OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2012 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkIntersections.h" | |
9 #include "SkPathOpsCubic.h" | |
10 #include "SkPathOpsLine.h" | |
11 #include "SkPathOpsPoint.h" | |
12 #include "SkPathOpsQuad.h" | |
13 #include "SkPathOpsRect.h" | |
14 #include "SkReduceOrder.h" | |
15 #include "SkTSort.h" | |
16 | |
17 #if ONE_OFF_DEBUG | |
18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; | |
19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; | |
20 #endif | |
21 | |
22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 | |
23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 | |
24 #define SWAP_TOP_DEBUG 0 | |
25 | |
26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic t
o quads subdivision | |
27 | |
28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceO
rder* reducer) { | |
29 SkDCubic part = cubic.subDivide(tStart, tEnd); | |
30 SkDQuad quad = part.toQuad(); | |
31 // FIXME: should reduceOrder be looser in this use case if quartic is going
to blow up on an | |
32 // extremely shallow quadratic? | |
33 int order = reducer->reduce(quad); | |
34 #if DEBUG_QUAD_PART | |
35 SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" | |
36 " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, | |
37 cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, | |
38 cubic[3].fX, cubic[3].fY, tStart, tEnd); | |
39 SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" | |
40 " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", | |
41 part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].
fY, | |
42 part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, | |
43 quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); | |
44 #if DEBUG_QUAD_PART_SHOW_SIMPLE | |
45 SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reduc
er->fQuad[0].fY); | |
46 if (order > 1) { | |
47 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); | |
48 } | |
49 if (order > 2) { | |
50 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); | |
51 } | |
52 SkDebugf(")\n"); | |
53 SkASSERT(order < 4 && order > 0); | |
54 #endif | |
55 #endif | |
56 return order; | |
57 } | |
58 | |
59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad
& simple2, | |
60 int order2, SkIntersections& i) { | |
61 if (order1 == 3 && order2 == 3) { | |
62 i.intersect(simple1, simple2); | |
63 } else if (order1 <= 2 && order2 <= 2) { | |
64 i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); | |
65 } else if (order1 == 3 && order2 <= 2) { | |
66 i.intersect(simple1, (const SkDLine&) simple2); | |
67 } else { | |
68 SkASSERT(order1 <= 2 && order2 == 3); | |
69 i.intersect(simple2, (const SkDLine&) simple1); | |
70 i.swapPts(); | |
71 } | |
72 } | |
73 | |
74 // this flavor centers potential intersections recursively. In contrast, '2' may
inadvertently | |
75 // chase intersections near quadratic ends, requiring odd hacks to find them. | |
76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDC
ubic& cubic2, | |
77 double t2s, double t2e, double precisionScale, SkIntersections& i) { | |
78 i.upDepth(); | |
79 SkDCubic c1 = cubic1.subDivide(t1s, t1e); | |
80 SkDCubic c2 = cubic2.subDivide(t2s, t2e); | |
81 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1; | |
82 // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersectio
n) | |
83 c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); | |
84 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2; | |
85 c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); | |
86 double t1Start = t1s; | |
87 int ts1Count = ts1.count(); | |
88 for (int i1 = 0; i1 <= ts1Count; ++i1) { | |
89 const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; | |
90 const double t1 = t1s + (t1e - t1s) * tEnd1; | |
91 SkReduceOrder s1; | |
92 int o1 = quadPart(cubic1, t1Start, t1, &s1); | |
93 double t2Start = t2s; | |
94 int ts2Count = ts2.count(); | |
95 for (int i2 = 0; i2 <= ts2Count; ++i2) { | |
96 const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; | |
97 const double t2 = t2s + (t2e - t2s) * tEnd2; | |
98 if (&cubic1 == &cubic2 && t1Start >= t2Start) { | |
99 t2Start = t2; | |
100 continue; | |
101 } | |
102 SkReduceOrder s2; | |
103 int o2 = quadPart(cubic2, t2Start, t2, &s2); | |
104 #if ONE_OFF_DEBUG | |
105 char tab[] = " "; | |
106 if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 | |
107 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { | |
108 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*
2, tab, | |
109 __FUNCTION__, t1Start, t1, t2Start, t2); | |
110 SkIntersections xlocals; | |
111 xlocals.allowNear(false); | |
112 xlocals.allowFlatMeasure(true); | |
113 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); | |
114 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); | |
115 } | |
116 #endif | |
117 SkIntersections locals; | |
118 locals.allowNear(false); | |
119 locals.allowFlatMeasure(true); | |
120 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); | |
121 int tCount = locals.used(); | |
122 for (int tIdx = 0; tIdx < tCount; ++tIdx) { | |
123 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; | |
124 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; | |
125 // if the computed t is not sufficiently precise, iterate | |
126 SkDPoint p1 = cubic1.ptAtT(to1); | |
127 SkDPoint p2 = cubic2.ptAtT(to2); | |
128 if (p1.approximatelyEqual(p2)) { | |
129 // FIXME: local edge may be coincident -- experiment with not propagating co
incidence to caller | |
130 // SkASSERT(!locals.isCoincident(tIdx)); | |
131 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { | |
132 if (i.swapped()) { // FIXME: insert should respect swa
p | |
133 i.insert(to2, to1, p1); | |
134 } else { | |
135 i.insert(to1, to2, p1); | |
136 } | |
137 } | |
138 } else { | |
139 /*for random cubics, 16 below catches 99.997% of the intersections. To test for
the remaining 0.003% | |
140 look for nearly coincident curves. and check each 1/16th section. | |
141 */ | |
142 double offset = precisionScale / 16; // FIXME: const is arb
itrary: test, refine | |
143 double c1Bottom = tIdx == 0 ? 0 : | |
144 (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to
1) / 2; | |
145 double c1Min = SkTMax(c1Bottom, to1 - offset); | |
146 double c1Top = tIdx == tCount - 1 ? 1 : | |
147 (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to
1) / 2; | |
148 double c1Max = SkTMin(c1Top, to1 + offset); | |
149 double c2Min = SkTMax(0., to2 - offset); | |
150 double c2Max = SkTMin(1., to2 + offset); | |
151 #if ONE_OFF_DEBUG | |
152 SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.de
pth()*2, tab, | |
153 __FUNCTION__, | |
154 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | |
155 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | |
156 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <=
to1 + offset | |
157 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <=
to2 + offset, | |
158 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | |
159 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | |
160 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <=
to1 + offset | |
161 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <=
to2 + offset); | |
162 SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9
g c2Top=%1.9g" | |
163 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.
9g\n", | |
164 i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0.,
1., | |
165 to1 - offset, to1 + offset, to2 - offset, to2 + offs
et, offset); | |
166 SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1
.9g c2Min=%1.9g" | |
167 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to
1, to2, c1Min, | |
168 c1Max, c2Min, c2Max); | |
169 #endif | |
170 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset
, i); | |
171 #if ONE_OFF_DEBUG | |
172 SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab,
__FUNCTION__, | |
173 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | |
174 #endif | |
175 if (tCount > 1) { | |
176 c1Min = SkTMax(0., to1 - offset); | |
177 c1Max = SkTMin(1., to1 + offset); | |
178 double c2Bottom = tIdx == 0 ? to2 : | |
179 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1]
+ to2) / 2; | |
180 double c2Top = tIdx == tCount - 1 ? to2 : | |
181 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1]
+ to2) / 2; | |
182 if (c2Bottom > c2Top) { | |
183 SkTSwap(c2Bottom, c2Top); | |
184 } | |
185 if (c2Bottom == to2) { | |
186 c2Bottom = 0; | |
187 } | |
188 if (c2Top == to2) { | |
189 c2Top = 1; | |
190 } | |
191 c2Min = SkTMax(c2Bottom, to2 - offset); | |
192 c2Max = SkTMin(c2Top, to2 + offset); | |
193 #if ONE_OFF_DEBUG | |
194 SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n",
i.depth()*2, tab, | |
195 __FUNCTION__, | |
196 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | |
197 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | |
198 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <=
to1 + offset | |
199 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <=
to2 + offset, | |
200 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | |
201 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | |
202 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <=
to1 + offset | |
203 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <=
to2 + offset); | |
204 SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=
%1.9g c2Top=%1.9g" | |
205 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset
=%1.9g\n", | |
206 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom
, c2Top, | |
207 to1 - offset, to1 + offset, to2 - offset, to2 +
offset, offset); | |
208 SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Ma
x=%1.9g c2Min=%1.9g" | |
209 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__
, to1, to2, c1Min, | |
210 c1Max, c2Min, c2Max); | |
211 #endif | |
212 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, of
fset, i); | |
213 #if ONE_OFF_DEBUG | |
214 SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab,
__FUNCTION__, | |
215 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | |
216 #endif | |
217 c1Min = SkTMax(c1Bottom, to1 - offset); | |
218 c1Max = SkTMin(c1Top, to1 + offset); | |
219 #if ONE_OFF_DEBUG | |
220 SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n",
i.depth()*2, tab, | |
221 __FUNCTION__, | |
222 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | |
223 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | |
224 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <=
to1 + offset | |
225 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <=
to2 + offset, | |
226 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | |
227 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | |
228 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <=
to1 + offset | |
229 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <=
to2 + offset); | |
230 SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=
%1.9g c2Top=%1.9g" | |
231 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset
=%1.9g\n", | |
232 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom
, c2Top, | |
233 to1 - offset, to1 + offset, to2 - offset, to2 +
offset, offset); | |
234 SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Ma
x=%1.9g c2Min=%1.9g" | |
235 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__
, to1, to2, c1Min, | |
236 c1Max, c2Min, c2Max); | |
237 #endif | |
238 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, of
fset, i); | |
239 #if ONE_OFF_DEBUG | |
240 SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab,
__FUNCTION__, | |
241 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | |
242 #endif | |
243 } | |
244 // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offs
et, i); | |
245 // FIXME: if no intersection is found, either quadratics int
ersected where | |
246 // cubics did not, or the intersection was missed. In the fo
rmer case, expect | |
247 // the quadratics to be nearly parallel at the point of inte
rsection, and check | |
248 // for that. | |
249 } | |
250 } | |
251 t2Start = t2; | |
252 } | |
253 t1Start = t1; | |
254 } | |
255 i.downDepth(); | |
256 } | |
257 | |
258 // if two ends intersect, check middle for coincidence | |
259 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic&
c2) { | |
260 if (fUsed < 2) { | |
261 return false; | |
262 } | |
263 int last = fUsed - 1; | |
264 double tRange1 = fT[0][last] - fT[0][0]; | |
265 double tRange2 = fT[1][last] - fT[1][0]; | |
266 for (int index = 1; index < 5; ++index) { | |
267 double testT1 = fT[0][0] + tRange1 * index / 5; | |
268 double testT2 = fT[1][0] + tRange2 * index / 5; | |
269 SkDPoint testPt1 = c1.ptAtT(testT1); | |
270 SkDPoint testPt2 = c2.ptAtT(testT2); | |
271 if (!testPt1.approximatelyEqual(testPt2)) { | |
272 return false; | |
273 } | |
274 } | |
275 if (fUsed > 2) { | |
276 fPt[1] = fPt[last]; | |
277 fT[0][1] = fT[0][last]; | |
278 fT[1][1] = fT[1][last]; | |
279 fUsed = 2; | |
280 } | |
281 fIsCoincident[0] = fIsCoincident[1] = 0x03; | |
282 return true; | |
283 } | |
284 | |
285 #define LINE_FRACTION 0.1 | |
286 | |
287 // intersect the end of the cubic with the other. Try lines from the end to cont
rol and opposite | |
288 // end to determine range of t on opposite cubic. | |
289 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const Sk
DCubic& cubic2) { | |
290 int t1Index = start ? 0 : 3; | |
291 double testT = (double) !start; | |
292 bool swap = swapped(); | |
293 // quad/quad at this point checks to see if exact matches have already been
found | |
294 // cubic/cubic can't reject so easily since cubics can intersect same point
more than once | |
295 SkDLine tmpLine; | |
296 tmpLine[0] = tmpLine[1] = cubic2[t1Index]; | |
297 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; | |
298 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; | |
299 SkIntersections impTs; | |
300 impTs.allowNear(false); | |
301 impTs.allowFlatMeasure(true); | |
302 impTs.intersectRay(cubic1, tmpLine); | |
303 for (int index = 0; index < impTs.used(); ++index) { | |
304 SkDPoint realPt = impTs.pt(index); | |
305 if (!tmpLine[0].approximatelyEqual(realPt)) { | |
306 continue; | |
307 } | |
308 if (swap) { | |
309 cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1); | |
310 } else { | |
311 cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2); | |
312 } | |
313 return true; | |
314 } | |
315 return false; | |
316 } | |
317 | |
318 | |
319 void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt, | |
320 const SkDCubic& cubic1, const SkDCubic& cubic2) { | |
321 for (int index = 0; index < fUsed; ++index) { | |
322 if (fT[0][index] == one) { | |
323 double oldTwo = fT[1][index]; | |
324 if (oldTwo == two) { | |
325 return; | |
326 } | |
327 SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2); | |
328 if (mid.approximatelyEqual(fPt[index])) { | |
329 return; | |
330 } | |
331 } | |
332 if (fT[1][index] == two) { | |
333 SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2); | |
334 if (mid.approximatelyEqual(fPt[index])) { | |
335 return; | |
336 } | |
337 } | |
338 } | |
339 insert(one, two, pt); | |
340 } | |
341 | |
342 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkD
Cubic& cubic2, | |
343 const SkDRect& bounds2) { | |
344 SkDLine line; | |
345 int t1Index = start ? 0 : 3; | |
346 double testT = (double) !start; | |
347 // don't bother if the two cubics are connnected | |
348 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' w
ith this | |
349 static const int kMaxLineCubicIntersections = 3; | |
350 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, dou
ble, true> tVals; | |
351 line[0] = cubic1[t1Index]; | |
352 // this variant looks for intersections with the end point and lines paralle
l to other points | |
353 for (int index = 0; index < kPointsInCubic; ++index) { | |
354 if (index == t1Index) { | |
355 continue; | |
356 } | |
357 SkDVector dxy1 = cubic1[index] - line[0]; | |
358 dxy1 /= SkDCubic::gPrecisionUnit; | |
359 line[1] = line[0] + dxy1; | |
360 SkDRect lineBounds; | |
361 lineBounds.setBounds(line); | |
362 if (!bounds2.intersects(&lineBounds)) { | |
363 continue; | |
364 } | |
365 SkIntersections local; | |
366 if (!local.intersect(cubic2, line)) { | |
367 continue; | |
368 } | |
369 for (int idx2 = 0; idx2 < local.used(); ++idx2) { | |
370 double foundT = local[0][idx2]; | |
371 if (approximately_less_than_zero(foundT) | |
372 || approximately_greater_than_one(foundT)) { | |
373 continue; | |
374 } | |
375 if (local.pt(idx2).approximatelyEqual(line[0])) { | |
376 if (swapped()) { // FIXME: insert should respect swap | |
377 insert(foundT, testT, line[0]); | |
378 } else { | |
379 insert(testT, foundT, line[0]); | |
380 } | |
381 } else { | |
382 tVals.push_back(foundT); | |
383 } | |
384 } | |
385 } | |
386 if (tVals.count() == 0) { | |
387 return; | |
388 } | |
389 SkTQSort<double>(tVals.begin(), tVals.end() - 1); | |
390 double tMin1 = start ? 0 : 1 - LINE_FRACTION; | |
391 double tMax1 = start ? LINE_FRACTION : 1; | |
392 int tIdx = 0; | |
393 do { | |
394 int tLast = tIdx; | |
395 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVal
s[tIdx])) { | |
396 ++tLast; | |
397 } | |
398 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); | |
399 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); | |
400 int lastUsed = used(); | |
401 if (start ? tMax1 < tMin2 : tMax2 < tMin1) { | |
402 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); | |
403 } | |
404 if (lastUsed == used()) { | |
405 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); | |
406 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0)
; | |
407 if (start ? tMax1 < tMin2 : tMax2 < tMin1) { | |
408 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this
); | |
409 } | |
410 } | |
411 tIdx = tLast + 1; | |
412 } while (tIdx < tVals.count()); | |
413 return; | |
414 } | |
415 | |
416 const double CLOSE_ENOUGH = 0.001; | |
417 | |
418 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i
, SkDPoint& pt) { | |
419 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { | |
420 return false; | |
421 } | |
422 pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); | |
423 return true; | |
424 } | |
425 | |
426 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i,
SkDPoint& pt) { | |
427 int last = i.used() - 1; | |
428 if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH)
{ | |
429 return false; | |
430 } | |
431 pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); | |
432 return true; | |
433 } | |
434 | |
435 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { | |
436 // the idea here is to see at minimum do a quick reject by rotating all points | |
437 // to either side of the line formed by connecting the endpoints | |
438 // if the opposite curves points are on the line or on the other side, the | |
439 // curves at most intersect at the endpoints | |
440 for (int oddMan = 0; oddMan < 4; ++oddMan) { | |
441 const SkDPoint* endPt[3]; | |
442 for (int opp = 1; opp < 4; ++opp) { | |
443 int end = oddMan ^ opp; // choose a value not equal to oddMan | |
444 endPt[opp - 1] = &c1[end]; | |
445 } | |
446 for (int triTest = 0; triTest < 3; ++triTest) { | |
447 double origX = endPt[triTest]->fX; | |
448 double origY = endPt[triTest]->fY; | |
449 int oppTest = triTest + 1; | |
450 if (3 == oppTest) { | |
451 oppTest = 0; | |
452 } | |
453 double adj = endPt[oppTest]->fX - origX; | |
454 double opp = endPt[oppTest]->fY - origY; | |
455 if (adj == 0 && opp == 0) { // if the other point equals the test p
oint, ignore it | |
456 continue; | |
457 } | |
458 double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX
) * opp; | |
459 if (approximately_zero(sign)) { | |
460 goto tryNextHalfPlane; | |
461 } | |
462 for (int n = 0; n < 4; ++n) { | |
463 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * op
p; | |
464 if (test * sign > 0 && !precisely_zero(test)) { | |
465 goto tryNextHalfPlane; | |
466 } | |
467 } | |
468 } | |
469 return true; | |
470 tryNextHalfPlane: | |
471 ; | |
472 } | |
473 return false; | |
474 } | |
475 | |
476 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { | |
477 if (fMax == 0) { | |
478 fMax = 9; | |
479 } | |
480 bool selfIntersect = &c1 == &c2; | |
481 if (selfIntersect) { | |
482 if (c1[0].approximatelyEqual(c1[3])) { | |
483 insert(0, 1, c1[0]); | |
484 return fUsed; | |
485 } | |
486 } else { | |
487 // OPTIMIZATION: set exact end bits here to avoid cubic exact end later | |
488 for (int i1 = 0; i1 < 4; i1 += 3) { | |
489 for (int i2 = 0; i2 < 4; i2 += 3) { | |
490 if (c1[i1].approximatelyEqual(c2[i2])) { | |
491 insert(i1 >> 1, i2 >> 1, c1[i1]); | |
492 } | |
493 } | |
494 } | |
495 } | |
496 SkASSERT(fUsed < 4); | |
497 if (!selfIntersect) { | |
498 if (only_end_pts_in_common(c1, c2)) { | |
499 return fUsed; | |
500 } | |
501 if (only_end_pts_in_common(c2, c1)) { | |
502 return fUsed; | |
503 } | |
504 } | |
505 // quad/quad does linear test here -- cubic does not | |
506 // cubics which are really lines should have been detected in reduce step ea
rlier | |
507 int exactEndBits = 0; | |
508 if (selfIntersect) { | |
509 if (fUsed) { | |
510 return fUsed; | |
511 } | |
512 } else { | |
513 exactEndBits |= cubicExactEnd(c1, false, c2) << 0; | |
514 exactEndBits |= cubicExactEnd(c1, true, c2) << 1; | |
515 swap(); | |
516 exactEndBits |= cubicExactEnd(c2, false, c1) << 2; | |
517 exactEndBits |= cubicExactEnd(c2, true, c1) << 3; | |
518 swap(); | |
519 } | |
520 if (cubicCheckCoincidence(c1, c2)) { | |
521 SkASSERT(!selfIntersect); | |
522 return fUsed; | |
523 } | |
524 // FIXME: pass in cached bounds from caller | |
525 SkDRect c2Bounds; | |
526 c2Bounds.setBounds(c2); | |
527 if (!(exactEndBits & 4)) { | |
528 cubicNearEnd(c1, false, c2, c2Bounds); | |
529 } | |
530 if (!(exactEndBits & 8)) { | |
531 if (selfIntersect && fUsed) { | |
532 return fUsed; | |
533 } | |
534 cubicNearEnd(c1, true, c2, c2Bounds); | |
535 if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0]) | |
536 && approximately_less_than_zero(fT[1][0])) | |
537 || (approximately_greater_than_one(fT[0][0]) | |
538 && approximately_greater_than_one(fT[1][0])))) { | |
539 SkASSERT(fUsed == 1); | |
540 fUsed = 0; | |
541 return fUsed; | |
542 } | |
543 } | |
544 if (!selfIntersect) { | |
545 SkDRect c1Bounds; | |
546 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? | |
547 swap(); | |
548 if (!(exactEndBits & 1)) { | |
549 cubicNearEnd(c2, false, c1, c1Bounds); | |
550 } | |
551 if (!(exactEndBits & 2)) { | |
552 cubicNearEnd(c2, true, c1, c1Bounds); | |
553 } | |
554 swap(); | |
555 } | |
556 if (cubicCheckCoincidence(c1, c2)) { | |
557 SkASSERT(!selfIntersect); | |
558 return fUsed; | |
559 } | |
560 SkIntersections i; | |
561 i.fAllowNear = false; | |
562 i.fFlatMeasure = true; | |
563 i.fMax = 9; | |
564 ::intersect(c1, 0, 1, c2, 0, 1, 1, i); | |
565 int compCount = i.used(); | |
566 if (compCount) { | |
567 int exactCount = used(); | |
568 if (exactCount == 0) { | |
569 *this = i; | |
570 } else { | |
571 // at least one is exact or near, and at least one was computed. Eli
minate duplicates | |
572 for (int exIdx = 0; exIdx < exactCount; ++exIdx) { | |
573 for (int cpIdx = 0; cpIdx < compCount; ) { | |
574 if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { | |
575 i.removeOne(cpIdx); | |
576 --compCount; | |
577 continue; | |
578 } | |
579 double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; | |
580 SkDPoint pt = c1.ptAtT(tAvg); | |
581 if (!pt.approximatelyEqual(fPt[exIdx])) { | |
582 ++cpIdx; | |
583 continue; | |
584 } | |
585 tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; | |
586 pt = c2.ptAtT(tAvg); | |
587 if (!pt.approximatelyEqual(fPt[exIdx])) { | |
588 ++cpIdx; | |
589 continue; | |
590 } | |
591 i.removeOne(cpIdx); | |
592 --compCount; | |
593 } | |
594 } | |
595 // if mid t evaluates to nearly the same point, skip the t | |
596 for (int cpIdx = 0; cpIdx < compCount - 1; ) { | |
597 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; | |
598 SkDPoint pt = c1.ptAtT(tAvg); | |
599 if (!pt.approximatelyEqual(fPt[cpIdx])) { | |
600 ++cpIdx; | |
601 continue; | |
602 } | |
603 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; | |
604 pt = c2.ptAtT(tAvg); | |
605 if (!pt.approximatelyEqual(fPt[cpIdx])) { | |
606 ++cpIdx; | |
607 continue; | |
608 } | |
609 i.removeOne(cpIdx); | |
610 --compCount; | |
611 } | |
612 // in addition to adding below missing function, think about how to
say | |
613 append(i); | |
614 } | |
615 } | |
616 // If an end point and a second point very close to the end is returned, the
second | |
617 // point may have been detected because the approximate quads | |
618 // intersected at the end and close to it. Verify that the second point is v
alid. | |
619 if (fUsed <= 1) { | |
620 return fUsed; | |
621 } | |
622 SkDPoint pt[2]; | |
623 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) | |
624 && pt[0].approximatelyEqual(pt[1])) { | |
625 removeOne(1); | |
626 } | |
627 if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) | |
628 && pt[0].approximatelyEqual(pt[1])) { | |
629 removeOne(used() - 2); | |
630 } | |
631 // vet the pairs of t values to see if the mid value is also on the curve. I
f so, mark | |
632 // the span as coincident | |
633 if (fUsed >= 2 && !coincidentUsed()) { | |
634 int last = fUsed - 1; | |
635 int match = 0; | |
636 for (int index = 0; index < last; ++index) { | |
637 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; | |
638 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; | |
639 pt[0] = c1.ptAtT(mid1); | |
640 pt[1] = c2.ptAtT(mid2); | |
641 if (pt[0].approximatelyEqual(pt[1])) { | |
642 match |= 1 << index; | |
643 } | |
644 } | |
645 if (match) { | |
646 #if DEBUG_CONCIDENT | |
647 if (((match + 1) & match) != 0) { | |
648 SkDebugf("%s coincident hole\n", __FUNCTION__); | |
649 } | |
650 #endif | |
651 // for now, assume that everything from start to finish is coinciden
t | |
652 if (fUsed > 2) { | |
653 fPt[1] = fPt[last]; | |
654 fT[0][1] = fT[0][last]; | |
655 fT[1][1] = fT[1][last]; | |
656 fIsCoincident[0] = 0x03; | |
657 fIsCoincident[1] = 0x03; | |
658 fUsed = 2; | |
659 } | |
660 } | |
661 } | |
662 return fUsed; | |
663 } | |
664 | |
665 // Up promote the quad to a cubic. | |
666 // OPTIMIZATION If this is a common use case, optimize by duplicating | |
667 // the intersect 3 loop to avoid the promotion / demotion code | |
668 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { | |
669 fMax = 7; | |
670 SkDCubic up = quad.toCubic(); | |
671 (void) intersect(cubic, up); | |
672 return used(); | |
673 } | |
674 | |
675 /* http://www.ag.jku.at/compass/compasssample.pdf | |
676 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen | |
677 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no
janbth@math.uio.no | |
678 SINTEF Applied Mathematics http://www.sintef.no ) | |
679 describes a method to find the self intersection of a cubic by taking the gradie
nt of the implicit | |
680 form dotted with the normal, and solving for the roots. My math foo is too poor
to implement this.*/ | |
681 | |
682 int SkIntersections::intersect(const SkDCubic& c) { | |
683 fMax = 1; | |
684 // check to see if x or y end points are the extrema. Are other quick reject
s possible? | |
685 if (c.endsAreExtremaInXOrY()) { | |
686 return false; | |
687 } | |
688 // OPTIMIZATION: could quick reject if neither end point tangent ray interse
cted the line | |
689 // segment formed by the opposite end point to the control point | |
690 (void) intersect(c, c); | |
691 if (used() > 1) { | |
692 fUsed = 0; | |
693 } else if (used() > 0) { | |
694 if (approximately_equal_double(fT[0][0], fT[1][0])) { | |
695 fUsed = 0; | |
696 } else { | |
697 SkASSERT(used() == 1); | |
698 if (fT[0][0] > fT[1][0]) { | |
699 swapPts(); | |
700 } | |
701 } | |
702 } | |
703 return used(); | |
704 } | |
OLD | NEW |