| OLD | NEW |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "src/v8.h" | 5 #include "src/v8.h" |
| 6 | 6 |
| 7 #if V8_TARGET_ARCH_IA32 | 7 #if V8_TARGET_ARCH_IA32 |
| 8 | 8 |
| 9 #include "src/cpu-profiler.h" | 9 #include "src/cpu-profiler.h" |
| 10 #include "src/log.h" | 10 #include "src/log.h" |
| (...skipping 1054 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1065 } | 1065 } |
| 1066 | 1066 |
| 1067 | 1067 |
| 1068 // Helper function for reading a value out of a stack frame. | 1068 // Helper function for reading a value out of a stack frame. |
| 1069 template <typename T> | 1069 template <typename T> |
| 1070 static T& frame_entry(Address re_frame, int frame_offset) { | 1070 static T& frame_entry(Address re_frame, int frame_offset) { |
| 1071 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset)); | 1071 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset)); |
| 1072 } | 1072 } |
| 1073 | 1073 |
| 1074 | 1074 |
| 1075 template <typename T> |
| 1076 static T* frame_entry_address(Address re_frame, int frame_offset) { |
| 1077 return reinterpret_cast<T*>(re_frame + frame_offset); |
| 1078 } |
| 1079 |
| 1080 |
| 1075 int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address, | 1081 int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address, |
| 1076 Code* re_code, | 1082 Code* re_code, |
| 1077 Address re_frame) { | 1083 Address re_frame) { |
| 1078 Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); | 1084 return NativeRegExpMacroAssembler::CheckStackGuardState( |
| 1079 StackLimitCheck check(isolate); | 1085 frame_entry<Isolate*>(re_frame, kIsolate), |
| 1080 if (check.JsHasOverflowed()) { | 1086 frame_entry<int>(re_frame, kStartIndex), |
| 1081 isolate->StackOverflow(); | 1087 frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code, |
| 1082 return EXCEPTION; | 1088 frame_entry_address<String*>(re_frame, kInputString), |
| 1083 } | 1089 frame_entry_address<const byte*>(re_frame, kInputStart), |
| 1084 | 1090 frame_entry_address<const byte*>(re_frame, kInputEnd)); |
| 1085 // If not real stack overflow the stack guard was used to interrupt | |
| 1086 // execution for another purpose. | |
| 1087 | |
| 1088 // If this is a direct call from JavaScript retry the RegExp forcing the call | |
| 1089 // through the runtime system. Currently the direct call cannot handle a GC. | |
| 1090 if (frame_entry<int>(re_frame, kDirectCall) == 1) { | |
| 1091 return RETRY; | |
| 1092 } | |
| 1093 | |
| 1094 // Prepare for possible GC. | |
| 1095 HandleScope handles(isolate); | |
| 1096 Handle<Code> code_handle(re_code); | |
| 1097 | |
| 1098 Handle<String> subject(frame_entry<String*>(re_frame, kInputString)); | |
| 1099 | |
| 1100 // Current string. | |
| 1101 bool is_one_byte = subject->IsOneByteRepresentationUnderneath(); | |
| 1102 | |
| 1103 DCHECK(re_code->instruction_start() <= *return_address); | |
| 1104 DCHECK(*return_address <= | |
| 1105 re_code->instruction_start() + re_code->instruction_size()); | |
| 1106 | |
| 1107 Object* result = isolate->stack_guard()->HandleInterrupts(); | |
| 1108 | |
| 1109 if (*code_handle != re_code) { // Return address no longer valid | |
| 1110 int delta = code_handle->address() - re_code->address(); | |
| 1111 // Overwrite the return address on the stack. | |
| 1112 *return_address += delta; | |
| 1113 } | |
| 1114 | |
| 1115 if (result->IsException()) { | |
| 1116 return EXCEPTION; | |
| 1117 } | |
| 1118 | |
| 1119 Handle<String> subject_tmp = subject; | |
| 1120 int slice_offset = 0; | |
| 1121 | |
| 1122 // Extract the underlying string and the slice offset. | |
| 1123 if (StringShape(*subject_tmp).IsCons()) { | |
| 1124 subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first()); | |
| 1125 } else if (StringShape(*subject_tmp).IsSliced()) { | |
| 1126 SlicedString* slice = SlicedString::cast(*subject_tmp); | |
| 1127 subject_tmp = Handle<String>(slice->parent()); | |
| 1128 slice_offset = slice->offset(); | |
| 1129 } | |
| 1130 | |
| 1131 // String might have changed. | |
| 1132 if (subject_tmp->IsOneByteRepresentation() != is_one_byte) { | |
| 1133 // If we changed between an LATIN1 and an UC16 string, the specialized | |
| 1134 // code cannot be used, and we need to restart regexp matching from | |
| 1135 // scratch (including, potentially, compiling a new version of the code). | |
| 1136 return RETRY; | |
| 1137 } | |
| 1138 | |
| 1139 // Otherwise, the content of the string might have moved. It must still | |
| 1140 // be a sequential or external string with the same content. | |
| 1141 // Update the start and end pointers in the stack frame to the current | |
| 1142 // location (whether it has actually moved or not). | |
| 1143 DCHECK(StringShape(*subject_tmp).IsSequential() || | |
| 1144 StringShape(*subject_tmp).IsExternal()); | |
| 1145 | |
| 1146 // The original start address of the characters to match. | |
| 1147 const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart); | |
| 1148 | |
| 1149 // Find the current start address of the same character at the current string | |
| 1150 // position. | |
| 1151 int start_index = frame_entry<int>(re_frame, kStartIndex); | |
| 1152 const byte* new_address = StringCharacterPosition(*subject_tmp, | |
| 1153 start_index + slice_offset); | |
| 1154 | |
| 1155 if (start_address != new_address) { | |
| 1156 // If there is a difference, update the object pointer and start and end | |
| 1157 // addresses in the RegExp stack frame to match the new value. | |
| 1158 const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd); | |
| 1159 int byte_length = static_cast<int>(end_address - start_address); | |
| 1160 frame_entry<const String*>(re_frame, kInputString) = *subject; | |
| 1161 frame_entry<const byte*>(re_frame, kInputStart) = new_address; | |
| 1162 frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length; | |
| 1163 } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) { | |
| 1164 // Subject string might have been a ConsString that underwent | |
| 1165 // short-circuiting during GC. That will not change start_address but | |
| 1166 // will change pointer inside the subject handle. | |
| 1167 frame_entry<const String*>(re_frame, kInputString) = *subject; | |
| 1168 } | |
| 1169 | |
| 1170 return 0; | |
| 1171 } | 1091 } |
| 1172 | 1092 |
| 1173 | 1093 |
| 1174 Operand RegExpMacroAssemblerIA32::register_location(int register_index) { | 1094 Operand RegExpMacroAssemblerIA32::register_location(int register_index) { |
| 1175 DCHECK(register_index < (1<<30)); | 1095 DCHECK(register_index < (1<<30)); |
| 1176 if (num_registers_ <= register_index) { | 1096 if (num_registers_ <= register_index) { |
| 1177 num_registers_ = register_index + 1; | 1097 num_registers_ = register_index + 1; |
| 1178 } | 1098 } |
| 1179 return Operand(ebp, kRegisterZero - register_index * kPointerSize); | 1099 return Operand(ebp, kRegisterZero - register_index * kPointerSize); |
| 1180 } | 1100 } |
| (...skipping 119 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1300 } | 1220 } |
| 1301 | 1221 |
| 1302 | 1222 |
| 1303 #undef __ | 1223 #undef __ |
| 1304 | 1224 |
| 1305 #endif // V8_INTERPRETED_REGEXP | 1225 #endif // V8_INTERPRETED_REGEXP |
| 1306 | 1226 |
| 1307 }} // namespace v8::internal | 1227 }} // namespace v8::internal |
| 1308 | 1228 |
| 1309 #endif // V8_TARGET_ARCH_IA32 | 1229 #endif // V8_TARGET_ARCH_IA32 |
| OLD | NEW |