| Index: tests/PathOpsTestCommon.cpp
|
| diff --git a/tests/PathOpsTestCommon.cpp b/tests/PathOpsTestCommon.cpp
|
| index 60a12ee56ec87afcb606e05a6916283502b5e23b..f1cba8ed8b2c8d07e79bbdfe5325b240d026f6ab 100644
|
| --- a/tests/PathOpsTestCommon.cpp
|
| +++ b/tests/PathOpsTestCommon.cpp
|
| @@ -9,11 +9,129 @@
|
| #include "SkPathOpsCubic.h"
|
| #include "SkPathOpsLine.h"
|
| #include "SkPathOpsQuad.h"
|
| -#include "SkPathOpsTriangle.h"
|
| +#include "SkReduceOrder.h"
|
| +#include "SkTSort.h"
|
| +
|
| +static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
|
| + const double adjust = sqrt(3.) / 36;
|
| + SkDCubic sub;
|
| + const SkDCubic* cPtr;
|
| + if (start == 0) {
|
| + cPtr = &cubic;
|
| + } else {
|
| + // OPTIMIZE: special-case half-split ?
|
| + sub = cubic.subDivide(start, 1);
|
| + cPtr = ⊂
|
| + }
|
| + const SkDCubic& c = *cPtr;
|
| + double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
|
| + double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
|
| + double dist = sqrt(dx * dx + dy * dy);
|
| + double tDiv3 = precision / (adjust * dist);
|
| + double t = SkDCubeRoot(tDiv3);
|
| + if (start > 0) {
|
| + t = start + (1 - start) * t;
|
| + }
|
| + return t;
|
| +}
|
| +
|
| +static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
|
| + double tDiv = calc_t_div(cubic, precision, 0);
|
| + if (tDiv >= 1) {
|
| + return true;
|
| + }
|
| + if (tDiv >= 0.5) {
|
| + ts->push_back(0.5);
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +static void addTs(const SkDCubic& cubic, double precision, double start, double end,
|
| + SkTArray<double, true>* ts) {
|
| + double tDiv = calc_t_div(cubic, precision, 0);
|
| + double parts = ceil(1.0 / tDiv);
|
| + for (double index = 0; index < parts; ++index) {
|
| + double newT = start + (index / parts) * (end - start);
|
| + if (newT > 0 && newT < 1) {
|
| + ts->push_back(newT);
|
| + }
|
| + }
|
| +}
|
| +
|
| +static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<double, true>* ts) {
|
| + SkReduceOrder reducer;
|
| + int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics);
|
| + if (order < 3) {
|
| + return;
|
| + }
|
| + double inflectT[5];
|
| + int inflections = cubic->findInflections(inflectT);
|
| + SkASSERT(inflections <= 2);
|
| + if (!cubic->endsAreExtremaInXOrY()) {
|
| + inflections += cubic->findMaxCurvature(&inflectT[inflections]);
|
| + SkASSERT(inflections <= 5);
|
| + }
|
| + SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
|
| + // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
|
| + // own subroutine?
|
| + while (inflections && approximately_less_than_zero(inflectT[0])) {
|
| + memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
|
| + }
|
| + int start = 0;
|
| + int next = 1;
|
| + while (next < inflections) {
|
| + if (!approximately_equal(inflectT[start], inflectT[next])) {
|
| + ++start;
|
| + ++next;
|
| + continue;
|
| + }
|
| + memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
|
| + }
|
| +
|
| + while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
|
| + --inflections;
|
| + }
|
| + SkDCubicPair pair;
|
| + if (inflections == 1) {
|
| + pair = cubic->chopAt(inflectT[0]);
|
| + int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
|
| + if (orderP1 < 2) {
|
| + --inflections;
|
| + } else {
|
| + int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
|
| + if (orderP2 < 2) {
|
| + --inflections;
|
| + }
|
| + }
|
| + }
|
| + if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) {
|
| + return;
|
| + }
|
| + if (inflections == 1) {
|
| + pair = cubic->chopAt(inflectT[0]);
|
| + addTs(pair.first(), precision, 0, inflectT[0], ts);
|
| + addTs(pair.second(), precision, inflectT[0], 1, ts);
|
| + return;
|
| + }
|
| + if (inflections > 1) {
|
| + SkDCubic part = cubic->subDivide(0, inflectT[0]);
|
| + addTs(part, precision, 0, inflectT[0], ts);
|
| + int last = inflections - 1;
|
| + for (int idx = 0; idx < last; ++idx) {
|
| + part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]);
|
| + addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
|
| + }
|
| + part = cubic->subDivide(inflectT[last], 1);
|
| + addTs(part, precision, inflectT[last], 1, ts);
|
| + return;
|
| + }
|
| + addTs(*cubic, precision, 0, 1, ts);
|
| +}
|
|
|
| void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) {
|
| SkTArray<double, true> ts;
|
| - cubic.toQuadraticTs(precision, &ts);
|
| + toQuadraticTs(&cubic, precision, &ts);
|
| if (ts.count() <= 0) {
|
| SkDQuad quad = cubic.toQuad();
|
| quads.push_back(quad);
|
| @@ -180,15 +298,6 @@ bool ValidQuad(const SkDQuad& quad) {
|
| return true;
|
| }
|
|
|
| -bool ValidTriangle(const SkDTriangle& triangle) {
|
| - for (int index = 0; index < 3; ++index) {
|
| - if (!ValidPoint(triangle.fPts[index])) {
|
| - return false;
|
| - }
|
| - }
|
| - return true;
|
| -}
|
| -
|
| bool ValidVector(const SkDVector& v) {
|
| if (SkDoubleIsNaN(v.fX)) {
|
| return false;
|
|
|