Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(140)

Side by Side Diff: src/deoptimizer.cc

Issue 103243005: Captured arguments object materialization (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Skip uninteresting frame types when building SlotRefs Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/deoptimizer.h ('k') | src/heap.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2013 the V8 project authors. All rights reserved. 1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 755 matching lines...) Expand 10 before | Expand all | Expand 10 after
766 // descriptions. 766 // descriptions.
767 int count = iterator.Next(); 767 int count = iterator.Next();
768 iterator.Next(); // Drop JS frames count. 768 iterator.Next(); // Drop JS frames count.
769 ASSERT(output_ == NULL); 769 ASSERT(output_ == NULL);
770 output_ = new FrameDescription*[count]; 770 output_ = new FrameDescription*[count];
771 for (int i = 0; i < count; ++i) { 771 for (int i = 0; i < count; ++i) {
772 output_[i] = NULL; 772 output_[i] = NULL;
773 } 773 }
774 output_count_ = count; 774 output_count_ = count;
775 775
776 Register fp_reg = JavaScriptFrame::fp_register();
777 stack_fp_ = reinterpret_cast<Address>(
778 input_->GetRegister(fp_reg.code()) +
779 has_alignment_padding_ * kPointerSize);
780
776 // Translate each output frame. 781 // Translate each output frame.
777 for (int i = 0; i < count; ++i) { 782 for (int i = 0; i < count; ++i) {
778 // Read the ast node id, function, and frame height for this output frame. 783 // Read the ast node id, function, and frame height for this output frame.
779 Translation::Opcode opcode = 784 Translation::Opcode opcode =
780 static_cast<Translation::Opcode>(iterator.Next()); 785 static_cast<Translation::Opcode>(iterator.Next());
781 switch (opcode) { 786 switch (opcode) {
782 case Translation::JS_FRAME: 787 case Translation::JS_FRAME:
783 DoComputeJSFrame(&iterator, i); 788 DoComputeJSFrame(&iterator, i);
784 jsframe_count_++; 789 jsframe_count_++;
785 break; 790 break;
(...skipping 984 matching lines...) Expand 10 before | Expand all | Expand 10 after
1770 // Dispatch on the instance type of the object to be materialized. 1775 // Dispatch on the instance type of the object to be materialized.
1771 // We also need to make sure that the representation of all fields 1776 // We also need to make sure that the representation of all fields
1772 // in the given object are general enough to hold a tagged value. 1777 // in the given object are general enough to hold a tagged value.
1773 Handle<Map> map = Map::GeneralizeAllFieldRepresentations( 1778 Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
1774 Handle<Map>::cast(MaterializeNextValue()), Representation::Tagged()); 1779 Handle<Map>::cast(MaterializeNextValue()), Representation::Tagged());
1775 switch (map->instance_type()) { 1780 switch (map->instance_type()) {
1776 case HEAP_NUMBER_TYPE: { 1781 case HEAP_NUMBER_TYPE: {
1777 // Reuse the HeapNumber value directly as it is already properly 1782 // Reuse the HeapNumber value directly as it is already properly
1778 // tagged and skip materializing the HeapNumber explicitly. 1783 // tagged and skip materializing the HeapNumber explicitly.
1779 Handle<Object> object = MaterializeNextValue(); 1784 Handle<Object> object = MaterializeNextValue();
1780 materialized_objects_->Add(object); 1785 if (object_index < prev_materialized_count_) {
1786 materialized_objects_->Add(Handle<Object>(
1787 previously_materialized_objects_->get(object_index), isolate_));
1788 } else {
1789 materialized_objects_->Add(object);
1790 }
1781 materialization_value_index_ += kDoubleSize / kPointerSize - 1; 1791 materialization_value_index_ += kDoubleSize / kPointerSize - 1;
1782 break; 1792 break;
1783 } 1793 }
1784 case JS_OBJECT_TYPE: { 1794 case JS_OBJECT_TYPE: {
1785 Handle<JSObject> object = 1795 Handle<JSObject> object =
1786 isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED, false); 1796 isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
1787 materialized_objects_->Add(object); 1797 if (object_index < prev_materialized_count_) {
1798 materialized_objects_->Add(Handle<Object>(
1799 previously_materialized_objects_->get(object_index), isolate_));
1800 } else {
1801 materialized_objects_->Add(object);
1802 }
1788 Handle<Object> properties = MaterializeNextValue(); 1803 Handle<Object> properties = MaterializeNextValue();
1789 Handle<Object> elements = MaterializeNextValue(); 1804 Handle<Object> elements = MaterializeNextValue();
1790 object->set_properties(FixedArray::cast(*properties)); 1805 object->set_properties(FixedArray::cast(*properties));
1791 object->set_elements(FixedArrayBase::cast(*elements)); 1806 object->set_elements(FixedArrayBase::cast(*elements));
1792 for (int i = 0; i < length - 3; ++i) { 1807 for (int i = 0; i < length - 3; ++i) {
1793 Handle<Object> value = MaterializeNextValue(); 1808 Handle<Object> value = MaterializeNextValue();
1794 object->FastPropertyAtPut(i, *value); 1809 object->FastPropertyAtPut(i, *value);
1795 } 1810 }
1796 break; 1811 break;
1797 } 1812 }
1798 case JS_ARRAY_TYPE: { 1813 case JS_ARRAY_TYPE: {
1799 Handle<JSArray> object = 1814 Handle<JSArray> object =
1800 isolate_->factory()->NewJSArray(0, map->elements_kind()); 1815 isolate_->factory()->NewJSArray(0, map->elements_kind());
1801 materialized_objects_->Add(object); 1816 if (object_index < prev_materialized_count_) {
1817 materialized_objects_->Add(Handle<Object>(
1818 previously_materialized_objects_->get(object_index), isolate_));
1819 } else {
1820 materialized_objects_->Add(object);
1821 }
1802 Handle<Object> properties = MaterializeNextValue(); 1822 Handle<Object> properties = MaterializeNextValue();
1803 Handle<Object> elements = MaterializeNextValue(); 1823 Handle<Object> elements = MaterializeNextValue();
1804 Handle<Object> length = MaterializeNextValue(); 1824 Handle<Object> length = MaterializeNextValue();
1805 object->set_properties(FixedArray::cast(*properties)); 1825 object->set_properties(FixedArray::cast(*properties));
1806 object->set_elements(FixedArrayBase::cast(*elements)); 1826 object->set_elements(FixedArrayBase::cast(*elements));
1807 object->set_length(*length); 1827 object->set_length(*length);
1808 break; 1828 break;
1809 } 1829 }
1810 default: 1830 default:
1811 PrintF(stderr, 1831 PrintF(stderr,
(...skipping 12 matching lines...) Expand all
1824 if (*value == isolate_->heap()->arguments_marker()) { 1844 if (*value == isolate_->heap()->arguments_marker()) {
1825 value = MaterializeNextHeapObject(); 1845 value = MaterializeNextHeapObject();
1826 } 1846 }
1827 return value; 1847 return value;
1828 } 1848 }
1829 1849
1830 1850
1831 void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) { 1851 void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
1832 ASSERT_NE(DEBUGGER, bailout_type_); 1852 ASSERT_NE(DEBUGGER, bailout_type_);
1833 1853
1854 MaterializedObjectStore* materialized_store =
1855 isolate_->materialized_object_store();
1856 previously_materialized_objects_ = materialized_store->Get(stack_fp_);
1857 prev_materialized_count_ = previously_materialized_objects_.is_null() ?
1858 0 : previously_materialized_objects_->length();
1859
1834 // Walk all JavaScript output frames with the given frame iterator. 1860 // Walk all JavaScript output frames with the given frame iterator.
1835 for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) { 1861 for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
1836 if (frame_index != 0) it->Advance(); 1862 if (frame_index != 0) it->Advance();
1837 JavaScriptFrame* frame = it->frame(); 1863 JavaScriptFrame* frame = it->frame();
1838 jsframe_functions_.Add(handle(frame->function(), isolate_)); 1864 jsframe_functions_.Add(handle(frame->function(), isolate_));
1839 jsframe_has_adapted_arguments_.Add(frame->has_adapted_arguments()); 1865 jsframe_has_adapted_arguments_.Add(frame->has_adapted_arguments());
1840 } 1866 }
1841 1867
1842 // Handlify all tagged object values before triggering any allocation. 1868 // Handlify all tagged object values before triggering any allocation.
1843 List<Handle<Object> > values(deferred_objects_tagged_values_.length()); 1869 List<Handle<Object> > values(deferred_objects_tagged_values_.length());
(...skipping 69 matching lines...) Expand 10 before | Expand all | Expand 10 after
1913 reinterpret_cast<void*>(descriptor.slot_address())); 1939 reinterpret_cast<void*>(descriptor.slot_address()));
1914 } 1940 }
1915 object->ShortPrint(trace_scope_->file()); 1941 object->ShortPrint(trace_scope_->file());
1916 PrintF(trace_scope_->file(), "\n"); 1942 PrintF(trace_scope_->file(), "\n");
1917 } 1943 }
1918 } 1944 }
1919 1945
1920 ASSERT(materialization_object_index_ == materialized_objects_->length()); 1946 ASSERT(materialization_object_index_ == materialized_objects_->length());
1921 ASSERT(materialization_value_index_ == materialized_values_->length()); 1947 ASSERT(materialization_value_index_ == materialized_values_->length());
1922 } 1948 }
1949
1950 if (prev_materialized_count_ > 0) {
1951 materialized_store->Remove(stack_fp_);
1952 }
1923 } 1953 }
1924 1954
1925 1955
1926 #ifdef ENABLE_DEBUGGER_SUPPORT 1956 #ifdef ENABLE_DEBUGGER_SUPPORT
1927 void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame( 1957 void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
1928 Address parameters_top, 1958 Address parameters_top,
1929 uint32_t parameters_size, 1959 uint32_t parameters_size,
1930 Address expressions_top, 1960 Address expressions_top,
1931 uint32_t expressions_size, 1961 uint32_t expressions_size,
1932 DeoptimizedFrameInfo* info) { 1962 DeoptimizedFrameInfo* info) {
(...skipping 1008 matching lines...) Expand 10 before | Expand all | Expand 10 after
2941 UNREACHABLE(); 2971 UNREACHABLE();
2942 return ""; 2972 return "";
2943 } 2973 }
2944 2974
2945 #endif 2975 #endif
2946 2976
2947 2977
2948 // We can't intermix stack decoding and allocations because 2978 // We can't intermix stack decoding and allocations because
2949 // deoptimization infrastracture is not GC safe. 2979 // deoptimization infrastracture is not GC safe.
2950 // Thus we build a temporary structure in malloced space. 2980 // Thus we build a temporary structure in malloced space.
2951 SlotRef SlotRef::ComputeSlotForNextArgument(TranslationIterator* iterator, 2981 SlotRef SlotRefValueBuilder::ComputeSlotForNextArgument(
2952 DeoptimizationInputData* data, 2982 Translation::Opcode opcode,
2953 JavaScriptFrame* frame) { 2983 TranslationIterator* iterator,
2954 Translation::Opcode opcode = 2984 DeoptimizationInputData* data,
2955 static_cast<Translation::Opcode>(iterator->Next()); 2985 JavaScriptFrame* frame) {
2956
2957 switch (opcode) { 2986 switch (opcode) {
2958 case Translation::BEGIN: 2987 case Translation::BEGIN:
2959 case Translation::JS_FRAME: 2988 case Translation::JS_FRAME:
2960 case Translation::ARGUMENTS_ADAPTOR_FRAME: 2989 case Translation::ARGUMENTS_ADAPTOR_FRAME:
2961 case Translation::CONSTRUCT_STUB_FRAME: 2990 case Translation::CONSTRUCT_STUB_FRAME:
2962 case Translation::GETTER_STUB_FRAME: 2991 case Translation::GETTER_STUB_FRAME:
2963 case Translation::SETTER_STUB_FRAME: 2992 case Translation::SETTER_STUB_FRAME:
2964 // Peeled off before getting here. 2993 // Peeled off before getting here.
2965 break; 2994 break;
2966 2995
2967 case Translation::DUPLICATED_OBJECT: 2996 case Translation::DUPLICATED_OBJECT: {
2997 return SlotRef::NewDuplicateObject(iterator->Next());
2998 }
2999
2968 case Translation::ARGUMENTS_OBJECT: 3000 case Translation::ARGUMENTS_OBJECT:
2969 case Translation::CAPTURED_OBJECT:
2970 // This can be only emitted for local slots not for argument slots. 3001 // This can be only emitted for local slots not for argument slots.
2971 break; 3002 break;
2972 3003
3004 case Translation::CAPTURED_OBJECT: {
3005 return SlotRef::NewDeferredObject(iterator->Next());
3006 }
3007
2973 case Translation::REGISTER: 3008 case Translation::REGISTER:
2974 case Translation::INT32_REGISTER: 3009 case Translation::INT32_REGISTER:
2975 case Translation::UINT32_REGISTER: 3010 case Translation::UINT32_REGISTER:
2976 case Translation::DOUBLE_REGISTER: 3011 case Translation::DOUBLE_REGISTER:
2977 // We are at safepoint which corresponds to call. All registers are 3012 // We are at safepoint which corresponds to call. All registers are
2978 // saved by caller so there would be no live registers at this 3013 // saved by caller so there would be no live registers at this
2979 // point. Thus these translation commands should not be used. 3014 // point. Thus these translation commands should not be used.
2980 break; 3015 break;
2981 3016
2982 case Translation::STACK_SLOT: { 3017 case Translation::STACK_SLOT: {
(...skipping 29 matching lines...) Expand all
3012 case Translation::COMPILED_STUB_FRAME: 3047 case Translation::COMPILED_STUB_FRAME:
3013 UNREACHABLE(); 3048 UNREACHABLE();
3014 break; 3049 break;
3015 } 3050 }
3016 3051
3017 UNREACHABLE(); 3052 UNREACHABLE();
3018 return SlotRef(); 3053 return SlotRef();
3019 } 3054 }
3020 3055
3021 3056
3022 void SlotRef::ComputeSlotsForArguments(Vector<SlotRef>* args_slots, 3057 SlotRefValueBuilder::SlotRefValueBuilder(JavaScriptFrame* frame,
3023 TranslationIterator* it, 3058 int inlined_jsframe_index,
3024 DeoptimizationInputData* data, 3059 int formal_parameter_count)
3025 JavaScriptFrame* frame) { 3060 : current_slot_(0), args_length_(-1), first_slot_index_(-1) {
3026 // Process the translation commands for the arguments. 3061 DisallowHeapAllocation no_gc;
3027 3062
3028 // Skip the translation command for the receiver.
3029 it->Skip(Translation::NumberOfOperandsFor(
3030 static_cast<Translation::Opcode>(it->Next())));
3031
3032 // Compute slots for arguments.
3033 for (int i = 0; i < args_slots->length(); ++i) {
3034 (*args_slots)[i] = ComputeSlotForNextArgument(it, data, frame);
3035 }
3036 }
3037
3038
3039 Vector<SlotRef> SlotRef::ComputeSlotMappingForArguments(
3040 JavaScriptFrame* frame,
3041 int inlined_jsframe_index,
3042 int formal_parameter_count) {
3043 DisallowHeapAllocation no_gc;
3044 int deopt_index = Safepoint::kNoDeoptimizationIndex; 3063 int deopt_index = Safepoint::kNoDeoptimizationIndex;
3045 DeoptimizationInputData* data = 3064 DeoptimizationInputData* data =
3046 static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index); 3065 static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
3047 TranslationIterator it(data->TranslationByteArray(), 3066 TranslationIterator it(data->TranslationByteArray(),
3048 data->TranslationIndex(deopt_index)->value()); 3067 data->TranslationIndex(deopt_index)->value());
3049 Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next()); 3068 Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
3050 ASSERT(opcode == Translation::BEGIN); 3069 ASSERT(opcode == Translation::BEGIN);
3051 it.Next(); // Drop frame count. 3070 it.Next(); // Drop frame count.
3071
3072 stack_frame_id_ = frame->fp();
3073
3052 int jsframe_count = it.Next(); 3074 int jsframe_count = it.Next();
3053 USE(jsframe_count); 3075 USE(jsframe_count);
3054 ASSERT(jsframe_count > inlined_jsframe_index); 3076 ASSERT(jsframe_count > inlined_jsframe_index);
3055 int jsframes_to_skip = inlined_jsframe_index; 3077 int jsframes_to_skip = inlined_jsframe_index;
3056 while (true) { 3078 int number_of_slots = -1; // Number of slots inside our frame (yet unknown)
3079 bool should_deopt = false;
3080 while (number_of_slots != 0) {
3057 opcode = static_cast<Translation::Opcode>(it.Next()); 3081 opcode = static_cast<Translation::Opcode>(it.Next());
3082 bool processed = false;
3058 if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) { 3083 if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
3059 if (jsframes_to_skip == 0) { 3084 if (jsframes_to_skip == 0) {
3060 ASSERT(Translation::NumberOfOperandsFor(opcode) == 2); 3085 ASSERT(Translation::NumberOfOperandsFor(opcode) == 2);
3061 3086
3062 it.Skip(1); // literal id 3087 it.Skip(1); // literal id
3063 int height = it.Next(); 3088 int height = it.Next();
3064 3089
3090 // Skip the translation command for the receiver.
3091 it.Skip(Translation::NumberOfOperandsFor(
3092 static_cast<Translation::Opcode>(it.Next())));
3093
3065 // We reached the arguments adaptor frame corresponding to the 3094 // We reached the arguments adaptor frame corresponding to the
3066 // inlined function in question. Number of arguments is height - 1. 3095 // inlined function in question. Number of arguments is height - 1.
3067 Vector<SlotRef> args_slots = 3096 first_slot_index_ = slot_refs_.length();
3068 Vector<SlotRef>::New(height - 1); // Minus receiver. 3097 args_length_ = height - 1;
3069 ComputeSlotsForArguments(&args_slots, &it, data, frame); 3098 number_of_slots = height - 1;
3070 return args_slots; 3099 processed = true;
3071 } 3100 }
3072 } else if (opcode == Translation::JS_FRAME) { 3101 } else if (opcode == Translation::JS_FRAME) {
3073 if (jsframes_to_skip == 0) { 3102 if (jsframes_to_skip == 0) {
3074 // Skip over operands to advance to the next opcode. 3103 // Skip over operands to advance to the next opcode.
3075 it.Skip(Translation::NumberOfOperandsFor(opcode)); 3104 it.Skip(Translation::NumberOfOperandsFor(opcode));
3076 3105
3106 // Skip the translation command for the receiver.
3107 it.Skip(Translation::NumberOfOperandsFor(
3108 static_cast<Translation::Opcode>(it.Next())));
3109
3077 // We reached the frame corresponding to the inlined function 3110 // We reached the frame corresponding to the inlined function
3078 // in question. Process the translation commands for the 3111 // in question. Process the translation commands for the
3079 // arguments. Number of arguments is equal to the number of 3112 // arguments. Number of arguments is equal to the number of
3080 // format parameter count. 3113 // format parameter count.
3081 Vector<SlotRef> args_slots = 3114 first_slot_index_ = slot_refs_.length();
3082 Vector<SlotRef>::New(formal_parameter_count); 3115 args_length_ = formal_parameter_count;
3083 ComputeSlotsForArguments(&args_slots, &it, data, frame); 3116 number_of_slots = formal_parameter_count;
3084 return args_slots; 3117 processed = true;
3085 } 3118 }
3086 jsframes_to_skip--; 3119 jsframes_to_skip--;
3087 } 3120 } else if (opcode != Translation::BEGIN &&
3088 3121 opcode != Translation::CONSTRUCT_STUB_FRAME &&
3089 // Skip over operands to advance to the next opcode. 3122 opcode != Translation::GETTER_STUB_FRAME &&
3090 it.Skip(Translation::NumberOfOperandsFor(opcode)); 3123 opcode != Translation::SETTER_STUB_FRAME &&
3124 opcode != Translation::COMPILED_STUB_FRAME) {
3125 slot_refs_.Add(ComputeSlotForNextArgument(opcode, &it, data, frame));
3126
3127 if (first_slot_index_ >= 0) {
3128 // We have found the beginning of our frame -> make sure we count
3129 // the nested slots of captured objects
3130 number_of_slots--;
3131 SlotRef& slot = slot_refs_.last();
3132 if (slot.Representation() == SlotRef::DEFERRED_OBJECT) {
3133 number_of_slots += slot.DeferredObjectLength();
3134 }
3135 if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
3136 slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
3137 should_deopt = true;
3138 }
3139 }
3140
3141 processed = true;
3142 }
3143 if (!processed) {
3144 // Skip over operands to advance to the next opcode.
3145 it.Skip(Translation::NumberOfOperandsFor(opcode));
3146 }
3147 }
3148 if (should_deopt) {
3149 List<JSFunction*> functions(2);
3150 frame->GetFunctions(&functions);
3151 Deoptimizer::DeoptimizeFunction(functions[0]);
3152 }
3153 }
3154
3155
3156 Handle<Object> SlotRef::GetValue(Isolate* isolate) {
3157 switch (representation_) {
3158 case TAGGED:
3159 return Handle<Object>(Memory::Object_at(addr_), isolate);
3160
3161 case INT32: {
3162 int value = Memory::int32_at(addr_);
3163 if (Smi::IsValid(value)) {
3164 return Handle<Object>(Smi::FromInt(value), isolate);
3165 } else {
3166 return isolate->factory()->NewNumberFromInt(value);
3167 }
3168 }
3169
3170 case UINT32: {
3171 uint32_t value = Memory::uint32_at(addr_);
3172 if (value <= static_cast<uint32_t>(Smi::kMaxValue)) {
3173 return Handle<Object>(Smi::FromInt(static_cast<int>(value)), isolate);
3174 } else {
3175 return isolate->factory()->NewNumber(static_cast<double>(value));
3176 }
3177 }
3178
3179 case DOUBLE: {
3180 double value = read_double_value(addr_);
3181 return isolate->factory()->NewNumber(value);
3182 }
3183
3184 case LITERAL:
3185 return literal_;
3186
3187 default:
3188 UNREACHABLE();
3189 return Handle<Object>::null();
3190 }
3191 }
3192
3193
3194 void SlotRefValueBuilder::Prepare(Isolate* isolate) {
3195 MaterializedObjectStore* materialized_store =
3196 isolate->materialized_object_store();
3197 previously_materialized_objects_ = materialized_store->Get(stack_frame_id_);
3198 prev_materialized_count_ = previously_materialized_objects_.is_null()
3199 ? 0 : previously_materialized_objects_->length();
3200
3201 // Skip any materialized objects of the inlined "parent" frames.
3202 // (Note that we still need to materialize them because they might be
3203 // referred to as duplicated objects.)
3204 while (current_slot_ < first_slot_index_) {
3205 GetNext(isolate, 0);
3206 }
3207 ASSERT(current_slot_ == first_slot_index_);
3208 }
3209
3210
3211 Handle<Object> SlotRefValueBuilder::GetPreviouslyMaterialized(
3212 Isolate* isolate, int length) {
3213 int object_index = materialized_objects_.length();
3214 Handle<Object> return_value = Handle<Object>(
3215 previously_materialized_objects_->get(object_index), isolate);
3216 materialized_objects_.Add(return_value);
3217
3218 // Now need to skip all nested objects (and possibly read them from
3219 // the materialization store, too)
3220 for (int i = 0; i < length; i++) {
3221 SlotRef& slot = slot_refs_[current_slot_];
3222 current_slot_++;
3223
3224 // For nested deferred objects, we need to read its properties
3225 if (slot.Representation() == SlotRef::DEFERRED_OBJECT) {
3226 length += slot.DeferredObjectLength();
3227 }
3228
3229 // For nested deferred and duplicate objects, we need to put them into
3230 // our materialization array
3231 if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
3232 slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
3233 int nested_object_index = materialized_objects_.length();
3234 Handle<Object> nested_object = Handle<Object>(
3235 previously_materialized_objects_->get(nested_object_index),
3236 isolate);
3237 materialized_objects_.Add(nested_object);
3238 }
3239 }
3240
3241 return return_value;
3242 }
3243
3244
3245 Handle<Object> SlotRefValueBuilder::GetNext(Isolate* isolate, int lvl) {
3246 SlotRef& slot = slot_refs_[current_slot_];
3247 current_slot_++;
3248 switch (slot.Representation()) {
3249 case SlotRef::TAGGED:
3250 case SlotRef::INT32:
3251 case SlotRef::UINT32:
3252 case SlotRef::DOUBLE:
3253 case SlotRef::LITERAL: {
3254 return slot.GetValue(isolate);
3255 }
3256 case SlotRef::DEFERRED_OBJECT: {
3257 int length = slot.DeferredObjectLength();
3258 ASSERT(slot_refs_[current_slot_].Representation() == SlotRef::LITERAL ||
3259 slot_refs_[current_slot_].Representation() == SlotRef::TAGGED);
3260
3261 int object_index = materialized_objects_.length();
3262 if (object_index < prev_materialized_count_) {
3263 return GetPreviouslyMaterialized(isolate, length);
3264 }
3265
3266 Handle<Object> map_object = slot_refs_[current_slot_].GetValue(isolate);
3267 Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
3268 Handle<Map>::cast(map_object), Representation::Tagged());
3269 current_slot_++;
3270 // TODO(jarin) this should be unified with the code in
3271 // Deoptimizer::MaterializeNextHeapObject()
3272 switch (map->instance_type()) {
3273 case HEAP_NUMBER_TYPE: {
3274 // Reuse the HeapNumber value directly as it is already properly
3275 // tagged and skip materializing the HeapNumber explicitly.
3276 Handle<Object> object = GetNext(isolate, lvl + 1);
3277 materialized_objects_.Add(object);
3278 return object;
3279 }
3280 case JS_OBJECT_TYPE: {
3281 Handle<JSObject> object =
3282 isolate->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
3283 materialized_objects_.Add(object);
3284 Handle<Object> properties = GetNext(isolate, lvl + 1);
3285 Handle<Object> elements = GetNext(isolate, lvl + 1);
3286 object->set_properties(FixedArray::cast(*properties));
3287 object->set_elements(FixedArrayBase::cast(*elements));
3288 for (int i = 0; i < length - 3; ++i) {
3289 Handle<Object> value = GetNext(isolate, lvl + 1);
3290 object->FastPropertyAtPut(i, *value);
3291 }
3292 return object;
3293 }
3294 case JS_ARRAY_TYPE: {
3295 Handle<JSArray> object =
3296 isolate->factory()->NewJSArray(0, map->elements_kind());
3297 materialized_objects_.Add(object);
3298 Handle<Object> properties = GetNext(isolate, lvl + 1);
3299 Handle<Object> elements = GetNext(isolate, lvl + 1);
3300 Handle<Object> length = GetNext(isolate, lvl + 1);
3301 object->set_properties(FixedArray::cast(*properties));
3302 object->set_elements(FixedArrayBase::cast(*elements));
3303 object->set_length(*length);
3304 return object;
3305 }
3306 default:
3307 PrintF(stderr,
3308 "[couldn't handle instance type %d]\n", map->instance_type());
3309 UNREACHABLE();
3310 break;
3311 }
3312 UNREACHABLE();
3313 }
3314
3315 case SlotRef::DUPLICATE_OBJECT: {
3316 int object_index = slot.DuplicateObjectId();
3317 Handle<Object> object = materialized_objects_[object_index];
3318 materialized_objects_.Add(object);
3319 return object;
3320 }
3321 default:
3322 UNREACHABLE();
3323 break;
3091 } 3324 }
3092 3325
3093 UNREACHABLE(); 3326 UNREACHABLE();
3094 return Vector<SlotRef>(); 3327 return Handle<Object>::null();
3328 }
3329
3330
3331 void SlotRefValueBuilder::Finish(Isolate* isolate) {
3332 // We should have processed all slot
3333 ASSERT(slot_refs_.length() == current_slot_);
3334
3335 if (materialized_objects_.length() > prev_materialized_count_) {
3336 // We have materialized some new objects, so we have to store them
3337 // to prevent duplicate materialization
3338 Handle<FixedArray> array = isolate->factory()->NewFixedArray(
3339 materialized_objects_.length());
3340 for (int i = 0; i < materialized_objects_.length(); i++) {
3341 array->set(i, *(materialized_objects_.at(i)));
3342 }
3343 isolate->materialized_object_store()->Set(stack_frame_id_, array);
3344 }
3345 }
3346
3347
3348 Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
3349 int index = StackIdToIndex(fp);
3350 if (index == -1) {
3351 return Handle<FixedArray>::null();
3352 }
3353 Handle<FixedArray> array = GetStackEntries();
3354 ASSERT(array->length() > index);
3355 return Handle<FixedArray>::cast(Handle<Object>(array->get(index),
3356 isolate()));
3357 }
3358
3359
3360 void MaterializedObjectStore::Set(Address fp,
3361 Handle<FixedArray> materialized_objects) {
3362 int index = StackIdToIndex(fp);
3363 if (index == -1) {
3364 index = frame_fps_.length();
3365 frame_fps_.Add(fp);
3366 }
3367
3368 Handle<FixedArray> array = EnsureStackEntries(index + 1);
3369 array->set(index, *materialized_objects);
3370 }
3371
3372
3373 void MaterializedObjectStore::Remove(Address fp) {
3374 int index = StackIdToIndex(fp);
3375 ASSERT(index >= 0);
3376
3377 frame_fps_.Remove(index);
3378 Handle<FixedArray> array = GetStackEntries();
3379 ASSERT(array->length() > index);
3380 for (int i = index; i < frame_fps_.length(); i++) {
3381 array->set(i, array->get(i + 1));
3382 }
3383 array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
3384 }
3385
3386
3387 int MaterializedObjectStore::StackIdToIndex(Address fp) {
3388 for (int i = 0; i < frame_fps_.length(); i++) {
3389 if (frame_fps_[i] == fp) {
3390 return i;
3391 }
3392 }
3393 return -1;
3394 }
3395
3396
3397 Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
3398 return Handle<FixedArray>(isolate()->heap()->materialized_objects());
3399 }
3400
3401
3402 Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
3403 Handle<FixedArray> array = GetStackEntries();
3404 if (array->length() >= length) {
3405 return array;
3406 }
3407
3408 int new_length = length > 10 ? length : 10;
3409 if (new_length < 2 * array->length()) {
3410 new_length = 2 * array->length();
3411 }
3412
3413 Handle<FixedArray> new_array =
3414 isolate()->factory()->NewFixedArray(new_length, TENURED);
3415 for (int i = 0; i < array->length(); i++) {
3416 new_array->set(i, array->get(i));
3417 }
3418 for (int i = array->length(); i < length; i++) {
3419 new_array->set(i, isolate()->heap()->undefined_value());
3420 }
3421 isolate()->heap()->public_set_materialized_objects(*new_array);
3422 return new_array;
3095 } 3423 }
3096 3424
3097 #ifdef ENABLE_DEBUGGER_SUPPORT 3425 #ifdef ENABLE_DEBUGGER_SUPPORT
3098 3426
3099 DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer, 3427 DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
3100 int frame_index, 3428 int frame_index,
3101 bool has_arguments_adaptor, 3429 bool has_arguments_adaptor,
3102 bool has_construct_stub) { 3430 bool has_construct_stub) {
3103 FrameDescription* output_frame = deoptimizer->output_[frame_index]; 3431 FrameDescription* output_frame = deoptimizer->output_[frame_index];
3104 function_ = output_frame->GetFunction(); 3432 function_ = output_frame->GetFunction();
(...skipping 30 matching lines...) Expand all
3135 3463
3136 void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) { 3464 void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
3137 v->VisitPointer(BitCast<Object**>(&function_)); 3465 v->VisitPointer(BitCast<Object**>(&function_));
3138 v->VisitPointers(parameters_, parameters_ + parameters_count_); 3466 v->VisitPointers(parameters_, parameters_ + parameters_count_);
3139 v->VisitPointers(expression_stack_, expression_stack_ + expression_count_); 3467 v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
3140 } 3468 }
3141 3469
3142 #endif // ENABLE_DEBUGGER_SUPPORT 3470 #endif // ENABLE_DEBUGGER_SUPPORT
3143 3471
3144 } } // namespace v8::internal 3472 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/deoptimizer.h ('k') | src/heap.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698