OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 #include "SkPathOpsLine.h" | 7 #include "SkPathOpsLine.h" |
8 | 8 |
9 SkDLine SkDLine::subDivide(double t1, double t2) const { | |
10 SkDVector delta = tangent(); | |
11 SkDLine dst = {{{ | |
12 fPts[0].fX - t1 * delta.fX, fPts[0].fY - t1 * delta.fY}, { | |
13 fPts[0].fX - t2 * delta.fX, fPts[0].fY - t2 * delta.fY}}}; | |
14 return dst; | |
15 } | |
16 | |
17 // may have this below somewhere else already: | 9 // may have this below somewhere else already: |
18 // copying here because I thought it was clever | 10 // copying here because I thought it was clever |
19 | 11 |
20 // Copyright 2001, softSurfer (www.softsurfer.com) | 12 // Copyright 2001, softSurfer (www.softsurfer.com) |
21 // This code may be freely used and modified for any purpose | 13 // This code may be freely used and modified for any purpose |
22 // providing that this copyright notice is included with it. | 14 // providing that this copyright notice is included with it. |
23 // SoftSurfer makes no warranty for this code, and cannot be held | 15 // SoftSurfer makes no warranty for this code, and cannot be held |
24 // liable for any real or imagined damage resulting from its use. | 16 // liable for any real or imagined damage resulting from its use. |
25 // Users of this code must verify correctness for their application. | 17 // Users of this code must verify correctness for their application. |
26 | 18 |
27 // Assume that a class is already given for the object: | 19 // Assume that a class is already given for the object: |
28 // Point with coordinates {float x, y;} | 20 // Point with coordinates {float x, y;} |
29 //=================================================================== | 21 //=================================================================== |
30 | 22 |
| 23 // (only used by testing) |
31 // isLeft(): tests if a point is Left|On|Right of an infinite line. | 24 // isLeft(): tests if a point is Left|On|Right of an infinite line. |
32 // Input: three points P0, P1, and P2 | 25 // Input: three points P0, P1, and P2 |
33 // Return: >0 for P2 left of the line through P0 and P1 | 26 // Return: >0 for P2 left of the line through P0 and P1 |
34 // =0 for P2 on the line | 27 // =0 for P2 on the line |
35 // <0 for P2 right of the line | 28 // <0 for P2 right of the line |
36 // See: the January 2001 Algorithm on Area of Triangles | 29 // See: the January 2001 Algorithm on Area of Triangles |
37 // return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y))
; | 30 // return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y))
; |
38 double SkDLine::isLeft(const SkDPoint& pt) const { | 31 double SkDLine::isLeft(const SkDPoint& pt) const { |
39 SkDVector p0 = fPts[1] - fPts[0]; | 32 SkDVector p0 = fPts[1] - fPts[0]; |
40 SkDVector p2 = pt - fPts[0]; | 33 SkDVector p2 = pt - fPts[0]; |
(...skipping 62 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
103 double t = numer / denom; | 96 double t = numer / denom; |
104 SkDPoint realPt = ptAtT(t); | 97 SkDPoint realPt = ptAtT(t); |
105 double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against
distSq instead ? | 98 double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against
distSq instead ? |
106 // find the ordinal in the original line with the largest unsigned exponent | 99 // find the ordinal in the original line with the largest unsigned exponent |
107 double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); | 100 double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); |
108 double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); | 101 double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); |
109 largest = SkTMax(largest, -tiniest); | 102 largest = SkTMax(largest, -tiniest); |
110 return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS
tolerance? | 103 return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS
tolerance? |
111 } | 104 } |
112 | 105 |
113 // Returns true if a ray from (0,0) to (x1,y1) is coincident with a ray (0,0) to
(x2,y2) | |
114 // OPTIMIZE: a specialty routine could speed this up -- may not be called very o
ften though | |
115 bool SkDLine::NearRay(double x1, double y1, double x2, double y2) { | |
116 double denom1 = x1 * x1 + y1 * y1; | |
117 double denom2 = x2 * x2 + y2 * y2; | |
118 SkDLine line = {{{0, 0}, {x1, y1}}}; | |
119 SkDPoint pt = {x2, y2}; | |
120 if (denom2 > denom1) { | |
121 SkTSwap(line[1], pt); | |
122 } | |
123 return line.nearRay(pt); | |
124 } | |
125 | |
126 double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, doubl
e y) { | 106 double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, doubl
e y) { |
127 if (xy.fY == y) { | 107 if (xy.fY == y) { |
128 if (xy.fX == left) { | 108 if (xy.fX == left) { |
129 return 0; | 109 return 0; |
130 } | 110 } |
131 if (xy.fX == right) { | 111 if (xy.fX == right) { |
132 return 1; | 112 return 1; |
133 } | 113 } |
134 } | 114 } |
135 return -1; | 115 return -1; |
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
185 double distSq = distU.fX * distU.fX + distU.fY * distU.fY; | 165 double distSq = distU.fX * distU.fX + distU.fY * distU.fY; |
186 double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq i
nstead ? | 166 double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq i
nstead ? |
187 double tiniest = SkTMin(SkTMin(x, top), bottom); | 167 double tiniest = SkTMin(SkTMin(x, top), bottom); |
188 double largest = SkTMax(SkTMax(x, top), bottom); | 168 double largest = SkTMax(SkTMax(x, top), bottom); |
189 largest = SkTMax(largest, -tiniest); | 169 largest = SkTMax(largest, -tiniest); |
190 if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS
tolerance? | 170 if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS
tolerance? |
191 return -1; | 171 return -1; |
192 } | 172 } |
193 return t; | 173 return t; |
194 } | 174 } |
OLD | NEW |