Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(104)

Side by Side Diff: src/pathops/SkDCubicIntersection.cpp

Issue 1037573004: cumulative pathops patch (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: fix pathopsinverse gm Created 5 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/pathops/SkAddIntersections.cpp ('k') | src/pathops/SkDCubicLineIntersection.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkIntersections.h"
9 #include "SkPathOpsCubic.h"
10 #include "SkPathOpsLine.h"
11 #include "SkPathOpsPoint.h"
12 #include "SkPathOpsQuad.h"
13 #include "SkPathOpsRect.h"
14 #include "SkReduceOrder.h"
15 #include "SkTSort.h"
16
17 #if ONE_OFF_DEBUG
18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
20 #endif
21
22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
24 #define SWAP_TOP_DEBUG 0
25
26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic t o quads subdivision
27
28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceO rder* reducer) {
29 SkDCubic part = cubic.subDivide(tStart, tEnd);
30 SkDQuad quad = part.toQuad();
31 // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
32 // extremely shallow quadratic?
33 int order = reducer->reduce(quad);
34 #if DEBUG_QUAD_PART
35 SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
36 " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
37 cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
38 cubic[3].fX, cubic[3].fY, tStart, tEnd);
39 SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
40 " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
41 part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2]. fY,
42 part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
43 quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
44 #if DEBUG_QUAD_PART_SHOW_SIMPLE
45 SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reduc er->fQuad[0].fY);
46 if (order > 1) {
47 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
48 }
49 if (order > 2) {
50 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
51 }
52 SkDebugf(")\n");
53 SkASSERT(order < 4 && order > 0);
54 #endif
55 #endif
56 return order;
57 }
58
59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad & simple2,
60 int order2, SkIntersections& i) {
61 if (order1 == 3 && order2 == 3) {
62 i.intersect(simple1, simple2);
63 } else if (order1 <= 2 && order2 <= 2) {
64 i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
65 } else if (order1 == 3 && order2 <= 2) {
66 i.intersect(simple1, (const SkDLine&) simple2);
67 } else {
68 SkASSERT(order1 <= 2 && order2 == 3);
69 i.intersect(simple2, (const SkDLine&) simple1);
70 i.swapPts();
71 }
72 }
73
74 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
75 // chase intersections near quadratic ends, requiring odd hacks to find them.
76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDC ubic& cubic2,
77 double t2s, double t2e, double precisionScale, SkIntersections& i) {
78 i.upDepth();
79 SkDCubic c1 = cubic1.subDivide(t1s, t1e);
80 SkDCubic c2 = cubic2.subDivide(t2s, t2e);
81 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
82 // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersectio n)
83 c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
84 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
85 c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
86 double t1Start = t1s;
87 int ts1Count = ts1.count();
88 for (int i1 = 0; i1 <= ts1Count; ++i1) {
89 const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
90 const double t1 = t1s + (t1e - t1s) * tEnd1;
91 SkReduceOrder s1;
92 int o1 = quadPart(cubic1, t1Start, t1, &s1);
93 double t2Start = t2s;
94 int ts2Count = ts2.count();
95 for (int i2 = 0; i2 <= ts2Count; ++i2) {
96 const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
97 const double t2 = t2s + (t2e - t2s) * tEnd2;
98 if (&cubic1 == &cubic2 && t1Start >= t2Start) {
99 t2Start = t2;
100 continue;
101 }
102 SkReduceOrder s2;
103 int o2 = quadPart(cubic2, t2Start, t2, &s2);
104 #if ONE_OFF_DEBUG
105 char tab[] = " ";
106 if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
107 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
108 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()* 2, tab,
109 __FUNCTION__, t1Start, t1, t2Start, t2);
110 SkIntersections xlocals;
111 xlocals.allowNear(false);
112 xlocals.allowFlatMeasure(true);
113 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
114 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
115 }
116 #endif
117 SkIntersections locals;
118 locals.allowNear(false);
119 locals.allowFlatMeasure(true);
120 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
121 int tCount = locals.used();
122 for (int tIdx = 0; tIdx < tCount; ++tIdx) {
123 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
124 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
125 // if the computed t is not sufficiently precise, iterate
126 SkDPoint p1 = cubic1.ptAtT(to1);
127 SkDPoint p2 = cubic2.ptAtT(to2);
128 if (p1.approximatelyEqual(p2)) {
129 // FIXME: local edge may be coincident -- experiment with not propagating co incidence to caller
130 // SkASSERT(!locals.isCoincident(tIdx));
131 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
132 if (i.swapped()) { // FIXME: insert should respect swa p
133 i.insert(to2, to1, p1);
134 } else {
135 i.insert(to1, to2, p1);
136 }
137 }
138 } else {
139 /*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003%
140 look for nearly coincident curves. and check each 1/16th section.
141 */
142 double offset = precisionScale / 16; // FIXME: const is arb itrary: test, refine
143 double c1Bottom = tIdx == 0 ? 0 :
144 (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to 1) / 2;
145 double c1Min = SkTMax(c1Bottom, to1 - offset);
146 double c1Top = tIdx == tCount - 1 ? 1 :
147 (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to 1) / 2;
148 double c1Max = SkTMin(c1Top, to1 + offset);
149 double c2Min = SkTMax(0., to2 - offset);
150 double c2Max = SkTMin(1., to2 + offset);
151 #if ONE_OFF_DEBUG
152 SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.de pth()*2, tab,
153 __FUNCTION__,
154 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
155 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
156 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
157 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
158 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
159 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
160 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
161 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
162 SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9 g c2Top=%1.9g"
163 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1. 9g\n",
164 i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
165 to1 - offset, to1 + offset, to2 - offset, to2 + offs et, offset);
166 SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1 .9g c2Min=%1.9g"
167 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to 1, to2, c1Min,
168 c1Max, c2Min, c2Max);
169 #endif
170 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset , i);
171 #if ONE_OFF_DEBUG
172 SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
173 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
174 #endif
175 if (tCount > 1) {
176 c1Min = SkTMax(0., to1 - offset);
177 c1Max = SkTMin(1., to1 + offset);
178 double c2Bottom = tIdx == 0 ? to2 :
179 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
180 double c2Top = tIdx == tCount - 1 ? to2 :
181 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
182 if (c2Bottom > c2Top) {
183 SkTSwap(c2Bottom, c2Top);
184 }
185 if (c2Bottom == to2) {
186 c2Bottom = 0;
187 }
188 if (c2Top == to2) {
189 c2Top = 1;
190 }
191 c2Min = SkTMax(c2Bottom, to2 - offset);
192 c2Max = SkTMin(c2Top, to2 + offset);
193 #if ONE_OFF_DEBUG
194 SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
195 __FUNCTION__,
196 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
197 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
198 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
199 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
200 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
201 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
202 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
203 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
204 SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom= %1.9g c2Top=%1.9g"
205 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset =%1.9g\n",
206 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom , c2Top,
207 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
208 SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Ma x=%1.9g c2Min=%1.9g"
209 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__ , to1, to2, c1Min,
210 c1Max, c2Min, c2Max);
211 #endif
212 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, of fset, i);
213 #if ONE_OFF_DEBUG
214 SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
215 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
216 #endif
217 c1Min = SkTMax(c1Bottom, to1 - offset);
218 c1Max = SkTMin(c1Top, to1 + offset);
219 #if ONE_OFF_DEBUG
220 SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
221 __FUNCTION__,
222 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
223 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
224 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
225 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
226 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
227 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
228 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
229 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
230 SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom= %1.9g c2Top=%1.9g"
231 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset =%1.9g\n",
232 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom , c2Top,
233 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
234 SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Ma x=%1.9g c2Min=%1.9g"
235 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__ , to1, to2, c1Min,
236 c1Max, c2Min, c2Max);
237 #endif
238 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, of fset, i);
239 #if ONE_OFF_DEBUG
240 SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
241 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
242 #endif
243 }
244 // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offs et, i);
245 // FIXME: if no intersection is found, either quadratics int ersected where
246 // cubics did not, or the intersection was missed. In the fo rmer case, expect
247 // the quadratics to be nearly parallel at the point of inte rsection, and check
248 // for that.
249 }
250 }
251 t2Start = t2;
252 }
253 t1Start = t1;
254 }
255 i.downDepth();
256 }
257
258 // if two ends intersect, check middle for coincidence
259 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
260 if (fUsed < 2) {
261 return false;
262 }
263 int last = fUsed - 1;
264 double tRange1 = fT[0][last] - fT[0][0];
265 double tRange2 = fT[1][last] - fT[1][0];
266 for (int index = 1; index < 5; ++index) {
267 double testT1 = fT[0][0] + tRange1 * index / 5;
268 double testT2 = fT[1][0] + tRange2 * index / 5;
269 SkDPoint testPt1 = c1.ptAtT(testT1);
270 SkDPoint testPt2 = c2.ptAtT(testT2);
271 if (!testPt1.approximatelyEqual(testPt2)) {
272 return false;
273 }
274 }
275 if (fUsed > 2) {
276 fPt[1] = fPt[last];
277 fT[0][1] = fT[0][last];
278 fT[1][1] = fT[1][last];
279 fUsed = 2;
280 }
281 fIsCoincident[0] = fIsCoincident[1] = 0x03;
282 return true;
283 }
284
285 #define LINE_FRACTION 0.1
286
287 // intersect the end of the cubic with the other. Try lines from the end to cont rol and opposite
288 // end to determine range of t on opposite cubic.
289 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const Sk DCubic& cubic2) {
290 int t1Index = start ? 0 : 3;
291 double testT = (double) !start;
292 bool swap = swapped();
293 // quad/quad at this point checks to see if exact matches have already been found
294 // cubic/cubic can't reject so easily since cubics can intersect same point more than once
295 SkDLine tmpLine;
296 tmpLine[0] = tmpLine[1] = cubic2[t1Index];
297 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
298 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
299 SkIntersections impTs;
300 impTs.allowNear(false);
301 impTs.allowFlatMeasure(true);
302 impTs.intersectRay(cubic1, tmpLine);
303 for (int index = 0; index < impTs.used(); ++index) {
304 SkDPoint realPt = impTs.pt(index);
305 if (!tmpLine[0].approximatelyEqual(realPt)) {
306 continue;
307 }
308 if (swap) {
309 cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1);
310 } else {
311 cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2);
312 }
313 return true;
314 }
315 return false;
316 }
317
318
319 void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt,
320 const SkDCubic& cubic1, const SkDCubic& cubic2) {
321 for (int index = 0; index < fUsed; ++index) {
322 if (fT[0][index] == one) {
323 double oldTwo = fT[1][index];
324 if (oldTwo == two) {
325 return;
326 }
327 SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2);
328 if (mid.approximatelyEqual(fPt[index])) {
329 return;
330 }
331 }
332 if (fT[1][index] == two) {
333 SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2);
334 if (mid.approximatelyEqual(fPt[index])) {
335 return;
336 }
337 }
338 }
339 insert(one, two, pt);
340 }
341
342 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkD Cubic& cubic2,
343 const SkDRect& bounds2) {
344 SkDLine line;
345 int t1Index = start ? 0 : 3;
346 double testT = (double) !start;
347 // don't bother if the two cubics are connnected
348 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' w ith this
349 static const int kMaxLineCubicIntersections = 3;
350 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, dou ble, true> tVals;
351 line[0] = cubic1[t1Index];
352 // this variant looks for intersections with the end point and lines paralle l to other points
353 for (int index = 0; index < kPointsInCubic; ++index) {
354 if (index == t1Index) {
355 continue;
356 }
357 SkDVector dxy1 = cubic1[index] - line[0];
358 dxy1 /= SkDCubic::gPrecisionUnit;
359 line[1] = line[0] + dxy1;
360 SkDRect lineBounds;
361 lineBounds.setBounds(line);
362 if (!bounds2.intersects(&lineBounds)) {
363 continue;
364 }
365 SkIntersections local;
366 if (!local.intersect(cubic2, line)) {
367 continue;
368 }
369 for (int idx2 = 0; idx2 < local.used(); ++idx2) {
370 double foundT = local[0][idx2];
371 if (approximately_less_than_zero(foundT)
372 || approximately_greater_than_one(foundT)) {
373 continue;
374 }
375 if (local.pt(idx2).approximatelyEqual(line[0])) {
376 if (swapped()) { // FIXME: insert should respect swap
377 insert(foundT, testT, line[0]);
378 } else {
379 insert(testT, foundT, line[0]);
380 }
381 } else {
382 tVals.push_back(foundT);
383 }
384 }
385 }
386 if (tVals.count() == 0) {
387 return;
388 }
389 SkTQSort<double>(tVals.begin(), tVals.end() - 1);
390 double tMin1 = start ? 0 : 1 - LINE_FRACTION;
391 double tMax1 = start ? LINE_FRACTION : 1;
392 int tIdx = 0;
393 do {
394 int tLast = tIdx;
395 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVal s[tIdx])) {
396 ++tLast;
397 }
398 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
399 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
400 int lastUsed = used();
401 if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
402 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
403 }
404 if (lastUsed == used()) {
405 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
406 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0) ;
407 if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
408 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this );
409 }
410 }
411 tIdx = tLast + 1;
412 } while (tIdx < tVals.count());
413 return;
414 }
415
416 const double CLOSE_ENOUGH = 0.001;
417
418 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i , SkDPoint& pt) {
419 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
420 return false;
421 }
422 pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
423 return true;
424 }
425
426 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
427 int last = i.used() - 1;
428 if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
429 return false;
430 }
431 pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
432 return true;
433 }
434
435 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
436 // the idea here is to see at minimum do a quick reject by rotating all points
437 // to either side of the line formed by connecting the endpoints
438 // if the opposite curves points are on the line or on the other side, the
439 // curves at most intersect at the endpoints
440 for (int oddMan = 0; oddMan < 4; ++oddMan) {
441 const SkDPoint* endPt[3];
442 for (int opp = 1; opp < 4; ++opp) {
443 int end = oddMan ^ opp; // choose a value not equal to oddMan
444 endPt[opp - 1] = &c1[end];
445 }
446 for (int triTest = 0; triTest < 3; ++triTest) {
447 double origX = endPt[triTest]->fX;
448 double origY = endPt[triTest]->fY;
449 int oppTest = triTest + 1;
450 if (3 == oppTest) {
451 oppTest = 0;
452 }
453 double adj = endPt[oppTest]->fX - origX;
454 double opp = endPt[oppTest]->fY - origY;
455 if (adj == 0 && opp == 0) { // if the other point equals the test p oint, ignore it
456 continue;
457 }
458 double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX ) * opp;
459 if (approximately_zero(sign)) {
460 goto tryNextHalfPlane;
461 }
462 for (int n = 0; n < 4; ++n) {
463 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * op p;
464 if (test * sign > 0 && !precisely_zero(test)) {
465 goto tryNextHalfPlane;
466 }
467 }
468 }
469 return true;
470 tryNextHalfPlane:
471 ;
472 }
473 return false;
474 }
475
476 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
477 if (fMax == 0) {
478 fMax = 9;
479 }
480 bool selfIntersect = &c1 == &c2;
481 if (selfIntersect) {
482 if (c1[0].approximatelyEqual(c1[3])) {
483 insert(0, 1, c1[0]);
484 return fUsed;
485 }
486 } else {
487 // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
488 for (int i1 = 0; i1 < 4; i1 += 3) {
489 for (int i2 = 0; i2 < 4; i2 += 3) {
490 if (c1[i1].approximatelyEqual(c2[i2])) {
491 insert(i1 >> 1, i2 >> 1, c1[i1]);
492 }
493 }
494 }
495 }
496 SkASSERT(fUsed < 4);
497 if (!selfIntersect) {
498 if (only_end_pts_in_common(c1, c2)) {
499 return fUsed;
500 }
501 if (only_end_pts_in_common(c2, c1)) {
502 return fUsed;
503 }
504 }
505 // quad/quad does linear test here -- cubic does not
506 // cubics which are really lines should have been detected in reduce step ea rlier
507 int exactEndBits = 0;
508 if (selfIntersect) {
509 if (fUsed) {
510 return fUsed;
511 }
512 } else {
513 exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
514 exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
515 swap();
516 exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
517 exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
518 swap();
519 }
520 if (cubicCheckCoincidence(c1, c2)) {
521 SkASSERT(!selfIntersect);
522 return fUsed;
523 }
524 // FIXME: pass in cached bounds from caller
525 SkDRect c2Bounds;
526 c2Bounds.setBounds(c2);
527 if (!(exactEndBits & 4)) {
528 cubicNearEnd(c1, false, c2, c2Bounds);
529 }
530 if (!(exactEndBits & 8)) {
531 if (selfIntersect && fUsed) {
532 return fUsed;
533 }
534 cubicNearEnd(c1, true, c2, c2Bounds);
535 if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0])
536 && approximately_less_than_zero(fT[1][0]))
537 || (approximately_greater_than_one(fT[0][0])
538 && approximately_greater_than_one(fT[1][0])))) {
539 SkASSERT(fUsed == 1);
540 fUsed = 0;
541 return fUsed;
542 }
543 }
544 if (!selfIntersect) {
545 SkDRect c1Bounds;
546 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
547 swap();
548 if (!(exactEndBits & 1)) {
549 cubicNearEnd(c2, false, c1, c1Bounds);
550 }
551 if (!(exactEndBits & 2)) {
552 cubicNearEnd(c2, true, c1, c1Bounds);
553 }
554 swap();
555 }
556 if (cubicCheckCoincidence(c1, c2)) {
557 SkASSERT(!selfIntersect);
558 return fUsed;
559 }
560 SkIntersections i;
561 i.fAllowNear = false;
562 i.fFlatMeasure = true;
563 i.fMax = 9;
564 ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
565 int compCount = i.used();
566 if (compCount) {
567 int exactCount = used();
568 if (exactCount == 0) {
569 *this = i;
570 } else {
571 // at least one is exact or near, and at least one was computed. Eli minate duplicates
572 for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
573 for (int cpIdx = 0; cpIdx < compCount; ) {
574 if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
575 i.removeOne(cpIdx);
576 --compCount;
577 continue;
578 }
579 double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
580 SkDPoint pt = c1.ptAtT(tAvg);
581 if (!pt.approximatelyEqual(fPt[exIdx])) {
582 ++cpIdx;
583 continue;
584 }
585 tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
586 pt = c2.ptAtT(tAvg);
587 if (!pt.approximatelyEqual(fPt[exIdx])) {
588 ++cpIdx;
589 continue;
590 }
591 i.removeOne(cpIdx);
592 --compCount;
593 }
594 }
595 // if mid t evaluates to nearly the same point, skip the t
596 for (int cpIdx = 0; cpIdx < compCount - 1; ) {
597 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
598 SkDPoint pt = c1.ptAtT(tAvg);
599 if (!pt.approximatelyEqual(fPt[cpIdx])) {
600 ++cpIdx;
601 continue;
602 }
603 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
604 pt = c2.ptAtT(tAvg);
605 if (!pt.approximatelyEqual(fPt[cpIdx])) {
606 ++cpIdx;
607 continue;
608 }
609 i.removeOne(cpIdx);
610 --compCount;
611 }
612 // in addition to adding below missing function, think about how to say
613 append(i);
614 }
615 }
616 // If an end point and a second point very close to the end is returned, the second
617 // point may have been detected because the approximate quads
618 // intersected at the end and close to it. Verify that the second point is v alid.
619 if (fUsed <= 1) {
620 return fUsed;
621 }
622 SkDPoint pt[2];
623 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
624 && pt[0].approximatelyEqual(pt[1])) {
625 removeOne(1);
626 }
627 if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
628 && pt[0].approximatelyEqual(pt[1])) {
629 removeOne(used() - 2);
630 }
631 // vet the pairs of t values to see if the mid value is also on the curve. I f so, mark
632 // the span as coincident
633 if (fUsed >= 2 && !coincidentUsed()) {
634 int last = fUsed - 1;
635 int match = 0;
636 for (int index = 0; index < last; ++index) {
637 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
638 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
639 pt[0] = c1.ptAtT(mid1);
640 pt[1] = c2.ptAtT(mid2);
641 if (pt[0].approximatelyEqual(pt[1])) {
642 match |= 1 << index;
643 }
644 }
645 if (match) {
646 #if DEBUG_CONCIDENT
647 if (((match + 1) & match) != 0) {
648 SkDebugf("%s coincident hole\n", __FUNCTION__);
649 }
650 #endif
651 // for now, assume that everything from start to finish is coinciden t
652 if (fUsed > 2) {
653 fPt[1] = fPt[last];
654 fT[0][1] = fT[0][last];
655 fT[1][1] = fT[1][last];
656 fIsCoincident[0] = 0x03;
657 fIsCoincident[1] = 0x03;
658 fUsed = 2;
659 }
660 }
661 }
662 return fUsed;
663 }
664
665 // Up promote the quad to a cubic.
666 // OPTIMIZATION If this is a common use case, optimize by duplicating
667 // the intersect 3 loop to avoid the promotion / demotion code
668 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
669 fMax = 7;
670 SkDCubic up = quad.toCubic();
671 (void) intersect(cubic, up);
672 return used();
673 }
674
675 /* http://www.ag.jku.at/compass/compasssample.pdf
676 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
677 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
678 SINTEF Applied Mathematics http://www.sintef.no )
679 describes a method to find the self intersection of a cubic by taking the gradie nt of the implicit
680 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
681
682 int SkIntersections::intersect(const SkDCubic& c) {
683 fMax = 1;
684 // check to see if x or y end points are the extrema. Are other quick reject s possible?
685 if (c.endsAreExtremaInXOrY()) {
686 return false;
687 }
688 // OPTIMIZATION: could quick reject if neither end point tangent ray interse cted the line
689 // segment formed by the opposite end point to the control point
690 (void) intersect(c, c);
691 if (used() > 1) {
692 fUsed = 0;
693 } else if (used() > 0) {
694 if (approximately_equal_double(fT[0][0], fT[1][0])) {
695 fUsed = 0;
696 } else {
697 SkASSERT(used() == 1);
698 if (fT[0][0] > fT[1][0]) {
699 swapPts();
700 }
701 }
702 }
703 return used();
704 }
OLDNEW
« no previous file with comments | « src/pathops/SkAddIntersections.cpp ('k') | src/pathops/SkDCubicLineIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698