Index: src/pathops/SkPathOpsConic.cpp |
diff --git a/src/pathops/SkPathOpsConic.cpp b/src/pathops/SkPathOpsConic.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..1b544e405f5eb3aae75350ed1ab2fd26237f7e89 |
--- /dev/null |
+++ b/src/pathops/SkPathOpsConic.cpp |
@@ -0,0 +1,132 @@ |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkIntersections.h" |
+#include "SkLineParameters.h" |
+#include "SkPathOpsConic.h" |
+#include "SkPathOpsCubic.h" |
+#include "SkPathOpsQuad.h" |
+ |
+// cribbed from the float version in SkGeometry.cpp |
+static void conic_deriv_coeff(const double src[], |
+ SkScalar w, |
+ double coeff[3]) { |
+ const double P20 = src[4] - src[0]; |
+ const double P10 = src[2] - src[0]; |
+ const double wP10 = w * P10; |
+ coeff[0] = w * P20 - P20; |
+ coeff[1] = P20 - 2 * wP10; |
+ coeff[2] = wP10; |
+} |
+ |
+static double conic_eval_tan(const double coord[], SkScalar w, double t) { |
+ double coeff[3]; |
+ conic_deriv_coeff(coord, w, coeff); |
+ return t * (t * coeff[0] + coeff[1]) + coeff[2]; |
+} |
+ |
+int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { |
+ double coeff[3]; |
+ conic_deriv_coeff(src, w, coeff); |
+ |
+ double tValues[2]; |
+ int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); |
+ SkASSERT(0 == roots || 1 == roots); |
+ |
+ if (1 == roots) { |
+ t[0] = tValues[0]; |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+SkDVector SkDConic::dxdyAtT(double t) const { |
+ SkDVector result = { |
+ conic_eval_tan(&fPts[0].fX, fWeight, t), |
+ conic_eval_tan(&fPts[0].fY, fWeight, t) |
+ }; |
+ return result; |
+} |
+ |
+static double conic_eval_numerator(const double src[], SkScalar w, double t) { |
+ SkASSERT(src); |
+ SkASSERT(t >= 0 && t <= 1); |
+ double src2w = src[2] * w; |
+ double C = src[0]; |
+ double A = src[4] - 2 * src2w + C; |
+ double B = 2 * (src2w - C); |
+ return (A * t + B) * t + C; |
+} |
+ |
+ |
+static double conic_eval_denominator(SkScalar w, double t) { |
+ double B = 2 * (w - 1); |
+ double C = 1; |
+ double A = -B; |
+ return (A * t + B) * t + C; |
+} |
+ |
+bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
+ return cubic.hullIntersects(*this, isLinear); |
+} |
+ |
+SkDPoint SkDConic::ptAtT(double t) const { |
+ double denominator = conic_eval_denominator(fWeight, t); |
+ SkDPoint result = { |
+ conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, |
+ conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator |
+ }; |
+ return result; |
+} |
+ |
+SkDPoint SkDConic::top(double startT, double endT) const { |
+ SkDConic sub = subDivide(startT, endT); |
+ SkDPoint topPt = sub[0]; |
+ if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) { |
+ topPt = sub[2]; |
+ } |
+ if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) { |
+ double extremeT; |
+ if (FindExtrema(&sub[0].fY, sub.fWeight, &extremeT)) { |
+ extremeT = startT + (endT - startT) * extremeT; |
+ SkDPoint test = ptAtT(extremeT); |
+ if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) { |
+ topPt = test; |
+ } |
+ } |
+ } |
+ return topPt; |
+} |
+ |
+/* see quad subdivide for rationale */ |
+SkDConic SkDConic::subDivide(double t1, double t2) const { |
+ double ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); |
+ double ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); |
+ double az = conic_eval_denominator(fWeight, t1); |
+ double midT = (t1 + t2) / 2; |
+ double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); |
+ double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); |
+ double dz = conic_eval_denominator(fWeight, midT); |
+ double cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); |
+ double cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); |
+ double cz = conic_eval_denominator(fWeight, t2); |
+ double bx = 2 * dx - (ax + cx) / 2; |
+ double by = 2 * dy - (ay + cy) / 2; |
+ double bz = 2 * dz - (az + cz) / 2; |
+ double dt = t2 - t1; |
+ double dt_1 = 1 - dt; |
+ SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1)) |
+ / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1)); |
+ SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, w }; |
+ return dst; |
+} |
+ |
+SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, |
+ SkScalar* weight) const { |
+ SkDConic chopped = this->subDivide(t1, t2); |
+ *weight = chopped.fWeight; |
+ return chopped[1]; |
+} |