Index: src/gpu/effects/GrCustomXfermode.cpp |
diff --git a/src/gpu/effects/GrCustomXfermode.cpp b/src/gpu/effects/GrCustomXfermode.cpp |
index 2f8a970290fc02aecad7c8167ecbffc249f1e7aa..b15e2c2b9a133ad47bae7cd672a65bec36a2fbee 100644 |
--- a/src/gpu/effects/GrCustomXfermode.cpp |
+++ b/src/gpu/effects/GrCustomXfermode.cpp |
@@ -17,6 +17,7 @@ |
#include "GrTextureAccess.h" |
#include "SkXfermode.h" |
#include "gl/GrGLCaps.h" |
+#include "gl/GrGLGpu.h" |
#include "gl/GrGLProcessor.h" |
#include "gl/GrGLProgramDataManager.h" |
#include "gl/builders/GrGLProgramBuilder.h" |
@@ -29,6 +30,27 @@ bool GrCustomXfermode::IsSupportedMode(SkXfermode::Mode mode) { |
// Static helpers |
/////////////////////////////////////////////////////////////////////////////// |
+static GrBlendEquation hw_blend_equation(SkXfermode::Mode mode) { |
+ enum { kOffset = kOverlay_GrBlendEquation - SkXfermode::kOverlay_Mode }; |
+ return static_cast<GrBlendEquation>(mode + kOffset); |
+ |
+ GR_STATIC_ASSERT(kOverlay_GrBlendEquation == SkXfermode::kOverlay_Mode + kOffset); |
+ GR_STATIC_ASSERT(kDarken_GrBlendEquation == SkXfermode::kDarken_Mode + kOffset); |
+ GR_STATIC_ASSERT(kLighten_GrBlendEquation == SkXfermode::kLighten_Mode + kOffset); |
+ GR_STATIC_ASSERT(kColorDodge_GrBlendEquation == SkXfermode::kColorDodge_Mode + kOffset); |
+ GR_STATIC_ASSERT(kColorBurn_GrBlendEquation == SkXfermode::kColorBurn_Mode + kOffset); |
+ GR_STATIC_ASSERT(kHardLight_GrBlendEquation == SkXfermode::kHardLight_Mode + kOffset); |
+ GR_STATIC_ASSERT(kSoftLight_GrBlendEquation == SkXfermode::kSoftLight_Mode + kOffset); |
+ GR_STATIC_ASSERT(kDifference_GrBlendEquation == SkXfermode::kDifference_Mode + kOffset); |
+ GR_STATIC_ASSERT(kExclusion_GrBlendEquation == SkXfermode::kExclusion_Mode + kOffset); |
+ GR_STATIC_ASSERT(kMultiply_GrBlendEquation == SkXfermode::kMultiply_Mode + kOffset); |
+ GR_STATIC_ASSERT(kHSLHue_GrBlendEquation == SkXfermode::kHue_Mode + kOffset); |
+ GR_STATIC_ASSERT(kHSLSaturation_GrBlendEquation == SkXfermode::kSaturation_Mode + kOffset); |
+ GR_STATIC_ASSERT(kHSLColor_GrBlendEquation == SkXfermode::kColor_Mode + kOffset); |
+ GR_STATIC_ASSERT(kHSLLuminosity_GrBlendEquation == SkXfermode::kLuminosity_Mode + kOffset); |
+ GR_STATIC_ASSERT(kTotalGrBlendEquationCount == SkXfermode::kLastMode + 1 + kOffset); |
+} |
+ |
static void hard_light(GrGLFragmentBuilder* fsBuilder, |
const char* final, |
const char* src, |
@@ -510,15 +532,30 @@ public: |
const GrDrawTargetCaps& caps) override; |
SkXfermode::Mode mode() const { return fMode; } |
+ bool hasCoverage() const { return fHasCoverage; } |
+ bool hasHWBlendEquation() const { return kInvalid_GrBlendEquation != fHWBlendEquation; } |
+ |
+ GrBlendEquation hwBlendEquation() const { |
+ SkASSERT(this->hasHWBlendEquation()); |
+ return fHWBlendEquation; |
+ } |
private: |
CustomXP(SkXfermode::Mode mode, const GrDeviceCoordTexture* dstCopy, bool willReadDstColor); |
void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override; |
+ bool onWillNeedXferBarrier(const GrRenderTarget* rt, |
+ const GrDrawTargetCaps& caps, |
+ GrXferBarrierType* outBarrierType) const override; |
+ |
+ void onGetBlendInfo(BlendInfo*) const override; |
+ |
bool onIsEqual(const GrXferProcessor& xpBase) const override; |
SkXfermode::Mode fMode; |
+ bool fHasCoverage; |
+ GrBlendEquation fHWBlendEquation; |
typedef GrXferProcessor INHERITED; |
}; |
@@ -540,24 +577,48 @@ public: |
GLCustomXP(const GrXferProcessor&) {} |
~GLCustomXP() override {} |
- static void GenKey(const GrXferProcessor& proc, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { |
- uint32_t key = proc.numTextures(); |
+ static void GenKey(const GrXferProcessor& p, const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) { |
+ const CustomXP& xp = p.cast<CustomXP>(); |
+ uint32_t key = xp.numTextures(); |
SkASSERT(key <= 1); |
- key |= proc.cast<CustomXP>().mode() << 1; |
+ key |= xp.hasCoverage() << 1; |
+ if (xp.hasHWBlendEquation()) { |
+ SkASSERT(caps.advBlendEqInteraction() > 0); // 0 will mean !xp.hasHWBlendEquation(). |
+ key |= caps.advBlendEqInteraction() << 2; |
+ } |
+ if (!xp.hasHWBlendEquation() || caps.mustEnableSpecificAdvBlendEqs()) { |
+ GR_STATIC_ASSERT(GrGLSLCaps::kLast_AdvBlendEqInteraction < 4); |
+ key |= xp.mode() << 4; |
+ } |
b->add32(key); |
} |
private: |
void onEmitCode(const EmitArgs& args) override { |
- SkXfermode::Mode mode = args.fXP.cast<CustomXP>().mode(); |
+ const CustomXP& xp = args.fXP.cast<CustomXP>(); |
GrGLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
- const char* dstColor = fsBuilder->dstColor(); |
- emit_custom_xfermode_code(mode, fsBuilder, args.fOutputPrimary, args.fInputColor, dstColor); |
- |
- fsBuilder->codeAppendf("%s = %s * %s + (vec4(1.0) - %s) * %s;", |
- args.fOutputPrimary, args.fOutputPrimary, args.fInputCoverage, |
- args.fInputCoverage, dstColor); |
+ if (xp.hasHWBlendEquation()) { |
+ // The blend mode will be implemented in hardware; only output the src color. |
+ fsBuilder->enableAdvancedBlendEquationIfNeeded(xp.hwBlendEquation()); |
+ if (xp.hasCoverage()) { |
+ // Do coverage modulation by multiplying it into the src color before blending. |
+ // (See getOptimizations()) |
+ fsBuilder->codeAppendf("%s = %s * %s;", |
+ args.fOutputPrimary, args.fInputCoverage, args.fInputColor); |
+ } else { |
+ fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputColor); |
+ } |
+ } else { |
+ const char* dstColor = fsBuilder->dstColor(); |
+ emit_custom_xfermode_code(xp.mode(), fsBuilder, args.fOutputPrimary, args.fInputColor, |
+ dstColor); |
+ if (xp.hasCoverage()) { |
+ fsBuilder->codeAppendf("%s = %s * %s + (vec4(1.0) - %s) * %s;", |
+ args.fOutputPrimary, args.fOutputPrimary, |
+ args.fInputCoverage, args.fInputCoverage, dstColor); |
+ } |
+ } |
} |
void onSetData(const GrGLProgramDataManager&, const GrXferProcessor&) override {} |
@@ -569,7 +630,10 @@ private: |
CustomXP::CustomXP(SkXfermode::Mode mode, const GrDeviceCoordTexture* dstCopy, |
bool willReadDstColor) |
- : INHERITED(dstCopy, willReadDstColor), fMode(mode) { |
+ : INHERITED(dstCopy, willReadDstColor), |
+ fMode(mode), |
+ fHasCoverage(true), |
+ fHWBlendEquation(kInvalid_GrBlendEquation) { |
this->initClassID<CustomXP>(); |
} |
@@ -578,12 +642,15 @@ void CustomXP::onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder |
} |
GrGLXferProcessor* CustomXP::createGLInstance() const { |
+ SkASSERT(this->willReadDstColor() != this->hasHWBlendEquation()); |
return SkNEW_ARGS(GLCustomXP, (*this)); |
} |
bool CustomXP::onIsEqual(const GrXferProcessor& other) const { |
const CustomXP& s = other.cast<CustomXP>(); |
- return fMode == s.fMode; |
+ return fMode == s.fMode && |
+ fHasCoverage == s.fHasCoverage && |
+ fHWBlendEquation == s.fHWBlendEquation; |
} |
GrXferProcessor::OptFlags CustomXP::getOptimizations(const GrProcOptInfo& colorPOI, |
@@ -591,7 +658,131 @@ GrXferProcessor::OptFlags CustomXP::getOptimizations(const GrProcOptInfo& colorP |
bool doesStencilWrite, |
GrColor* overrideColor, |
const GrDrawTargetCaps& caps) { |
- return GrXferProcessor::kNone_Opt; |
+ /* |
+ Most the optimizations we do here are based on tweaking alpha for coverage. |
+ |
+ The general SVG blend equation is defined in the spec as follows: |
+ |
+ Dca' = B(Sc, Dc) * Sa * Da + Y * Sca * (1-Da) + Z * Dca * (1-Sa) |
+ Da' = X * Sa * Da + Y * Sa * (1-Da) + Z * Da * (1-Sa) |
+ |
+ (Note that Sca, Dca indicate RGB vectors that are premultiplied by alpha, |
+ and that B(Sc, Dc) is a mode-specific function that accepts non-multiplied |
+ RGB colors.) |
+ |
+ For every blend mode supported by this class, i.e. the "advanced" blend |
+ modes, X=Y=Z=1 and this equation reduces to the PDF blend equation. |
+ |
+ It can be shown that when X=Y=Z=1, these equations can modulate alpha for |
+ coverage. |
+ |
+ |
+ == Color == |
+ |
+ We substitute Y=Z=1 and define a blend() function that calculates Dca' in |
+ terms of premultiplied alpha only: |
+ |
+ blend(Sca, Dca, Sa, Da) = {Dca : if Sa == 0, |
+ Sca : if Da == 0, |
+ B(Sca/Sa, Dca/Da) * Sa * Da + Sca * (1-Da) + Dca * (1-Sa) : if Sa,Da != 0} |
+ |
+ And for coverage modulation, we use a post blend src-over model: |
+ |
+ Dca'' = f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca |
+ |
+ (Where f is the fractional coverage.) |
+ |
+ Next we show that canTweakAlphaForCoverage() is true by proving the |
+ following relationship: |
+ |
+ blend(f*Sca, Dca, f*Sa, Da) == f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca |
+ |
+ General case (f,Sa,Da != 0): |
+ |
+ f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca |
+ = f * (B(Sca/Sa, Dca/Da) * Sa * Da + Sca * (1-Da) + Dca * (1-Sa)) + (1-f) * Dca [Sa,Da != 0, definition of blend()] |
+ = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + f*Dca * (1-Sa) + Dca - f*Dca |
+ = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca - f*Sca * Da + f*Dca - f*Dca * Sa + Dca - f*Dca |
+ = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca - f*Sca * Da - f*Dca * Sa + Dca |
+ = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) - f*Dca * Sa + Dca |
+ = B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + Dca * (1 - f*Sa) |
+ = B(f*Sca/f*Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + Dca * (1 - f*Sa) [f!=0] |
+ = blend(f*Sca, Dca, f*Sa, Da) [definition of blend()] |
+ |
+ Corner cases (Sa=0, Da=0, and f=0): |
+ |
+ Sa=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca |
+ = f * Dca + (1-f) * Dca [Sa=0, definition of blend()] |
+ = Dca |
+ = blend(0, Dca, 0, Da) [definition of blend()] |
+ = blend(f*Sca, Dca, f*Sa, Da) [Sa=0] |
+ |
+ Da=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca |
+ = f * Sca + (1-f) * Dca [Da=0, definition of blend()] |
+ = f * Sca [Da=0] |
+ = blend(f*Sca, 0, f*Sa, 0) [definition of blend()] |
+ = blend(f*Sca, Dca, f*Sa, Da) [Da=0] |
+ |
+ f=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca |
+ = Dca [f=0] |
+ = blend(0, Dca, 0, Da) [definition of blend()] |
+ = blend(f*Sca, Dca, f*Sa, Da) [f=0] |
+ |
+ == Alpha == |
+ |
+ We substitute X=Y=Z=1 and define a blend() function that calculates Da': |
+ |
+ blend(Sa, Da) = Sa * Da + Sa * (1-Da) + Da * (1-Sa) |
+ = Sa * Da + Sa - Sa * Da + Da - Da * Sa |
+ = Sa + Da - Sa * Da |
+ |
+ We use the same model for coverage modulation as we did with color: |
+ |
+ Da'' = f * blend(Sa, Da) + (1-f) * Da |
+ |
+ And show that canTweakAlphaForCoverage() is true by proving the following |
+ relationship: |
+ |
+ blend(f*Sa, Da) == f * blend(Sa, Da) + (1-f) * Da |
+ |
+ |
+ f * blend(Sa, Da) + (1-f) * Da |
+ = f * (Sa + Da - Sa * Da) + (1-f) * Da |
+ = f*Sa + f*Da - f*Sa * Da + Da - f*Da |
+ = f*Sa - f*Sa * Da + Da |
+ = f*Sa + Da - f*Sa * Da |
+ = blend(f*Sa, Da) |
+ */ |
+ |
+ OptFlags flags = kNone_Opt; |
+ if (colorPOI.allStagesMultiplyInput()) { |
+ flags = flags | kCanTweakAlphaForCoverage_OptFlag; |
+ } |
+ if (coveragePOI.isSolidWhite()) { |
+ flags = flags | kIgnoreCoverage_OptFlag; |
+ fHasCoverage = false; |
+ } |
+ if (caps.advancedBlendEquationSupport() && !coveragePOI.isFourChannelOutput()) { |
+ // This blend mode can be implemented in hardware. |
+ fHWBlendEquation = hw_blend_equation(fMode); |
+ } |
+ return flags; |
+} |
+ |
+bool CustomXP::onWillNeedXferBarrier(const GrRenderTarget* rt, |
+ const GrDrawTargetCaps& caps, |
+ GrXferBarrierType* outBarrierType) const { |
+ if (this->hasHWBlendEquation() && !caps.advancedCoherentBlendEquationSupport()) { |
+ *outBarrierType = kBlend_GrXferBarrierType; |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+void CustomXP::onGetBlendInfo(BlendInfo* blendInfo) const { |
+ if (this->hasHWBlendEquation()) { |
+ blendInfo->fEquation = this->hwBlendEquation(); |
+ } |
} |
/////////////////////////////////////////////////////////////////////////////// |
@@ -609,6 +800,19 @@ GrCustomXPFactory::onCreateXferProcessor(const GrDrawTargetCaps& caps, |
return CustomXP::Create(fMode, dstCopy, this->willReadDstColor(caps, colorPOI, coveragePOI)); |
} |
+bool GrCustomXPFactory::willReadDstColor(const GrDrawTargetCaps& caps, |
+ const GrProcOptInfo& colorPOI, |
+ const GrProcOptInfo& coveragePOI) const { |
+ if (!caps.advancedBlendEquationSupport()) { |
+ // No hardware support for advanced blend equations; we will need to do it in the shader. |
+ return true; |
+ } |
+ if (coveragePOI.isFourChannelOutput()) { |
+ // Advanced blend equations can't tweak alpha for RGB coverage. |
+ return true; |
+ } |
+ return false; |
+} |
void GrCustomXPFactory::getInvariantOutput(const GrProcOptInfo& colorPOI, |
const GrProcOptInfo& coveragePOI, |