OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2013 Google Inc. | 2 * Copyright 2013 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 #include "PathOpsTestCommon.h" | 7 #include "PathOpsTestCommon.h" |
8 #include "SkIntersections.h" | 8 #include "SkIntersections.h" |
9 #include "SkPathOpsCubic.h" | 9 #include "SkPathOpsCubic.h" |
10 #include "SkPathOpsQuad.h" | 10 #include "SkPathOpsQuad.h" |
11 #include "SkRandom.h" | 11 #include "SkRandom.h" |
12 #include "SkReduceOrder.h" | 12 #include "SkReduceOrder.h" |
13 #include "Test.h" | 13 #include "Test.h" |
14 | 14 |
15 static struct quadCubic { | 15 static struct quadCubic { |
16 SkDCubic cubic; | 16 SkDCubic cubic; |
17 SkDQuad quad; | 17 SkDQuad quad; |
18 int answerCount; | |
19 SkDPoint answers[2]; | |
20 } quadCubicTests[] = { | 18 } quadCubicTests[] = { |
21 #if 0 // FIXME : this should not fail (root problem behind skpcarrot_is24 ) | |
22 {{{{1020.08099,672.161987}, {1020.08002,630.73999}, {986.502014,597.161987},
{945.080994,597.161987}}}, | 19 {{{{1020.08099,672.161987}, {1020.08002,630.73999}, {986.502014,597.161987},
{945.080994,597.161987}}}, |
23 {{{1020,672}, {1020,640.93396}, {998.03302,618.96698}}}, 1, | 20 {{{1020,672}, {1020,640.93396}, {998.03302,618.96698}}}}, |
24 {{1019.421, 662.449}}}, | |
25 #endif | |
26 | 21 |
27 {{{{778, 14089}, {778, 14091.208984375}, {776.20916748046875, 14093}, {774,
14093}}}, | 22 {{{{778, 14089}, {778, 14091.208984375}, {776.20916748046875, 14093}, {774,
14093}}}, |
28 {{{778, 14089}, {777.99957275390625, 14090.65625}, {776.82843017578125, 140
91.828125}}}, 2, | 23 {{{778, 14089}, {777.99957275390625, 14090.65625}, {776.82843017578125, 140
91.828125}}}}, |
29 {{778, 14089}, {776.82855609581270,14091.828250841330}}}, | |
30 | 24 |
31 {{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}}, | 25 {{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}}, |
32 {{{1110.70715f, 817.292908f}, {1110.41406f, 817.000122f}, {1110, 817}}}, 2, | 26 {{{1110.70715f, 817.292908f}, {1110.41406f, 817.000122f}, {1110, 817}}}}, |
33 {{1110, 817}, {1110.70715f, 817.292908f}}}, | |
34 | 27 |
35 {{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}}, | 28 {{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}}, |
36 {{{1111, 818}, {1110.99988f, 817.585876f}, {1110.70715f, 817.292908f}}}, 2, | 29 {{{1111, 818}, {1110.99988f, 817.585876f}, {1110.70715f, 817.292908f}}}}, |
37 {{1110.70715f, 817.292908f}, {1111, 818}}}, | |
38 | 30 |
39 {{{{55, 207}, {52.238574981689453, 207}, {50, 204.76142883300781}, {50, 202}
}}, | 31 {{{{55, 207}, {52.238574981689453, 207}, {50, 204.76142883300781}, {50, 202}
}}, |
40 {{{55, 207}, {52.929431915283203, 206.99949645996094}, | 32 {{{55, 207}, {52.929431915283203, 206.99949645996094}, |
41 {51.464466094970703, 205.53553771972656}}}, 2, | 33 {51.464466094970703, 205.53553771972656}}}}, |
42 {{55, 207}, {51.464466094970703, 205.53553771972656}}}, | |
43 | 34 |
44 {{{{49, 47}, {49, 74.614250183105469}, {26.614250183105469, 97}, {-1, 97}}}, | 35 {{{{49, 47}, {49, 74.614250183105469}, {26.614250183105469, 97}, {-1, 97}}}, |
45 {{{-8.659739592076221e-015, 96.991401672363281}, {20.065492630004883, 96.64
5187377929688}, | 36 {{{-8.659739592076221e-015, 96.991401672363281}, {20.065492630004883, 96.64
5187377929688}, |
46 {34.355339050292969, 82.355339050292969}}}, 2, | 37 {34.355339050292969, 82.355339050292969}}}}, |
47 {{34.355339050292969,82.355339050292969}, {34.28654835573549, 82.424006509
351585}}}, | |
48 | 38 |
49 {{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}}, | 39 {{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}}, |
50 {{{18,226}, {14.686291694641113,226}, {12.342399597167969,228.3424072265625
}}}, 1, | 40 {{{18,226}, {14.686291694641113,226}, {12.342399597167969,228.3424072265625
}}}}, |
51 {{18,226}, {0,0}}}, | |
52 | 41 |
53 {{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}}, | 42 {{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}}, |
54 {{{12.342399597167969,228.3424072265625}, {10,230.68629455566406}, {10,234}
}}, 1, | 43 {{{12.342399597167969,228.3424072265625}, {10,230.68629455566406}, {10,234}
}}}, |
55 {{10,234}, {0,0}}}, | |
56 }; | 44 }; |
57 | 45 |
58 static const int quadCubicTests_count = (int) SK_ARRAY_COUNT(quadCubicTests); | 46 static const int quadCubicTests_count = (int) SK_ARRAY_COUNT(quadCubicTests); |
59 | 47 |
60 static void cubicQuadIntersection(skiatest::Reporter* reporter, int index) { | 48 static void cubicQuadIntersection(skiatest::Reporter* reporter, int index) { |
61 int iIndex = static_cast<int>(index); | 49 int iIndex = static_cast<int>(index); |
62 const SkDCubic& cubic = quadCubicTests[index].cubic; | 50 const SkDCubic& cubic = quadCubicTests[index].cubic; |
63 SkASSERT(ValidCubic(cubic)); | 51 SkASSERT(ValidCubic(cubic)); |
64 const SkDQuad& quad = quadCubicTests[index].quad; | 52 const SkDQuad& quad = quadCubicTests[index].quad; |
65 SkASSERT(ValidQuad(quad)); | 53 SkASSERT(ValidQuad(quad)); |
66 SkReduceOrder reduce1; | 54 SkReduceOrder reduce1; |
67 SkReduceOrder reduce2; | 55 SkReduceOrder reduce2; |
68 int order1 = reduce1.reduce(cubic, SkReduceOrder::kNo_Quadratics); | 56 int order1 = reduce1.reduce(cubic, SkReduceOrder::kNo_Quadratics); |
69 int order2 = reduce2.reduce(quad); | 57 int order2 = reduce2.reduce(quad); |
70 if (order1 != 4) { | 58 if (order1 != 4) { |
71 SkDebugf("[%d] cubic order=%d\n", iIndex, order1); | 59 SkDebugf("[%d] cubic order=%d\n", iIndex, order1); |
72 REPORTER_ASSERT(reporter, 0); | 60 REPORTER_ASSERT(reporter, 0); |
73 } | 61 } |
74 if (order2 != 3) { | 62 if (order2 != 3) { |
75 SkDebugf("[%d] quad order=%d\n", iIndex, order2); | 63 SkDebugf("[%d] quad order=%d\n", iIndex, order2); |
76 REPORTER_ASSERT(reporter, 0); | 64 REPORTER_ASSERT(reporter, 0); |
77 } | 65 } |
| 66 SkDCubic quadToCubic = quad.toCubic(); |
78 SkIntersections i; | 67 SkIntersections i; |
79 int roots = i.intersect(cubic, quad); | 68 int roots = i.intersect(cubic, quadToCubic); |
80 SkASSERT(roots == quadCubicTests[index].answerCount); | |
81 for (int pt = 0; pt < roots; ++pt) { | 69 for (int pt = 0; pt < roots; ++pt) { |
82 double tt1 = i[0][pt]; | 70 double tt1 = i[0][pt]; |
83 SkDPoint xy1 = cubic.ptAtT(tt1); | 71 SkDPoint xy1 = cubic.ptAtT(tt1); |
84 double tt2 = i[1][pt]; | 72 double tt2 = i[1][pt]; |
85 SkDPoint xy2 = quad.ptAtT(tt2); | 73 SkDPoint xy2 = quad.ptAtT(tt2); |
86 if (!xy1.approximatelyEqual(xy2)) { | 74 if (!xy1.approximatelyEqual(xy2)) { |
87 SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", | 75 SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", |
88 __FUNCTION__, iIndex, pt, tt1, xy1.fX, xy1.fY, tt2, xy2.fX, xy2.
fY); | 76 __FUNCTION__, iIndex, pt, tt1, xy1.fX, xy1.fY, tt2, xy2.fX, xy2.
fY); |
89 } | 77 } |
90 REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2)); | 78 REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2)); |
91 bool found = false; | |
92 for (int idx2 = 0; idx2 < quadCubicTests[index].answerCount; ++idx2) { | |
93 found |= quadCubicTests[index].answers[idx2].approximatelyEqual(xy1)
; | |
94 } | |
95 if (!found) { | |
96 SkDebugf("%s [%d,%d] xy1=(%g,%g) != \n", | |
97 __FUNCTION__, iIndex, pt, xy1.fX, xy1.fY); | |
98 } | |
99 REPORTER_ASSERT(reporter, found); | |
100 } | 79 } |
101 reporter->bumpTestCount(); | 80 reporter->bumpTestCount(); |
102 } | 81 } |
103 | 82 |
104 DEF_TEST(PathOpsCubicQuadIntersection, reporter) { | 83 DEF_TEST(PathOpsCubicQuadIntersection, reporter) { |
105 for (int index = 0; index < quadCubicTests_count; ++index) { | 84 for (int index = 0; index < quadCubicTests_count; ++index) { |
106 cubicQuadIntersection(reporter, index); | 85 cubicQuadIntersection(reporter, index); |
107 reporter->bumpTestCount(); | 86 reporter->bumpTestCount(); |
108 } | 87 } |
109 } | 88 } |
110 | 89 |
111 DEF_TEST(PathOpsCubicQuadIntersectionOneOff, reporter) { | 90 DEF_TEST(PathOpsCubicQuadIntersectionOneOff, reporter) { |
112 cubicQuadIntersection(reporter, 0); | 91 cubicQuadIntersection(reporter, 0); |
113 } | 92 } |
114 | |
115 static bool gPathOpCubicQuadSlopVerbose = false; | |
116 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic t
o quads subdivision | |
117 | |
118 // determine that slop required after quad/quad finds a candidate intersection | |
119 // use the cross of the tangents plus the distance from 1 or 0 as knobs | |
120 DEF_TEST(PathOpsCubicQuadSlop, reporter) { | |
121 // create a random non-selfintersecting cubic | |
122 // break it into quadratics | |
123 // offset the quadratic, measuring the slop required to find the intersectio
n | |
124 if (!gPathOpCubicQuadSlopVerbose) { // takes a while to run -- so exclude i
t by default | |
125 return; | |
126 } | |
127 int results[101]; | |
128 sk_bzero(results, sizeof(results)); | |
129 double minCross[101]; | |
130 sk_bzero(minCross, sizeof(minCross)); | |
131 double maxCross[101]; | |
132 sk_bzero(maxCross, sizeof(maxCross)); | |
133 double sumCross[101]; | |
134 sk_bzero(sumCross, sizeof(sumCross)); | |
135 int foundOne = 0; | |
136 int slopCount = 1; | |
137 SkRandom ran; | |
138 for (int index = 0; index < 10000000; ++index) { | |
139 if (index % 1000 == 999) SkDebugf("."); | |
140 SkDCubic cubic = {{ | |
141 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, | |
142 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, | |
143 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, | |
144 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)} | |
145 }}; | |
146 SkIntersections i; | |
147 if (i.intersect(cubic)) { | |
148 continue; | |
149 } | |
150 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts; | |
151 cubic.toQuadraticTs(cubic.calcPrecision(), &ts); | |
152 double tStart = 0; | |
153 int tsCount = ts.count(); | |
154 for (int i1 = 0; i1 <= tsCount; ++i1) { | |
155 const double tEnd = i1 < tsCount ? ts[i1] : 1; | |
156 SkDCubic part = cubic.subDivide(tStart, tEnd); | |
157 SkDQuad quad = part.toQuad(); | |
158 SkReduceOrder reducer; | |
159 int order = reducer.reduce(quad); | |
160 if (order != 3) { | |
161 continue; | |
162 } | |
163 for (int i2 = 0; i2 < 100; ++i2) { | |
164 SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextR
angeF(-100, 100)}; | |
165 SkDQuad nearby = {{ | |
166 {quad[0].fX + endDisplacement.fX, quad[0].fY + endDispla
cement.fY}, | |
167 {quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ra
n.nextRangeF(-100, 100)}, | |
168 {quad[2].fX - endDisplacement.fX, quad[2].fY - endDispla
cement.fY} | |
169 }}; | |
170 order = reducer.reduce(nearby); | |
171 if (order != 3) { | |
172 continue; | |
173 } | |
174 SkIntersections locals; | |
175 locals.allowNear(false); | |
176 locals.intersect(quad, nearby); | |
177 if (locals.used() != 1) { | |
178 continue; | |
179 } | |
180 // brute force find actual intersection | |
181 SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }}; | |
182 SkIntersections liner; | |
183 int i3; | |
184 int found = -1; | |
185 int foundErr = true; | |
186 for (i3 = 1; i3 <= 1000; ++i3) { | |
187 cubicLine[0] = cubicLine[1]; | |
188 cubicLine[1] = cubic.ptAtT(i3 / 1000.); | |
189 liner.reset(); | |
190 liner.allowNear(false); | |
191 liner.intersect(nearby, cubicLine); | |
192 if (liner.used() == 0) { | |
193 continue; | |
194 } | |
195 if (liner.used() > 1) { | |
196 foundErr = true; | |
197 break; | |
198 } | |
199 if (found > 0) { | |
200 foundErr = true; | |
201 break; | |
202 } | |
203 foundErr = false; | |
204 found = i3; | |
205 } | |
206 if (foundErr) { | |
207 continue; | |
208 } | |
209 SkDVector dist = liner.pt(0) - locals.pt(0); | |
210 SkDVector qV = nearby.dxdyAtT(locals[0][0]); | |
211 double cubicT = (found - 1 + liner[1][0]) / 1000.; | |
212 SkDVector cV = cubic.dxdyAtT(cubicT); | |
213 double qxc = qV.crossCheck(cV); | |
214 double qvLen = qV.length(); | |
215 double cvLen = cV.length(); | |
216 double maxLen = SkTMax(qvLen, cvLen); | |
217 qxc /= maxLen; | |
218 double quadT = tStart + (tEnd - tStart) * locals[0][0]; | |
219 double diffT = fabs(cubicT - quadT); | |
220 int diffIdx = (int) (diffT * 100); | |
221 results[diffIdx]++; | |
222 double absQxc = fabs(qxc); | |
223 if (sumCross[diffIdx] == 0) { | |
224 minCross[diffIdx] = maxCross[diffIdx] = sumCross[diffIdx] =
absQxc; | |
225 } else { | |
226 minCross[diffIdx] = SkTMin(minCross[diffIdx], absQxc); | |
227 maxCross[diffIdx] = SkTMax(maxCross[diffIdx], absQxc); | |
228 sumCross[diffIdx] += absQxc; | |
229 } | |
230 if (diffIdx >= 20) { | |
231 #if 01 | |
232 SkDebugf("cubic={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g
}, {%1.9g,%1.9g}}}" | |
233 " quad={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}" | |
234 " {{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}" | |
235 " qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n", | |
236 cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, | |
237 cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, | |
238 nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY, | |
239 nearby[2].fX, nearby[2].fY, | |
240 liner.pt(0).fX, liner.pt(0).fY, | |
241 locals.pt(0).fX, locals.pt(0).fY, quadT, cubicT, dist.le
ngth(), qxc); | |
242 #else | |
243 SkDebugf("qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n", | |
244 quadT, cubicT, dist.length(), qxc); | |
245 SkDebugf("<div id=\"slop%d\">\n", ++slopCount); | |
246 SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1
.9g,%1.9g}}}\n" | |
247 "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n" | |
248 "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n", | |
249 cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, | |
250 cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, | |
251 nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY, | |
252 nearby[2].fX, nearby[2].fY, | |
253 liner.pt(0).fX, liner.pt(0).fY, | |
254 locals.pt(0).fX, locals.pt(0).fY); | |
255 SkDebugf("</div>\n\n"); | |
256 #endif | |
257 } | |
258 ++foundOne; | |
259 } | |
260 tStart = tEnd; | |
261 } | |
262 if (++foundOne >= 100000) { | |
263 break; | |
264 } | |
265 } | |
266 #if 01 | |
267 SkDebugf("slopCount=%d\n", slopCount); | |
268 int max = 100; | |
269 while (results[max] == 0) { | |
270 --max; | |
271 } | |
272 for (int i = 0; i <= max; ++i) { | |
273 if (i > 0 && i % 10 == 0) { | |
274 SkDebugf("\n"); | |
275 } | |
276 SkDebugf("%d ", results[i]); | |
277 } | |
278 SkDebugf("min\n"); | |
279 for (int i = 0; i <= max; ++i) { | |
280 if (i > 0 && i % 10 == 0) { | |
281 SkDebugf("\n"); | |
282 } | |
283 SkDebugf("%1.9g ", minCross[i]); | |
284 } | |
285 SkDebugf("max\n"); | |
286 for (int i = 0; i <= max; ++i) { | |
287 if (i > 0 && i % 10 == 0) { | |
288 SkDebugf("\n"); | |
289 } | |
290 SkDebugf("%1.9g ", maxCross[i]); | |
291 } | |
292 SkDebugf("avg\n"); | |
293 for (int i = 0; i <= max; ++i) { | |
294 if (i > 0 && i % 10 == 0) { | |
295 SkDebugf("\n"); | |
296 } | |
297 SkDebugf("%1.9g ", sumCross[i] / results[i]); | |
298 } | |
299 #else | |
300 for (int i = 1; i < slopCount; ++i) { | |
301 SkDebugf(" slop%d,\n", i); | |
302 } | |
303 #endif | |
304 SkDebugf("\n"); | |
305 } | |
OLD | NEW |