Index: src/pathops/SkOpAngle.cpp |
diff --git a/src/pathops/SkOpAngle.cpp b/src/pathops/SkOpAngle.cpp |
index c13a51a8cca39c6da63b725ba747c30a11648597..b3a188c1e82307434d848e08dabbab16c6806e03 100644 |
--- a/src/pathops/SkOpAngle.cpp |
+++ b/src/pathops/SkOpAngle.cpp |
@@ -4,26 +4,26 @@ |
* Use of this source code is governed by a BSD-style license that can be |
* found in the LICENSE file. |
*/ |
+#include "SkIntersections.h" |
#include "SkOpAngle.h" |
#include "SkOpSegment.h" |
#include "SkPathOpsCurve.h" |
#include "SkTSort.h" |
+#if DEBUG_ANGLE |
+#include "SkString.h" |
+#endif |
+ |
/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest |
positive y. The largest angle has a positive x and a zero y. */ |
#if DEBUG_ANGLE |
- static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append, |
- bool compare) { |
+ static bool CompareResult(SkString* bugOut, int append, bool compare) { |
SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append); |
- SkDebugf("%sPart %s\n", func, bugPart[0].c_str()); |
- SkDebugf("%sPart %s\n", func, bugPart[1].c_str()); |
- SkDebugf("%sPart %s\n", func, bugPart[2].c_str()); |
return compare; |
} |
- #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \ |
- compare) |
+ #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare) |
#else |
#define COMPARE_RESULT(append, compare) compare |
#endif |
@@ -58,50 +58,51 @@ |
*/ |
// return true if lh < this < rh |
-bool SkOpAngle::after(SkOpAngle* test) { |
- SkOpAngle* lh = test; |
- SkOpAngle* rh = lh->fNext; |
- SkASSERT(lh != rh); |
+bool SkOpAngle::after(const SkOpAngle* test) const { |
+ const SkOpAngle& lh = *test; |
+ const SkOpAngle& rh = *lh.fNext; |
+ SkASSERT(&lh != &rh); |
#if DEBUG_ANGLE |
SkString bugOut; |
bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, |
- lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd, |
- lh->fStart->t(), lh->fEnd->t(), |
- segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(), |
- rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd, |
- rh->fStart->t(), rh->fEnd->t()); |
- SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() }; |
+ lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd, |
+ lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd), |
+ fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart), |
+ fSegment->t(fEnd), |
+ rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd, |
+ rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); |
#endif |
- if (lh->fComputeSector && !lh->computeSector()) { |
+ if (lh.fComputeSector && !const_cast<SkOpAngle&>(lh).computeSector()) { |
return COMPARE_RESULT(1, true); |
} |
- if (fComputeSector && !this->computeSector()) { |
+ if (fComputeSector && !const_cast<SkOpAngle*>(this)->computeSector()) { |
return COMPARE_RESULT(2, true); |
} |
- if (rh->fComputeSector && !rh->computeSector()) { |
+ if (rh.fComputeSector && !const_cast<SkOpAngle&>(rh).computeSector()) { |
return COMPARE_RESULT(3, true); |
} |
#if DEBUG_ANGLE // reset bugOut with computed sectors |
bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" |
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, |
- lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd, |
- lh->fStart->t(), lh->fEnd->t(), |
- segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(), |
- rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd, |
- rh->fStart->t(), rh->fEnd->t()); |
+ lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd, |
+ lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd), |
+ fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart), |
+ fSegment->t(fEnd), |
+ rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd, |
+ rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); |
#endif |
- bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask; |
- bool lrOverlap = lh->fSectorMask & rh->fSectorMask; |
+ bool ltrOverlap = (lh.fSectorMask | rh.fSectorMask) & fSectorMask; |
+ bool lrOverlap = lh.fSectorMask & rh.fSectorMask; |
int lrOrder; // set to -1 if either order works |
if (!lrOverlap) { // no lh/rh sector overlap |
if (!ltrOverlap) { // no lh/this/rh sector overlap |
- return COMPARE_RESULT(4, (lh->fSectorEnd > rh->fSectorStart) |
- ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart)); |
- } |
- int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f; |
+ return COMPARE_RESULT(4, (lh.fSectorEnd > rh.fSectorStart) |
+ ^ (fSectorStart > lh.fSectorEnd) ^ (fSectorStart > rh.fSectorStart)); |
+ } |
+ int lrGap = (rh.fSectorStart - lh.fSectorStart + 32) & 0x1f; |
/* A tiny change can move the start +/- 4. The order can only be determined if |
lr gap is not 12 to 20 or -12 to -20. |
-31 ..-21 1 |
@@ -114,24 +115,24 @@ |
*/ |
lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1; |
} else { |
- lrOrder = (int) lh->orderable(rh); |
+ lrOrder = (int) lh.orderable(rh); |
if (!ltrOverlap) { |
return COMPARE_RESULT(5, !lrOrder); |
} |
} |
int ltOrder; |
- SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask)); |
- if (lh->fSectorMask & fSectorMask) { |
- ltOrder = (int) lh->orderable(this); |
+ SkASSERT((lh.fSectorMask & fSectorMask) || (rh.fSectorMask & fSectorMask)); |
+ if (lh.fSectorMask & fSectorMask) { |
+ ltOrder = (int) lh.orderable(*this); |
} else { |
- int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f; |
+ int ltGap = (fSectorStart - lh.fSectorStart + 32) & 0x1f; |
ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1; |
} |
int trOrder; |
- if (rh->fSectorMask & fSectorMask) { |
+ if (rh.fSectorMask & fSectorMask) { |
trOrder = (int) orderable(rh); |
} else { |
- int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f; |
+ int trGap = (rh.fSectorStart - fSectorStart + 32) & 0x1f; |
trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1; |
} |
if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) { |
@@ -144,20 +145,20 @@ |
if (ltOrder == 0 && lrOrder == 0) { |
SkASSERT(trOrder < 0); |
// FIXME : once this is verified to work, remove one opposite angle call |
- SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh)); |
- bool ltOpposite = lh->oppositePlanes(this); |
+ SkDEBUGCODE(bool lrOpposite = lh.oppositePlanes(rh)); |
+ bool ltOpposite = lh.oppositePlanes(*this); |
SkASSERT(lrOpposite != ltOpposite); |
return COMPARE_RESULT(8, ltOpposite); |
} else if (ltOrder == 1 && trOrder == 0) { |
SkASSERT(lrOrder < 0); |
- SkDEBUGCODE(bool ltOpposite = lh->oppositePlanes(this)); |
+ SkDEBUGCODE(bool ltOpposite = lh.oppositePlanes(*this)); |
bool trOpposite = oppositePlanes(rh); |
SkASSERT(ltOpposite != trOpposite); |
return COMPARE_RESULT(9, trOpposite); |
} else if (lrOrder == 1 && trOrder == 1) { |
SkASSERT(ltOrder < 0); |
SkDEBUGCODE(bool trOpposite = oppositePlanes(rh)); |
- bool lrOpposite = lh->oppositePlanes(rh); |
+ bool lrOpposite = lh.oppositePlanes(rh); |
SkASSERT(lrOpposite != trOpposite); |
return COMPARE_RESULT(10, lrOpposite); |
} |
@@ -172,48 +173,75 @@ |
// given a line, see if the opposite curve's convex hull is all on one side |
// returns -1=not on one side 0=this CW of test 1=this CCW of test |
-int SkOpAngle::allOnOneSide(const SkOpAngle* test) { |
+int SkOpAngle::allOnOneSide(const SkOpAngle& test) const { |
SkASSERT(!fIsCurve); |
- SkASSERT(test->fIsCurve); |
- const SkDPoint& origin = test->fCurvePart[0]; |
+ SkASSERT(test.fIsCurve); |
+ const SkDPoint& origin = test.fCurvePart[0]; |
SkVector line; |
- if (segment()->verb() == SkPath::kLine_Verb) { |
- const SkPoint* linePts = segment()->pts(); |
- int lineStart = fStart->t() < fEnd->t() ? 0 : 1; |
+ if (fSegment->verb() == SkPath::kLine_Verb) { |
+ const SkPoint* linePts = fSegment->pts(); |
+ int lineStart = fStart < fEnd ? 0 : 1; |
line = linePts[lineStart ^ 1] - linePts[lineStart]; |
} else { |
SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() }; |
line = shortPts[1] - shortPts[0]; |
} |
float crosses[3]; |
- SkPath::Verb testVerb = test->segment()->verb(); |
+ SkPath::Verb testVerb = test.fSegment->verb(); |
int iMax = SkPathOpsVerbToPoints(testVerb); |
// SkASSERT(origin == test.fCurveHalf[0]); |
- const SkDCubic& testCurve = test->fCurvePart; |
- for (int index = 1; index <= iMax; ++index) { |
- float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY)); |
- float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX)); |
- crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2; |
- } |
- if (crosses[0] * crosses[1] < 0) { |
- return -1; |
- } |
- if (SkPath::kCubic_Verb == testVerb) { |
- if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) { |
+ const SkDCubic& testCurve = test.fCurvePart; |
+// do { |
+ for (int index = 1; index <= iMax; ++index) { |
+ float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY)); |
+ float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX)); |
+ crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2; |
+ } |
+ if (crosses[0] * crosses[1] < 0) { |
return -1; |
} |
- } |
- if (crosses[0]) { |
- return crosses[0] < 0; |
- } |
- if (crosses[1]) { |
- return crosses[1] < 0; |
- } |
- if (SkPath::kCubic_Verb == testVerb && crosses[2]) { |
- return crosses[2] < 0; |
- } |
+ if (SkPath::kCubic_Verb == testVerb) { |
+ if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) { |
+ return -1; |
+ } |
+ } |
+ if (crosses[0]) { |
+ return crosses[0] < 0; |
+ } |
+ if (crosses[1]) { |
+ return crosses[1] < 0; |
+ } |
+ if (SkPath::kCubic_Verb == testVerb && crosses[2]) { |
+ return crosses[2] < 0; |
+ } |
fUnorderable = true; |
return -1; |
+} |
+ |
+bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const { |
+ double absX = fabs(x); |
+ double absY = fabs(y); |
+ double length = absX < absY ? absX / 2 + absY : absX + absY / 2; |
+ int exponent; |
+ (void) frexp(length, &exponent); |
+ double epsilon = ldexp(FLT_EPSILON, exponent); |
+ SkPath::Verb verb = fSegment->verb(); |
+ SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb); |
+ // FIXME: the quad and cubic factors are made up ; determine actual values |
+ double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon; |
+ double xSlop = slop; |
+ double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ? |
+ double x1 = x - xSlop; |
+ double y1 = y + ySlop; |
+ double x_ry1 = x1 * ry; |
+ double rx_y1 = rx * y1; |
+ *result = x_ry1 < rx_y1; |
+ double x2 = x + xSlop; |
+ double y2 = y - ySlop; |
+ double x_ry2 = x2 * ry; |
+ double rx_y2 = rx * y2; |
+ bool less2 = x_ry2 < rx_y2; |
+ return *result == less2; |
} |
bool SkOpAngle::checkCrossesZero() const { |
@@ -223,94 +251,31 @@ |
return crossesZero; |
} |
-// loop looking for a pair of angle parts that are too close to be sorted |
-/* This is called after other more simple intersection and angle sorting tests have been exhausted. |
- This should be rarely called -- the test below is thorough and time consuming. |
- This checks the distance between start points; the distance between |
-*/ |
-void SkOpAngle::checkNearCoincidence() { |
- SkOpAngle* test = this; |
- do { |
- SkOpSegment* testSegment = test->segment(); |
- double testStartT = test->start()->t(); |
- SkDPoint testStartPt = testSegment->dPtAtT(testStartT); |
- double testEndT = test->end()->t(); |
- SkDPoint testEndPt = testSegment->dPtAtT(testEndT); |
- double testLenSq = testStartPt.distanceSquared(testEndPt); |
- if (0) { |
- SkDebugf("%s testLenSq=%1.9g id=%d\n", __FUNCTION__, testLenSq, testSegment->debugID()); |
- } |
- double testMidT = (testStartT + testEndT) / 2; |
- SkOpAngle* next = test; |
- while ((next = next->fNext) != this) { |
- SkOpSegment* nextSegment = next->segment(); |
- double testMidDistSq = testSegment->distSq(testMidT, next); |
- double testEndDistSq = testSegment->distSq(testEndT, next); |
- double nextStartT = next->start()->t(); |
- SkDPoint nextStartPt = nextSegment->dPtAtT(nextStartT); |
- double distSq = testStartPt.distanceSquared(nextStartPt); |
- double nextEndT = next->end()->t(); |
- double nextMidT = (nextStartT + nextEndT) / 2; |
- double nextMidDistSq = nextSegment->distSq(nextMidT, test); |
- double nextEndDistSq = nextSegment->distSq(nextEndT, test); |
- if (0) { |
- SkDebugf("%s distSq=%1.9g testId=%d nextId=%d\n", __FUNCTION__, distSq, |
- testSegment->debugID(), nextSegment->debugID()); |
- SkDebugf("%s testMidDistSq=%1.9g\n", __FUNCTION__, testMidDistSq); |
- SkDebugf("%s testEndDistSq=%1.9g\n", __FUNCTION__, testEndDistSq); |
- SkDebugf("%s nextMidDistSq=%1.9g\n", __FUNCTION__, nextMidDistSq); |
- SkDebugf("%s nextEndDistSq=%1.9g\n", __FUNCTION__, nextEndDistSq); |
- SkDPoint nextEndPt = nextSegment->dPtAtT(nextEndT); |
- double nextLenSq = nextStartPt.distanceSquared(nextEndPt); |
- SkDebugf("%s nextLenSq=%1.9g\n", __FUNCTION__, nextLenSq); |
- SkDebugf("\n"); |
- } |
- } |
- test = test->fNext; |
- } while (test->fNext != this); |
-} |
- |
-bool SkOpAngle::checkParallel(SkOpAngle* rh) { |
+bool SkOpAngle::checkParallel(const SkOpAngle& rh) const { |
SkDVector scratch[2]; |
const SkDVector* sweep, * tweep; |
- if (!this->fUnorderedSweep) { |
- sweep = this->fSweep; |
+ if (!fUnorderedSweep) { |
+ sweep = fSweep; |
} else { |
- scratch[0] = this->fCurvePart[1] - this->fCurvePart[0]; |
+ scratch[0] = fCurvePart[1] - fCurvePart[0]; |
sweep = &scratch[0]; |
} |
- if (!rh->fUnorderedSweep) { |
- tweep = rh->fSweep; |
+ if (!rh.fUnorderedSweep) { |
+ tweep = rh.fSweep; |
} else { |
- scratch[1] = rh->fCurvePart[1] - rh->fCurvePart[0]; |
+ scratch[1] = rh.fCurvePart[1] - rh.fCurvePart[0]; |
tweep = &scratch[1]; |
} |
double s0xt0 = sweep->crossCheck(*tweep); |
if (tangentsDiverge(rh, s0xt0)) { |
return s0xt0 < 0; |
} |
- // compute the perpendicular to the endpoints and see where it intersects the opposite curve |
- // if the intersections within the t range, do a cross check on those |
- bool inside; |
- if (this->endToSide(rh, &inside)) { |
- return inside; |
- } |
- if (rh->endToSide(this, &inside)) { |
- return !inside; |
- } |
- if (this->midToSide(rh, &inside)) { |
- return inside; |
- } |
- if (rh->midToSide(this, &inside)) { |
- return !inside; |
- } |
- // compute the cross check from the mid T values (last resort) |
- SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fCurvePart[0]; |
- SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0]; |
+ SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0]; |
+ SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0]; |
double m0xm1 = m0.crossCheck(m1); |
if (m0xm1 == 0) { |
- this->fUnorderable = true; |
- rh->fUnorderable = true; |
+ fUnorderable = true; |
+ rh.fUnorderable = true; |
return true; |
} |
return m0xm1 < 0; |
@@ -323,51 +288,48 @@ |
if (fComputedSector) { |
return !fUnorderable; |
} |
+// SkASSERT(fSegment->verb() != SkPath::kLine_Verb && small()); |
fComputedSector = true; |
- bool stepUp = fStart->t() < fEnd->t(); |
- const SkOpSpanBase* checkEnd = fEnd; |
- if (checkEnd->final() && stepUp) { |
+ int step = fStart < fEnd ? 1 : -1; |
+ int limit = step > 0 ? fSegment->count() : -1; |
+ int checkEnd = fEnd; |
+ do { |
+// advance end |
+ const SkOpSpan& span = fSegment->span(checkEnd); |
+ const SkOpSegment* other = span.fOther; |
+ int oCount = other->count(); |
+ for (int oIndex = 0; oIndex < oCount; ++oIndex) { |
+ const SkOpSpan& oSpan = other->span(oIndex); |
+ if (oSpan.fOther != fSegment) { |
+ continue; |
+ } |
+ if (oSpan.fOtherIndex == checkEnd) { |
+ continue; |
+ } |
+ if (!approximately_equal(oSpan.fOtherT, span.fT)) { |
+ continue; |
+ } |
+ goto recomputeSector; |
+ } |
+ checkEnd += step; |
+ } while (checkEnd != limit); |
+recomputeSector: |
+ if (checkEnd == fEnd || checkEnd - step == fEnd) { |
fUnorderable = true; |
return false; |
} |
- do { |
-// advance end |
- const SkOpSegment* other = checkEnd->segment(); |
- const SkOpSpanBase* oSpan = other->head(); |
- do { |
- if (oSpan->segment() != segment()) { |
- continue; |
- } |
- if (oSpan == checkEnd) { |
- continue; |
- } |
- if (!approximately_equal(oSpan->t(), checkEnd->t())) { |
- continue; |
- } |
- goto recomputeSector; |
- } while (!oSpan->final() && (oSpan = oSpan->upCast()->next())); |
- checkEnd = stepUp ? !checkEnd->final() |
- ? checkEnd->upCast()->next() : NULL |
- : checkEnd->prev(); |
- } while (checkEnd); |
-recomputeSector: |
- SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head() |
- : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail(); |
- if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) { |
- fUnorderable = true; |
- return false; |
- } |
- SkOpSpanBase* saveEnd = fEnd; |
- fComputedEnd = fEnd = computedEnd; |
+ int saveEnd = fEnd; |
+ fComputedEnd = fEnd = checkEnd - step; |
setSpans(); |
setSector(); |
fEnd = saveEnd; |
return !fUnorderable; |
} |
-int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) const { |
- const SkDVector* sweep = this->fSweep; |
- const SkDVector* tweep = rh->fSweep; |
+// returns -1 if overlaps 0 if no overlap cw 1 if no overlap ccw |
+int SkOpAngle::convexHullOverlaps(const SkOpAngle& rh) const { |
+ const SkDVector* sweep = fSweep; |
+ const SkDVector* tweep = rh.fSweep; |
double s0xs1 = sweep[0].crossCheck(sweep[1]); |
double s0xt0 = sweep[0].crossCheck(tweep[0]); |
double s1xt0 = sweep[1].crossCheck(tweep[0]); |
@@ -397,8 +359,8 @@ |
// if the outside sweeps are greater than 180 degress: |
// first assume the inital tangents are the ordering |
// if the midpoint direction matches the inital order, that is enough |
- SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fCurvePart[0]; |
- SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0]; |
+ SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0]; |
+ SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0]; |
double m0xm1 = m0.crossCheck(m1); |
if (s0xt0 > 0 && m0xm1 > 0) { |
return 0; |
@@ -432,30 +394,34 @@ |
return sqrt(longest) / dist; |
} |
-bool SkOpAngle::endsIntersect(SkOpAngle* rh) { |
- SkPath::Verb lVerb = this->segment()->verb(); |
- SkPath::Verb rVerb = rh->segment()->verb(); |
+bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const { |
+ SkPath::Verb lVerb = fSegment->verb(); |
+ SkPath::Verb rVerb = rh.fSegment->verb(); |
int lPts = SkPathOpsVerbToPoints(lVerb); |
int rPts = SkPathOpsVerbToPoints(rVerb); |
- SkDLine rays[] = {{{this->fCurvePart[0], rh->fCurvePart[rPts]}}, |
- {{this->fCurvePart[0], this->fCurvePart[lPts]}}}; |
+ SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}}, |
+ {{fCurvePart[0], fCurvePart[lPts]}}}; |
if (rays[0][1] == rays[1][1]) { |
return checkParallel(rh); |
} |
double smallTs[2] = {-1, -1}; |
bool limited[2] = {false, false}; |
for (int index = 0; index < 2; ++index) { |
+ const SkOpSegment& segment = index ? *rh.fSegment : *fSegment; |
+ SkIntersections i; |
int cPts = index ? rPts : lPts; |
+ (*CurveIntersectRay[cPts])(segment.pts(), rays[index], &i); |
// if the curve is a line, then the line and the ray intersect only at their crossing |
if (cPts == 1) { // line |
continue; |
} |
- const SkOpSegment& segment = index ? *rh->segment() : *this->segment(); |
- SkIntersections i; |
- (*CurveIntersectRay[cPts])(segment.pts(), rays[index], &i); |
- double tStart = index ? rh->fStart->t() : this->fStart->t(); |
- double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t(); |
- bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t()); |
+// SkASSERT(i.used() >= 1); |
+// if (i.used() <= 1) { |
+// continue; |
+// } |
+ double tStart = segment.t(index ? rh.fStart : fStart); |
+ double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd); |
+ bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd; |
double t = testAscends ? 0 : 1; |
for (int idx2 = 0; idx2 < i.used(); ++idx2) { |
double testT = i[0][idx2]; |
@@ -469,6 +435,29 @@ |
limited[index] = approximately_equal_orderable(t, tEnd); |
} |
} |
+#if 0 |
+ if (smallTs[0] < 0 && smallTs[1] < 0) { // if neither ray intersects, do endpoint sort |
+ double m0xm1 = 0; |
+ if (lVerb == SkPath::kLine_Verb) { |
+ SkASSERT(rVerb != SkPath::kLine_Verb); |
+ SkDVector m0 = rays[1][1] - fCurvePart[0]; |
+ SkDPoint endPt; |
+ endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]); |
+ SkDVector m1 = endPt - fCurvePart[0]; |
+ m0xm1 = m0.crossCheck(m1); |
+ } |
+ if (rVerb == SkPath::kLine_Verb) { |
+ SkDPoint endPt; |
+ endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]); |
+ SkDVector m0 = endPt - fCurvePart[0]; |
+ SkDVector m1 = rays[0][1] - fCurvePart[0]; |
+ m0xm1 = m0.crossCheck(m1); |
+ } |
+ if (m0xm1 != 0) { |
+ return m0xm1 < 0; |
+ } |
+ } |
+#endif |
bool sRayLonger = false; |
SkDVector sCept = {0, 0}; |
double sCeptT = -1; |
@@ -478,7 +467,7 @@ |
if (smallTs[index] < 0) { |
continue; |
} |
- const SkOpSegment& segment = index ? *rh->segment() : *this->segment(); |
+ const SkOpSegment& segment = index ? *rh.fSegment : *fSegment; |
const SkDPoint& dPt = segment.dPtAtT(smallTs[index]); |
SkDVector cept = dPt - rays[index][0]; |
// If this point is on the curve, it should have been detected earlier by ordinary |
@@ -509,7 +498,7 @@ |
double minX, minY, maxX, maxY; |
minX = minY = SK_ScalarInfinity; |
maxX = maxY = -SK_ScalarInfinity; |
- const SkDCubic& curve = index ? rh->fCurvePart : this->fCurvePart; |
+ const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart; |
int ptCount = index ? rPts : lPts; |
for (int idx2 = 0; idx2 <= ptCount; ++idx2) { |
minX = SkTMin(minX, curve[idx2].fX); |
@@ -519,7 +508,7 @@ |
} |
double maxWidth = SkTMax(maxX - minX, maxY - minY); |
delta /= maxWidth; |
- if (delta > 1e-3 && (useIntersect ^= true)) { // FIXME: move this magic number |
+ if (delta > 1e-4 && (useIntersect ^= true)) { // FIXME: move this magic number |
sRayLonger = rayLonger; |
sCept = cept; |
sCeptT = smallTs[index]; |
@@ -527,9 +516,9 @@ |
} |
} |
if (useIntersect) { |
- const SkDCubic& curve = sIndex ? rh->fCurvePart : this->fCurvePart; |
- const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment(); |
- double tStart = sIndex ? rh->fStart->t() : fStart->t(); |
+ const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart; |
+ const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment; |
+ double tStart = segment.t(sIndex ? rh.fStart : fStart); |
SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0]; |
double septDir = mid.crossCheck(sCept); |
if (!septDir) { |
@@ -541,65 +530,12 @@ |
} |
} |
-bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const { |
- const SkOpSegment* segment = this->segment(); |
- SkPath::Verb verb = segment->verb(); |
- int pts = SkPathOpsVerbToPoints(verb); |
- SkDLine rayEnd; |
- rayEnd[0].set(this->fEnd->pt()); |
- rayEnd[1] = rayEnd[0]; |
- SkDVector slopeAtEnd = (*CurveDSlopeAtT[pts])(segment->pts(), this->fEnd->t()); |
- rayEnd[1].fX += slopeAtEnd.fY; |
- rayEnd[1].fY -= slopeAtEnd.fX; |
- SkIntersections iEnd; |
- const SkOpSegment* oppSegment = rh->segment(); |
- SkPath::Verb oppVerb = oppSegment->verb(); |
- int oppPts = SkPathOpsVerbToPoints(oppVerb); |
- (*CurveIntersectRay[oppPts])(oppSegment->pts(), rayEnd, &iEnd); |
- double endDist; |
- int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist); |
- if (closestEnd < 0) { |
- return false; |
- } |
- if (!endDist) { |
- return false; |
- } |
- SkDPoint start; |
- start.set(this->fStart->pt()); |
- // OPTIMIZATION: multiple times in the code we find the max scalar |
- double minX, minY, maxX, maxY; |
- minX = minY = SK_ScalarInfinity; |
- maxX = maxY = -SK_ScalarInfinity; |
- const SkDCubic& curve = rh->fCurvePart; |
- for (int idx2 = 0; idx2 <= oppPts; ++idx2) { |
- minX = SkTMin(minX, curve[idx2].fX); |
- minY = SkTMin(minY, curve[idx2].fY); |
- maxX = SkTMax(maxX, curve[idx2].fX); |
- maxY = SkTMax(maxY, curve[idx2].fY); |
- } |
- double maxWidth = SkTMax(maxX - minX, maxY - minY); |
- endDist /= maxWidth; |
- if (endDist < 5e-11) { // empirically found |
- return false; |
- } |
- const SkDPoint* endPt = &rayEnd[0]; |
- SkDPoint oppPt = iEnd.pt(closestEnd); |
- SkDVector vLeft = *endPt - start; |
- SkDVector vRight = oppPt - start; |
- double dir = vLeft.crossCheck(vRight); |
- if (!dir) { |
- return false; |
- } |
- *inside = dir < 0; |
- return true; |
-} |
- |
// Most of the time, the first one can be found trivially by detecting the smallest sector value. |
// If all angles have the same sector value, actual sorting is required. |
-SkOpAngle* SkOpAngle::findFirst() { |
- SkOpAngle* best = this; |
+const SkOpAngle* SkOpAngle::findFirst() const { |
+ const SkOpAngle* best = this; |
int bestStart = SkTMin(fSectorStart, fSectorEnd); |
- SkOpAngle* angle = this; |
+ const SkOpAngle* angle = this; |
while ((angle = angle->fNext) != this) { |
int angleEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd); |
if (angleEnd < bestStart) { |
@@ -612,7 +548,7 @@ |
} |
} |
// back up to the first possible angle |
- SkOpAngle* firstBest = best; |
+ const SkOpAngle* firstBest = best; |
angle = best; |
int bestEnd = SkTMax(best->fSectorStart, best->fSectorEnd); |
while ((angle = angle->previous()) != firstBest) { |
@@ -636,7 +572,7 @@ |
if (angle->fStop) { |
return firstBest; |
} |
- bool orderable = best->orderable(angle); // note: may return an unorderable angle |
+ bool orderable = best->orderable(*angle); // note: may return an unorderable angle |
if (orderable == 0) { |
return angle; |
} |
@@ -703,11 +639,6 @@ |
return sector; |
} |
-SkOpGlobalState* SkOpAngle::globalState() const { |
- return this->segment()->globalState(); |
-} |
- |
- |
// OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side |
// OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side |
void SkOpAngle::insert(SkOpAngle* angle) { |
@@ -731,6 +662,9 @@ |
} |
SkOpAngle* next = fNext; |
if (next->fNext == this) { |
+ if (angle->overlap(*this)) { // angles are essentially coincident |
+ return; |
+ } |
if (singleton || angle->after(this)) { |
this->fNext = angle; |
angle->fNext = next; |
@@ -744,6 +678,9 @@ |
SkOpAngle* last = this; |
do { |
SkASSERT(last->fNext == next); |
+ if (angle->overlap(*last) || angle->overlap(*next)) { |
+ return; |
+ } |
if (angle->after(last)) { |
last->fNext = angle; |
angle->fNext = next; |
@@ -752,49 +689,48 @@ |
} |
last = next; |
next = next->fNext; |
- if (last == this) { |
- if (next->fUnorderable) { |
- fUnorderable = true; |
- } else { |
- globalState()->setAngleCoincidence(); |
- this->fNext = angle; |
- angle->fNext = next; |
- angle->fCheckCoincidence = true; |
- } |
+ if (last == this && next->fUnorderable) { |
+ fUnorderable = true; |
return; |
} |
+ SkASSERT(last != this); |
} while (true); |
} |
-SkOpSpanBase* SkOpAngle::lastMarked() const { |
+bool SkOpAngle::isHorizontal() const { |
+ return !fIsCurve && fSweep[0].fY == 0; |
+} |
+ |
+SkOpSpan* SkOpAngle::lastMarked() const { |
if (fLastMarked) { |
- if (fLastMarked->chased()) { |
+ if (fLastMarked->fChased) { |
return NULL; |
} |
- fLastMarked->setChased(true); |
+ fLastMarked->fChased = true; |
} |
return fLastMarked; |
} |
-bool SkOpAngle::loopContains(const SkOpAngle* angle) const { |
+bool SkOpAngle::loopContains(const SkOpAngle& test) const { |
if (!fNext) { |
return false; |
} |
const SkOpAngle* first = this; |
const SkOpAngle* loop = this; |
- const SkOpSegment* tSegment = angle->fStart->segment(); |
- double tStart = angle->fStart->t(); |
- double tEnd = angle->fEnd->t(); |
+ const SkOpSegment* tSegment = test.fSegment; |
+ double tStart = tSegment->span(test.fStart).fT; |
+ double tEnd = tSegment->span(test.fEnd).fT; |
do { |
- const SkOpSegment* lSegment = loop->fStart->segment(); |
+ const SkOpSegment* lSegment = loop->fSegment; |
+ // FIXME : use precisely_equal ? or compare points exactly ? |
if (lSegment != tSegment) { |
continue; |
} |
- double lStart = loop->fStart->t(); |
+ double lStart = lSegment->span(loop->fStart).fT; |
if (lStart != tEnd) { |
continue; |
} |
- double lEnd = loop->fEnd->t(); |
+ double lEnd = lSegment->span(loop->fEnd).fT; |
if (lEnd == tStart) { |
return true; |
} |
@@ -846,65 +782,39 @@ |
working = next; |
} while (working != angle); |
// it's likely that a pair of the angles are unorderable |
+#if 0 && DEBUG_ANGLE |
+ SkOpAngle* last = angle; |
+ working = angle->fNext; |
+ do { |
+ SkASSERT(last->fNext == working); |
+ last->fNext = working->fNext; |
+ SkASSERT(working->after(last)); |
+ last->fNext = working; |
+ last = working; |
+ working = working->fNext; |
+ } while (last != angle); |
+#endif |
debugValidateNext(); |
return true; |
} |
double SkOpAngle::midT() const { |
- return (fStart->t() + fEnd->t()) / 2; |
-} |
- |
-bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const { |
- const SkOpSegment* segment = this->segment(); |
- SkPath::Verb verb = segment->verb(); |
- int pts = SkPathOpsVerbToPoints(verb); |
- const SkPoint& startPt = this->fStart->pt(); |
- const SkPoint& endPt = this->fEnd->pt(); |
- SkDPoint dStartPt; |
- dStartPt.set(startPt); |
- SkDLine rayMid; |
- rayMid[0].fX = (startPt.fX + endPt.fX) / 2; |
- rayMid[0].fY = (startPt.fY + endPt.fY) / 2; |
- rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY); |
- rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX); |
- SkIntersections iMid; |
- (*CurveIntersectRay[pts])(segment->pts(), rayMid, &iMid); |
- int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt); |
- if (iOutside < 0) { |
- return false; |
- } |
- const SkOpSegment* oppSegment = rh->segment(); |
- SkPath::Verb oppVerb = oppSegment->verb(); |
- int oppPts = SkPathOpsVerbToPoints(oppVerb); |
- SkIntersections oppMid; |
- (*CurveIntersectRay[oppPts])(oppSegment->pts(), rayMid, &oppMid); |
- int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt); |
- if (oppOutside < 0) { |
- return false; |
- } |
- SkDVector iSide = iMid.pt(iOutside) - dStartPt; |
- SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt; |
- double dir = iSide.crossCheck(oppSide); |
- if (!dir) { |
- return false; |
- } |
- *inside = dir < 0; |
- return true; |
-} |
- |
-bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const { |
- int startSpan = abs(rh->fSectorStart - fSectorStart); |
+ return (fSegment->t(fStart) + fSegment->t(fEnd)) / 2; |
+} |
+ |
+bool SkOpAngle::oppositePlanes(const SkOpAngle& rh) const { |
+ int startSpan = abs(rh.fSectorStart - fSectorStart); |
return startSpan >= 8; |
} |
-bool SkOpAngle::orderable(SkOpAngle* rh) { |
+bool SkOpAngle::orderable(const SkOpAngle& rh) const { |
int result; |
if (!fIsCurve) { |
- if (!rh->fIsCurve) { |
+ if (!rh.fIsCurve) { |
double leftX = fTangentHalf.dx(); |
double leftY = fTangentHalf.dy(); |
- double rightX = rh->fTangentHalf.dx(); |
- double rightY = rh->fTangentHalf.dy(); |
+ double rightX = rh.fTangentHalf.dx(); |
+ double rightY = rh.fTangentHalf.dy(); |
double x_ry = leftX * rightY; |
double rx_y = rightX * leftY; |
if (x_ry == rx_y) { |
@@ -919,14 +829,14 @@ |
if ((result = allOnOneSide(rh)) >= 0) { |
return result; |
} |
- if (fUnorderable || approximately_zero(rh->fSide)) { |
+ if (fUnorderable || approximately_zero(rh.fSide)) { |
goto unorderable; |
} |
- } else if (!rh->fIsCurve) { |
- if ((result = rh->allOnOneSide(this)) >= 0) { |
+ } else if (!rh.fIsCurve) { |
+ if ((result = rh.allOnOneSide(*this)) >= 0) { |
return !result; |
} |
- if (rh->fUnorderable || approximately_zero(fSide)) { |
+ if (rh.fUnorderable || approximately_zero(fSide)) { |
goto unorderable; |
} |
} |
@@ -936,8 +846,25 @@ |
return endsIntersect(rh); |
unorderable: |
fUnorderable = true; |
- rh->fUnorderable = true; |
+ rh.fUnorderable = true; |
return true; |
+} |
+ |
+bool SkOpAngle::overlap(const SkOpAngle& other) const { |
+ int min = SkTMin(fStart, fEnd); |
+ const SkOpSpan& span = fSegment->span(min); |
+ const SkOpSegment* oSeg = other.fSegment; |
+ int oMin = SkTMin(other.fStart, other.fEnd); |
+ const SkOpSpan& oSpan = oSeg->span(oMin); |
+ if (!span.fSmall && !oSpan.fSmall) { |
+ return false; |
+ } |
+ if (fSegment->span(fStart).fPt != oSeg->span(other.fStart).fPt) { |
+ return false; |
+ } |
+ // see if small span is contained by opposite span |
+ return span.fSmall ? oSeg->containsPt(fSegment->span(fEnd).fPt, other.fEnd, other.fStart) |
+ : fSegment->containsPt(oSeg->span(other.fEnd).fPt, fEnd, fStart); |
} |
// OPTIMIZE: if this shows up in a profile, add a previous pointer |
@@ -953,32 +880,26 @@ |
} while (true); |
} |
-SkOpSegment* SkOpAngle::segment() const { |
- return fStart->segment(); |
-} |
- |
-void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) { |
+void SkOpAngle::set(const SkOpSegment* segment, int start, int end) { |
+ fSegment = segment; |
fStart = start; |
fComputedEnd = fEnd = end; |
- SkASSERT(start != end); |
fNext = NULL; |
- fComputeSector = fComputedSector = fCheckCoincidence = false; |
+ fComputeSector = fComputedSector = false; |
fStop = false; |
setSpans(); |
setSector(); |
- PATH_OPS_DEBUG_CODE(fID = start->globalState()->nextAngleID()); |
} |
void SkOpAngle::setCurveHullSweep() { |
fUnorderedSweep = false; |
fSweep[0] = fCurvePart[1] - fCurvePart[0]; |
- const SkOpSegment* segment = fStart->segment(); |
- if (SkPath::kLine_Verb == segment->verb()) { |
+ if (SkPath::kLine_Verb == fSegment->verb()) { |
fSweep[1] = fSweep[0]; |
return; |
} |
fSweep[1] = fCurvePart[2] - fCurvePart[0]; |
- if (SkPath::kCubic_Verb != segment->verb()) { |
+ if (SkPath::kCubic_Verb != fSegment->verb()) { |
if (!fSweep[0].fX && !fSweep[0].fY) { |
fSweep[0] = fSweep[1]; |
} |
@@ -1012,16 +933,64 @@ |
fSweep[1] = thirdSweep; |
} |
+void SkOpAngle::setSector() { |
+ SkPath::Verb verb = fSegment->verb(); |
+ if (SkPath::kLine_Verb != verb && small()) { |
+ goto deferTilLater; |
+ } |
+ fSectorStart = findSector(verb, fSweep[0].fX, fSweep[0].fY); |
+ if (fSectorStart < 0) { |
+ goto deferTilLater; |
+ } |
+ if (!fIsCurve) { // if it's a line or line-like, note that both sectors are the same |
+ SkASSERT(fSectorStart >= 0); |
+ fSectorEnd = fSectorStart; |
+ fSectorMask = 1 << fSectorStart; |
+ return; |
+ } |
+ SkASSERT(SkPath::kLine_Verb != verb); |
+ fSectorEnd = findSector(verb, fSweep[1].fX, fSweep[1].fY); |
+ if (fSectorEnd < 0) { |
+deferTilLater: |
+ fSectorStart = fSectorEnd = -1; |
+ fSectorMask = 0; |
+ fComputeSector = true; // can't determine sector until segment length can be found |
+ return; |
+ } |
+ if (fSectorEnd == fSectorStart) { |
+ SkASSERT((fSectorStart & 3) != 3); // if the sector has no span, it can't be an exact angle |
+ fSectorMask = 1 << fSectorStart; |
+ return; |
+ } |
+ bool crossesZero = checkCrossesZero(); |
+ int start = SkTMin(fSectorStart, fSectorEnd); |
+ bool curveBendsCCW = (fSectorStart == start) ^ crossesZero; |
+ // bump the start and end of the sector span if they are on exact compass points |
+ if ((fSectorStart & 3) == 3) { |
+ fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f; |
+ } |
+ if ((fSectorEnd & 3) == 3) { |
+ fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f; |
+ } |
+ crossesZero = checkCrossesZero(); |
+ start = SkTMin(fSectorStart, fSectorEnd); |
+ int end = SkTMax(fSectorStart, fSectorEnd); |
+ if (!crossesZero) { |
+ fSectorMask = (unsigned) -1 >> (31 - end + start) << start; |
+ } else { |
+ fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end); |
+ } |
+} |
+ |
void SkOpAngle::setSpans() { |
- fUnorderable = false; |
+ fUnorderable = fSegment->isTiny(this); |
fLastMarked = NULL; |
- const SkOpSegment* segment = fStart->segment(); |
- const SkPoint* pts = segment->pts(); |
+ const SkPoint* pts = fSegment->pts(); |
SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY |
= SK_ScalarNaN); |
- segment->subDivide(fStart, fEnd, &fCurvePart); |
+ fSegment->subDivide(fStart, fEnd, &fCurvePart); |
setCurveHullSweep(); |
- const SkPath::Verb verb = segment->verb(); |
+ const SkPath::Verb verb = fSegment->verb(); |
if (verb != SkPath::kLine_Verb |
&& !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) { |
SkDLine lineHalf; |
@@ -1033,9 +1002,9 @@ |
switch (verb) { |
case SkPath::kLine_Verb: { |
SkASSERT(fStart != fEnd); |
- const SkPoint& cP1 = pts[fStart->t() < fEnd->t()]; |
+ const SkPoint& cP1 = pts[fStart < fEnd]; |
SkDLine lineHalf; |
- lineHalf[0].set(fStart->pt()); |
+ lineHalf[0].set(fSegment->span(fStart).fPt); |
lineHalf[1].set(cP1); |
fTangentHalf.lineEndPoints(lineHalf); |
fSide = 0; |
@@ -1054,8 +1023,8 @@ |
double testTs[4]; |
// OPTIMIZATION: keep inflections precomputed with cubic segment? |
int testCount = SkDCubic::FindInflections(pts, testTs); |
- double startT = fStart->t(); |
- double endT = fEnd->t(); |
+ double startT = fSegment->t(fStart); |
+ double endT = fSegment->t(fEnd); |
double limitT = endT; |
int index; |
for (index = 0; index < testCount; ++index) { |
@@ -1095,63 +1064,19 @@ |
} |
} |
-void SkOpAngle::setSector() { |
- const SkOpSegment* segment = fStart->segment(); |
- SkPath::Verb verb = segment->verb(); |
- fSectorStart = this->findSector(verb, fSweep[0].fX, fSweep[0].fY); |
- if (fSectorStart < 0) { |
- goto deferTilLater; |
- } |
- if (!fIsCurve) { // if it's a line or line-like, note that both sectors are the same |
- SkASSERT(fSectorStart >= 0); |
- fSectorEnd = fSectorStart; |
- fSectorMask = 1 << fSectorStart; |
- return; |
- } |
- SkASSERT(SkPath::kLine_Verb != verb); |
- fSectorEnd = this->findSector(verb, fSweep[1].fX, fSweep[1].fY); |
- if (fSectorEnd < 0) { |
-deferTilLater: |
- fSectorStart = fSectorEnd = -1; |
- fSectorMask = 0; |
- fComputeSector = true; // can't determine sector until segment length can be found |
- return; |
- } |
- if (fSectorEnd == fSectorStart |
- && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle |
- fSectorMask = 1 << fSectorStart; |
- return; |
- } |
- bool crossesZero = this->checkCrossesZero(); |
- int start = SkTMin(fSectorStart, fSectorEnd); |
- bool curveBendsCCW = (fSectorStart == start) ^ crossesZero; |
- // bump the start and end of the sector span if they are on exact compass points |
- if ((fSectorStart & 3) == 3) { |
- fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f; |
- } |
- if ((fSectorEnd & 3) == 3) { |
- fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f; |
- } |
- crossesZero = this->checkCrossesZero(); |
- start = SkTMin(fSectorStart, fSectorEnd); |
- int end = SkTMax(fSectorStart, fSectorEnd); |
- if (!crossesZero) { |
- fSectorMask = (unsigned) -1 >> (31 - end + start) << start; |
- } else { |
- fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end); |
- } |
-} |
- |
-int SkOpAngle::sign() const { |
- SkASSERT(fStart->t() != fEnd->t()); |
- return fStart->t() < fEnd->t() ? -1 : 1; |
-} |
- |
-SkOpSpan* SkOpAngle::starter() { |
- return fStart->starter(fEnd); |
-} |
- |
-bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) const { |
+bool SkOpAngle::small() const { |
+ int min = SkMin32(fStart, fEnd); |
+ int max = SkMax32(fStart, fEnd); |
+ for (int index = min; index < max; ++index) { |
+ const SkOpSpan& mSpan = fSegment->span(index); |
+ if (!mSpan.fSmall) { |
+ return false; |
+ } |
+ } |
+ return true; |
+} |
+ |
+bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const { |
if (s0xt0 == 0) { |
return false; |
} |
@@ -1165,7 +1090,7 @@ |
// m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y) |
// m = v1.cross(v2) / v1.dot(v2) |
const SkDVector* sweep = fSweep; |
- const SkDVector* tweep = rh->fSweep; |
+ const SkDVector* tweep = rh.fSweep; |
double s0dt0 = sweep[0].dot(tweep[0]); |
if (!s0dt0) { |
return true; |
@@ -1175,6 +1100,36 @@ |
double sDist = sweep[0].length() * m; |
double tDist = tweep[0].length() * m; |
bool useS = fabs(sDist) < fabs(tDist); |
- double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist)); |
+ double mFactor = fabs(useS ? distEndRatio(sDist) : rh.distEndRatio(tDist)); |
return mFactor < 5000; // empirically found limit |
} |
+ |
+SkOpAngleSet::SkOpAngleSet() |
+ : fAngles(NULL) |
+#if DEBUG_ANGLE |
+ , fCount(0) |
+#endif |
+{ |
+} |
+ |
+SkOpAngleSet::~SkOpAngleSet() { |
+ SkDELETE(fAngles); |
+} |
+ |
+SkOpAngle& SkOpAngleSet::push_back() { |
+ if (!fAngles) { |
+ fAngles = SkNEW_ARGS(SkChunkAlloc, (2)); |
+ } |
+ void* ptr = fAngles->allocThrow(sizeof(SkOpAngle)); |
+ SkOpAngle* angle = (SkOpAngle*) ptr; |
+#if DEBUG_ANGLE |
+ angle->setID(++fCount); |
+#endif |
+ return *angle; |
+} |
+ |
+void SkOpAngleSet::reset() { |
+ if (fAngles) { |
+ fAngles->reset(); |
+ } |
+} |