Index: src/pathops/SkPathOpsQuad.cpp |
diff --git a/src/pathops/SkPathOpsQuad.cpp b/src/pathops/SkPathOpsQuad.cpp |
index c1d068af345701e64c5251007d172d29e83fbeb3..4913c9f9f3fcb028c108073de8842aa096091e19 100644 |
--- a/src/pathops/SkPathOpsQuad.cpp |
+++ b/src/pathops/SkPathOpsQuad.cpp |
@@ -8,7 +8,61 @@ |
#include "SkLineParameters.h" |
#include "SkPathOpsCubic.h" |
#include "SkPathOpsQuad.h" |
-#include "SkPathOpsTriangle.h" |
+ |
+/* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */ |
+// Do a quick reject by rotating all points relative to a line formed by |
+// a pair of one quad's points. If the 2nd quad's points |
+// are on the line or on the opposite side from the 1st quad's 'odd man', the |
+// curves at most intersect at the endpoints. |
+/* if returning true, check contains true if quad's hull collapsed, making the cubic linear |
+ if returning false, check contains true if the the quad pair have only the end point in common |
+*/ |
+bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const { |
+ bool linear = true; |
+ for (int oddMan = 0; oddMan < kPointCount; ++oddMan) { |
+ const SkDPoint* endPt[2]; |
+ this->otherPts(oddMan, endPt); |
+ double origX = endPt[0]->fX; |
+ double origY = endPt[0]->fY; |
+ double adj = endPt[1]->fX - origX; |
+ double opp = endPt[1]->fY - origY; |
+ double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; |
+ if (approximately_zero(sign)) { |
+ continue; |
+ } |
+ linear = false; |
+ bool foundOutlier = false; |
+ for (int n = 0; n < kPointCount; ++n) { |
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
+ if (test * sign > 0 && !precisely_zero(test)) { |
+ foundOutlier = true; |
+ break; |
+ } |
+ } |
+ if (!foundOutlier) { |
+ return false; |
+ } |
+ } |
+ *isLinear = linear; |
+ return true; |
+} |
+ |
+/* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan) |
+oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m |
+ 0 1 1 1 0 1 |
+ 2 2 2 0 2 |
+ 1 1 0 -1 -1 0 |
+ 2 3 2 0 2 |
+ 2 1 3 1 0 1 |
+ 2 0 -2 -1 0 |
+*/ |
+void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const { |
+ for (int opp = 1; opp < kPointCount; ++opp) { |
+ int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan |
+ end &= ~(end >> 2); // if the value went negative, set it to zero |
+ endPt[opp - 1] = &fPts[end]; |
+ } |
+} |
// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html |
// (currently only used by testing) |
@@ -43,10 +97,6 @@ double SkDQuad::nearestT(const SkDPoint& pt) const { |
return d0 < d2 ? 0 : 1; |
} |
-bool SkDQuad::pointInHull(const SkDPoint& pt) const { |
- return ((const SkDTriangle&) fPts).contains(pt); |
-} |
- |
SkDPoint SkDQuad::top(double startT, double endT) const { |
SkDQuad sub = subDivide(startT, endT); |
SkDPoint topPt = sub[0]; |
@@ -140,7 +190,12 @@ bool SkDQuad::isLinear(int startIndex, int endIndex) const { |
// FIXME: maybe it's possible to avoid this and compare non-normalized |
lineParameters.normalize(); |
double distance = lineParameters.controlPtDistance(*this); |
- return approximately_zero(distance); |
+ double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), |
+ fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
+ double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), |
+ fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
+ largest = SkTMax(largest, -tiniest); |
+ return approximately_zero_when_compared_to(distance, largest); |
} |
SkDCubic SkDQuad::toCubic() const { |
@@ -240,13 +295,6 @@ void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { |
SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { |
SkASSERT(t1 != t2); |
SkDPoint b; |
-#if 0 |
- // this approach assumes that the control point computed directly is accurate enough |
- double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); |
- double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); |
- b.fX = 2 * dx - (a.fX + c.fX) / 2; |
- b.fY = 2 * dy - (a.fY + c.fY) / 2; |
-#else |
SkDQuad sub = subDivide(t1, t2); |
SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; |
SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; |
@@ -258,7 +306,6 @@ SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, dou |
SkASSERT(i.used() <= 2); |
b = SkDPoint::Mid(b0[1], b1[1]); |
} |
-#endif |
if (t1 == 0 || t2 == 0) { |
align(0, &b); |
} |