > max_chunk_size(space)) { | |
| 2017 // The new chunk size would not fit onto a single page. Complete the | |
| 2018 // current chunk and start a new one. | |
| 2019 sink_->Put(kNextChunk, "NextChunk"); | |
| 2020 sink_->Put(space, "NextChunkSpace"); | |
| 2021 completed_chunks_[space].Add(pending_chunk_[space]); | |
| 2022 DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex); | |
| 2023 pending_chunk_[space] = 0; | |
| 2024 new_chunk_size = size; | |
| 2025 } | |
| 2026 uint32_t offset = pending_chunk_[space]; | |
| 2027 pending_chunk_[space] = new_chunk_size; | |
| 2028 return BackReference::Reference(space, completed_chunks_[space].length(), | |
| 2029 offset); | |
| 2030 } | |
| 2031 | |
| 2032 | |
| 2033 void Serializer::Pad() { | |
| 2034 // The non-branching GetInt will read up to 3 bytes too far, so we need | |
| 2035 // to pad the snapshot to make sure we don't read over the end. | |
| 2036 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { | |
| 2037 sink_->Put(kNop, "Padding"); | |
| 2038 } | |
| 2039 // Pad up to pointer size for checksum. | |
| 2040 while (!IsAligned(sink_->Position(), kPointerAlignment)) { | |
| 2041 sink_->Put(kNop, "Padding"); | |
| 2042 } | |
| 2043 } | |
| 2044 | |
| 2045 | |
| 2046 void Serializer::InitializeCodeAddressMap() { | |
| 2047 isolate_->InitializeLoggingAndCounters(); | |
| 2048 code_address_map_ = new CodeAddressMap(isolate_); | |
| 2049 } | |
| 2050 | |
| 2051 | |
| 2052 Code* Serializer::CopyCode(Code* code) { | |
| 2053 code_buffer_.Rewind(0); // Clear buffer without deleting backing store. | |
| 2054 int size = code->CodeSize(); | |
| 2055 code_buffer_.AddAll(Vector<byte>(code->address(), size)); | |
| 2056 return Code::cast(HeapObject::FromAddress(&code_buffer_.first())); | |
| 2057 } | |
| 2058 | |
| 2059 | |
| 2060 ScriptData* CodeSerializer::Serialize(Isolate* isolate, | |
| 2061 Handle<SharedFunctionInfo> info, | |
| 2062 Handle<String> source) { | |
| 2063 base::ElapsedTimer timer; | |
| 2064 if (FLAG_profile_deserialization) timer.Start(); | |
| 2065 if (FLAG_trace_serializer) { | |
| 2066 PrintF("[Serializing from"); | |
| 2067 Object* script = info->script(); | |
| 2068 if (script->IsScript()) Script::cast(script)->name()->ShortPrint(); | |
| 2069 PrintF("]\n"); | |
| 2070 } | |
| 2071 | |
| 2072 // Serialize code object. | |
| 2073 SnapshotByteSink sink(info->code()->CodeSize() * 2); | |
| 2074 CodeSerializer cs(isolate, &sink, *source, info->code()); | |
| 2075 DisallowHeapAllocation no_gc; | |
| 2076 Object** location = Handle<Object>::cast(info).location(); | |
| 2077 cs.VisitPointer(location); | |
| 2078 cs.Pad(); | |
| 2079 | |
| 2080 SerializedCodeData data(sink.data(), cs); | |
| 2081 ScriptData* script_data = data.GetScriptData(); | |
| 2082 | |
| 2083 if (FLAG_profile_deserialization) { | |
| 2084 double ms = timer.Elapsed().InMillisecondsF(); | |
| 2085 int length = script_data->length(); | |
| 2086 PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms); | |
| 2087 } | |
| 2088 | |
| 2089 return script_data; | |
| 2090 } | |
| 2091 | |
| 2092 | |
| 2093 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, | |
| 2094 WhereToPoint where_to_point, int skip) { | |
| 2095 int root_index = root_index_map_.Lookup(obj); | |
| 2096 if (root_index != RootIndexMap::kInvalidRootIndex) { | |
| 2097 PutRoot(root_index, obj, how_to_code, where_to_point, skip); | |
| 2098 return; | |
| 2099 } | |
| 2100 | |
| 2101 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; | |
| 2102 | |
| 2103 FlushSkip(skip); | |
| 2104 | |
| 2105 if (obj->IsCode()) { | |
| 2106 Code* code_object = Code::cast(obj); | |
| 2107 switch (code_object->kind()) { | |
| 2108 case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet. | |
| 2109 case Code::HANDLER: // No handlers patched in yet. | |
| 2110 case Code::REGEXP: // No regexp literals initialized yet. | |
| 2111 case Code::NUMBER_OF_KINDS: // Pseudo enum value. | |
| 2112 CHECK(false); | |
| 2113 case Code::BUILTIN: | |
| 2114 SerializeBuiltin(code_object->builtin_index(), how_to_code, | |
| 2115 where_to_point); | |
| 2116 return; | |
| 2117 case Code::STUB: | |
| 2118 SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point); | |
| 2119 return; | |
| 2120 #define IC_KIND_CASE(KIND) case Code::KIND: | |
| 2121 IC_KIND_LIST(IC_KIND_CASE) | |
| 2122 #undef IC_KIND_CASE | |
| 2123 SerializeIC(code_object, how_to_code, where_to_point); | |
| 2124 return; | |
| 2125 case Code::FUNCTION: | |
| 2126 DCHECK(code_object->has_reloc_info_for_serialization()); | |
| 2127 // Only serialize the code for the toplevel function unless specified | |
| 2128 // by flag. Replace code of inner functions by the lazy compile builtin. | |
| 2129 // This is safe, as checked in Compiler::BuildFunctionInfo. | |
| 2130 if (code_object != main_code_ && !FLAG_serialize_inner) { | |
| 2131 SerializeBuiltin(Builtins::kCompileLazy, how_to_code, where_to_point); | |
| 2132 } else { | |
| 2133 SerializeGeneric(code_object, how_to_code, where_to_point); | |
| 2134 } | |
| 2135 return; | |
| 2136 } | |
| 2137 UNREACHABLE(); | |
| 2138 } | |
| 2139 | |
| 2140 // Past this point we should not see any (context-specific) maps anymore. | |
| 2141 CHECK(!obj->IsMap()); | |
| 2142 // There should be no references to the global object embedded. | |
| 2143 CHECK(!obj->IsJSGlobalProxy() && !obj->IsGlobalObject()); | |
| 2144 // There should be no hash table embedded. They would require rehashing. | |
| 2145 CHECK(!obj->IsHashTable()); | |
| 2146 // We expect no instantiated function objects or contexts. | |
| 2147 CHECK(!obj->IsJSFunction() && !obj->IsContext()); | |
| 2148 | |
| 2149 SerializeGeneric(obj, how_to_code, where_to_point); | |
| 2150 } | |
| 2151 | |
| 2152 | |
| 2153 void CodeSerializer::SerializeGeneric(HeapObject* heap_object, | |
| 2154 HowToCode how_to_code, | |
| 2155 WhereToPoint where_to_point) { | |
| 2156 if (heap_object->IsInternalizedString()) num_internalized_strings_++; | |
| 2157 | |
| 2158 // Object has not yet been serialized. Serialize it here. | |
| 2159 ObjectSerializer serializer(this, heap_object, sink_, how_to_code, | |
| 2160 where_to_point); | |
| 2161 serializer.Serialize(); | |
| 2162 } | |
| 2163 | |
| 2164 | |
| 2165 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code, | |
| 2166 WhereToPoint where_to_point) { | |
| 2167 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || | |
| 2168 (how_to_code == kPlain && where_to_point == kInnerPointer) || | |
| 2169 (how_to_code == kFromCode && where_to_point == kInnerPointer)); | |
| 2170 DCHECK_LT(builtin_index, Builtins::builtin_count); | |
| 2171 DCHECK_LE(0, builtin_index); | |
| 2172 | |
| 2173 if (FLAG_trace_serializer) { | |
| 2174 PrintF(" Encoding builtin: %s\n", | |
| 2175 isolate()->builtins()->name(builtin_index)); | |
| 2176 } | |
| 2177 | |
| 2178 sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin"); | |
| 2179 sink_->PutInt(builtin_index, "builtin_index"); | |
| 2180 } | |
| 2181 | |
| 2182 | |
| 2183 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, | |
| 2184 WhereToPoint where_to_point) { | |
| 2185 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || | |
| 2186 (how_to_code == kPlain && where_to_point == kInnerPointer) || | |
| 2187 (how_to_code == kFromCode && where_to_point == kInnerPointer)); | |
| 2188 DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache); | |
| 2189 DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null()); | |
| 2190 | |
| 2191 int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex; | |
| 2192 | |
| 2193 if (FLAG_trace_serializer) { | |
| 2194 PrintF(" Encoding code stub %s as %d\n", | |
| 2195 CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false), | |
| 2196 index); | |
| 2197 } | |
| 2198 | |
| 2199 sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub"); | |
| 2200 sink_->PutInt(index, "CodeStub key"); | |
| 2201 } | |
| 2202 | |
| 2203 | |
| 2204 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code, | |
| 2205 WhereToPoint where_to_point) { | |
| 2206 // The IC may be implemented as a stub. | |
| 2207 uint32_t stub_key = ic->stub_key(); | |
| 2208 if (stub_key != CodeStub::NoCacheKey()) { | |
| 2209 if (FLAG_trace_serializer) { | |
| 2210 PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind())); | |
| 2211 } | |
| 2212 SerializeCodeStub(stub_key, how_to_code, where_to_point); | |
| 2213 return; | |
| 2214 } | |
| 2215 // The IC may be implemented as builtin. Only real builtins have an | |
| 2216 // actual builtin_index value attached (otherwise it's just garbage). | |
| 2217 // Compare to make sure we are really dealing with a builtin. | |
| 2218 int builtin_index = ic->builtin_index(); | |
| 2219 if (builtin_index < Builtins::builtin_count) { | |
| 2220 Builtins::Name name = static_cast<Builtins::Name>(builtin_index); | |
| 2221 Code* builtin = isolate()->builtins()->builtin(name); | |
| 2222 if (builtin == ic) { | |
| 2223 if (FLAG_trace_serializer) { | |
| 2224 PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind())); | |
| 2225 } | |
| 2226 DCHECK(ic->kind() == Code::KEYED_LOAD_IC || | |
| 2227 ic->kind() == Code::KEYED_STORE_IC); | |
| 2228 SerializeBuiltin(builtin_index, how_to_code, where_to_point); | |
| 2229 return; | |
| 2230 } | |
| 2231 } | |
| 2232 // The IC may also just be a piece of code kept in the non_monomorphic_cache. | |
| 2233 // In that case, just serialize as a normal code object. | |
| 2234 if (FLAG_trace_serializer) { | |
| 2235 PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind())); | |
| 2236 } | |
| 2237 DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC); | |
| 2238 SerializeGeneric(ic, how_to_code, where_to_point); | |
| 2239 } | |
| 2240 | |
| 2241 | |
| 2242 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) { | |
| 2243 // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2). | |
| 2244 int index = 0; | |
| 2245 while (index < stub_keys_.length()) { | |
| 2246 if (stub_keys_[index] == stub_key) return index; | |
| 2247 index++; | |
| 2248 } | |
| 2249 stub_keys_.Add(stub_key); | |
| 2250 return index; | |
| 2251 } | |
| 2252 | |
| 2253 | |
| 2254 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize( | |
| 2255 Isolate* isolate, ScriptData* cached_data, Handle<String> source) { | |
| 2256 base::ElapsedTimer timer; | |
| 2257 if (FLAG_profile_deserialization) timer.Start(); | |
| 2258 | |
| 2259 HandleScope scope(isolate); | |
| 2260 | |
| 2261 SmartPointer<SerializedCodeData> scd( | |
| 2262 SerializedCodeData::FromCachedData(isolate, cached_data, *source)); | |
| 2263 if (scd.is_empty()) { | |
| 2264 if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n"); | |
| 2265 DCHECK(cached_data->rejected()); | |
| 2266 return MaybeHandle<SharedFunctionInfo>(); | |
| 2267 } | |
| 2268 | |
| 2269 // Eagerly expand string table to avoid allocations during deserialization. | |
| 2270 StringTable::EnsureCapacityForDeserialization(isolate, | |
| 2271 scd->NumInternalizedStrings()); | |
| 2272 | |
| 2273 // Prepare and register list of attached objects. | |
| 2274 Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys(); | |
| 2275 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New( | |
| 2276 code_stub_keys.length() + kCodeStubsBaseIndex); | |
| 2277 attached_objects[kSourceObjectIndex] = source; | |
| 2278 for (int i = 0; i < code_stub_keys.length(); i++) { | |
| 2279 attached_objects[i + kCodeStubsBaseIndex] = | |
| 2280 CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked(); | |
| 2281 } | |
| 2282 | |
| 2283 Deserializer deserializer(scd.get()); | |
| 2284 deserializer.SetAttachedObjects(attached_objects); | |
| 2285 | |
| 2286 // Deserialize. | |
| 2287 Handle<SharedFunctionInfo> result; | |
| 2288 if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) { | |
| 2289 // Deserializing may fail if the reservations cannot be fulfilled. | |
| 2290 if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n"); | |
| 2291 return MaybeHandle<SharedFunctionInfo>(); | |
| 2292 } | |
| 2293 deserializer.FlushICacheForNewCodeObjects(); | |
| 2294 | |
| 2295 if (FLAG_profile_deserialization) { | |
| 2296 double ms = timer.Elapsed().InMillisecondsF(); | |
| 2297 int length = cached_data->length(); | |
| 2298 PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms); | |
| 2299 } | |
| 2300 result->set_deserialized(true); | |
| 2301 | |
| 2302 if (isolate->logger()->is_logging_code_events() || | |
| 2303 isolate->cpu_profiler()->is_profiling()) { | |
| 2304 String* name = isolate->heap()->empty_string(); | |
| 2305 if (result->script()->IsScript()) { | |
| 2306 Script* script = Script::cast(result->script()); | |
| 2307 if (script->name()->IsString()) name = String::cast(script->name()); | |
| 2308 } | |
| 2309 isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(), | |
| 2310 *result, NULL, name); | |
| 2311 } | |
| 2312 return scope.CloseAndEscape(result); | |
| 2313 } | |
| 2314 | |
| 2315 | |
| 2316 void SerializedData::AllocateData(int size) { | |
| 2317 DCHECK(!owns_data_); | |
| 2318 data_ = NewArray<byte>(size); | |
| 2319 size_ = size; | |
| 2320 owns_data_ = true; | |
| 2321 DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment)); | |
| 2322 } | |
| 2323 | |
| 2324 | |
| 2325 SnapshotData::SnapshotData(const Serializer& ser) { | |
| 2326 DisallowHeapAllocation no_gc; | |
| 2327 List<Reservation> reservations; | |
| 2328 ser.EncodeReservations(&reservations); | |
| 2329 const List<byte>& payload = ser.sink()->data(); | |
| 2330 | |
| 2331 // Calculate sizes. | |
| 2332 int reservation_size = reservations.length() * kInt32Size; | |
| 2333 int size = kHeaderSize + reservation_size + payload.length(); | |
| 2334 | |
| 2335 // Allocate backing store and create result data. | |
| 2336 AllocateData(size); | |
| 2337 | |
| 2338 // Set header values. | |
| 2339 SetMagicNumber(ser.isolate()); | |
| 2340 SetHeaderValue(kCheckSumOffset, Version::Hash()); | |
| 2341 SetHeaderValue(kNumReservationsOffset, reservations.length()); | |
| 2342 SetHeaderValue(kPayloadLengthOffset, payload.length()); | |
| 2343 | |
| 2344 // Copy reservation chunk sizes. | |
| 2345 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), | |
| 2346 reservation_size); | |
| 2347 | |
| 2348 // Copy serialized data. | |
| 2349 CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(), | |
| 2350 static_cast<size_t>(payload.length())); | |
| 2351 } | |
| 2352 | |
| 2353 | |
| 2354 bool SnapshotData::IsSane() { | |
| 2355 return GetHeaderValue(kCheckSumOffset) == Version::Hash(); | |
| 2356 } | |
| 2357 | |
| 2358 | |
| 2359 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const { | |
| 2360 return Vector<const Reservation>( | |
| 2361 reinterpret_cast<const Reservation*>(data_ + kHeaderSize), | |
| 2362 GetHeaderValue(kNumReservationsOffset)); | |
| 2363 } | |
| 2364 | |
| 2365 | |
| 2366 Vector<const byte> SnapshotData::Payload() const { | |
| 2367 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; | |
| 2368 const byte* payload = data_ + kHeaderSize + reservations_size; | |
| 2369 int length = GetHeaderValue(kPayloadLengthOffset); | |
| 2370 DCHECK_EQ(data_ + size_, payload + length); | |
| 2371 return Vector<const byte>(payload, length); | |
| 2372 } | |
| 2373 | |
| 2374 | |
| 2375 class Checksum { | |
| 2376 public: | |
| 2377 explicit Checksum(Vector<const byte> payload) { | |
| 2378 // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit. | |
| 2379 uintptr_t a = 1; | |
| 2380 uintptr_t b = 0; | |
| 2381 const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start()); | |
| 2382 DCHECK(IsAligned(payload.length(), kIntptrSize)); | |
| 2383 const uintptr_t* end = cur + payload.length() / kIntptrSize; | |
| 2384 while (cur < end) { | |
| 2385 // Unsigned overflow expected and intended. | |
| 2386 a += *cur++; | |
| 2387 b += a; | |
| 2388 } | |
| 2389 #if V8_HOST_ARCH_64_BIT | |
| 2390 a ^= a >> 32; | |
| 2391 b ^= b >> 32; | |
| 2392 #endif // V8_HOST_ARCH_64_BIT | |
| 2393 a_ = static_cast<uint32_t>(a); | |
| 2394 b_ = static_cast<uint32_t>(b); | |
| 2395 } | |
| 2396 | |
| 2397 bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; } | |
| 2398 | |
| 2399 uint32_t a() const { return a_; } | |
| 2400 uint32_t b() const { return b_; } | |
| 2401 | |
| 2402 private: | |
| 2403 uint32_t a_; | |
| 2404 uint32_t b_; | |
| 2405 | |
| 2406 DISALLOW_COPY_AND_ASSIGN(Checksum); | |
| 2407 }; | |
| 2408 | |
| 2409 | |
| 2410 SerializedCodeData::SerializedCodeData(const List<byte>& payload, | |
| 2411 const CodeSerializer& cs) { | |
| 2412 DisallowHeapAllocation no_gc; | |
| 2413 const List<uint32_t>* stub_keys = cs.stub_keys(); | |
| 2414 | |
| 2415 List<Reservation> reservations; | |
| 2416 cs.EncodeReservations(&reservations); | |
| 2417 | |
| 2418 // Calculate sizes. | |
| 2419 int reservation_size = reservations.length() * kInt32Size; | |
| 2420 int num_stub_keys = stub_keys->length(); | |
| 2421 int stub_keys_size = stub_keys->length() * kInt32Size; | |
| 2422 int payload_offset = kHeaderSize + reservation_size + stub_keys_size; | |
| 2423 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); | |
| 2424 int size = padded_payload_offset + payload.length(); | |
| 2425 | |
| 2426 // Allocate backing store and create result data. | |
| 2427 AllocateData(size); | |
| 2428 | |
| 2429 // Set header values. | |
| 2430 SetMagicNumber(cs.isolate()); | |
| 2431 SetHeaderValue(kVersionHashOffset, Version::Hash()); | |
| 2432 SetHeaderValue(kSourceHashOffset, SourceHash(cs.source())); | |
| 2433 SetHeaderValue(kCpuFeaturesOffset, | |
| 2434 static_cast<uint32_t>(CpuFeatures::SupportedFeatures())); | |
| 2435 SetHeaderValue(kFlagHashOffset, FlagList::Hash()); | |
| 2436 SetHeaderValue(kNumInternalizedStringsOffset, cs.num_internalized_strings()); | |
| 2437 SetHeaderValue(kNumReservationsOffset, reservations.length()); | |
| 2438 SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); | |
| 2439 SetHeaderValue(kPayloadLengthOffset, payload.length()); | |
| 2440 | |
| 2441 Checksum checksum(payload.ToConstVector()); | |
| 2442 SetHeaderValue(kChecksum1Offset, checksum.a()); | |
| 2443 SetHeaderValue(kChecksum2Offset, checksum.b()); | |
| 2444 | |
| 2445 // Copy reservation chunk sizes. | |
| 2446 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), | |
| 2447 reservation_size); | |
| 2448 | |
| 2449 // Copy code stub keys. | |
| 2450 CopyBytes(data_ + kHeaderSize + reservation_size, | |
| 2451 reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size); | |
| 2452 | |
| 2453 memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset); | |
| 2454 | |
| 2455 // Copy serialized data. | |
| 2456 CopyBytes(data_ + padded_payload_offset, payload.begin(), | |
| 2457 static_cast<size_t>(payload.length())); | |
| 2458 } | |
| 2459 | |
| 2460 | |
| 2461 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck( | |
| 2462 Isolate* isolate, String* source) const { | |
| 2463 uint32_t magic_number = GetMagicNumber(); | |
| 2464 uint32_t version_hash = GetHeaderValue(kVersionHashOffset); | |
| 2465 uint32_t source_hash = GetHeaderValue(kSourceHashOffset); | |
| 2466 uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset); | |
| 2467 uint32_t flags_hash = GetHeaderValue(kFlagHashOffset); | |
| 2468 uint32_t c1 = GetHeaderValue(kChecksum1Offset); | |
| 2469 uint32_t c2 = GetHeaderValue(kChecksum2Offset); | |
| 2470 if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH; | |
| 2471 if (version_hash != Version::Hash()) return VERSION_MISMATCH; | |
| 2472 if (source_hash != SourceHash(source)) return SOURCE_MISMATCH; | |
| 2473 if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) { | |
| 2474 return CPU_FEATURES_MISMATCH; | |
| 2475 } | |
| 2476 if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH; | |
| 2477 if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH; | |
| 2478 return CHECK_SUCCESS; | |
| 2479 } | |
| 2480 | |
| 2481 | |
| 2482 // Return ScriptData object and relinquish ownership over it to the caller. | |
| 2483 ScriptData* SerializedCodeData::GetScriptData() { | |
| 2484 DCHECK(owns_data_); | |
| 2485 ScriptData* result = new ScriptData(data_, size_); | |
| 2486 result->AcquireDataOwnership(); | |
| 2487 owns_data_ = false; | |
| 2488 data_ = NULL; | |
| 2489 return result; | |
| 2490 } | |
| 2491 | |
| 2492 | |
| 2493 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations() | |
| 2494 const { | |
| 2495 return Vector<const Reservation>( | |
| 2496 reinterpret_cast<const Reservation*>(data_ + kHeaderSize), | |
| 2497 GetHeaderValue(kNumReservationsOffset)); | |
| 2498 } | |
| 2499 | |
| 2500 | |
| 2501 Vector<const byte> SerializedCodeData::Payload() const { | |
| 2502 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; | |
| 2503 int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; | |
| 2504 int payload_offset = kHeaderSize + reservations_size + code_stubs_size; | |
| 2505 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); | |
| 2506 const byte* payload = data_ + padded_payload_offset; | |
| 2507 DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment)); | |
| 2508 int length = GetHeaderValue(kPayloadLengthOffset); | |
| 2509 DCHECK_EQ(data_ + size_, payload + length); | |
| 2510 return Vector<const byte>(payload, length); | |
| 2511 } | |
| 2512 | |
| 2513 | |
| 2514 int SerializedCodeData::NumInternalizedStrings() const { | |
| 2515 return GetHeaderValue(kNumInternalizedStringsOffset); | |
| 2516 } | |
| 2517 | |
| 2518 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const { | |
| 2519 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; | |
| 2520 const byte* start = data_ + kHeaderSize + reservations_size; | |
| 2521 return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start), | |
| 2522 GetHeaderValue(kNumCodeStubKeysOffset)); | |
| 2523 } | |
| 2524 | |
| 2525 | |
| 2526 SerializedCodeData::SerializedCodeData(ScriptData* data) | |
| 2527 : SerializedData(const_cast<byte*>(data->data()), data->length()) {} | |
| 2528 | |
| 2529 | |
| 2530 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate, | |
| 2531 ScriptData* cached_data, | |
| 2532 String* source) { | |
| 2533 DisallowHeapAllocation no_gc; | |
| 2534 SerializedCodeData* scd = new SerializedCodeData(cached_data); | |
| 2535 SanityCheckResult r = scd->SanityCheck(isolate, source); | |
| 2536 if (r == CHECK_SUCCESS) return scd; | |
| 2537 cached_data->Reject(); | |
| 2538 source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r); | |
| 2539 delete scd; | |
| 2540 return NULL; | |
| 2541 } | |
| 2542 } } // namespace v8::internal | |
| OLD | NEW |