| Index: src/pathops/SkDCubicIntersection.cpp | 
| diff --git a/src/pathops/SkDCubicIntersection.cpp b/src/pathops/SkDCubicIntersection.cpp | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..2fb35e182794dcec2bb86cb654a0d7d22a3b0af0 | 
| --- /dev/null | 
| +++ b/src/pathops/SkDCubicIntersection.cpp | 
| @@ -0,0 +1,704 @@ | 
| +/* | 
| + * Copyright 2012 Google Inc. | 
| + * | 
| + * Use of this source code is governed by a BSD-style license that can be | 
| + * found in the LICENSE file. | 
| + */ | 
| + | 
| +#include "SkIntersections.h" | 
| +#include "SkPathOpsCubic.h" | 
| +#include "SkPathOpsLine.h" | 
| +#include "SkPathOpsPoint.h" | 
| +#include "SkPathOpsQuad.h" | 
| +#include "SkPathOpsRect.h" | 
| +#include "SkReduceOrder.h" | 
| +#include "SkTSort.h" | 
| + | 
| +#if ONE_OFF_DEBUG | 
| +static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; | 
| +static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; | 
| +#endif | 
| + | 
| +#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 | 
| +#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 | 
| +#define SWAP_TOP_DEBUG 0 | 
| + | 
| +static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision | 
| + | 
| +static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { | 
| +    SkDCubic part = cubic.subDivide(tStart, tEnd); | 
| +    SkDQuad quad = part.toQuad(); | 
| +    // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an | 
| +    // extremely shallow quadratic? | 
| +    int order = reducer->reduce(quad); | 
| +#if DEBUG_QUAD_PART | 
| +    SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" | 
| +            " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, | 
| +            cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, | 
| +            cubic[3].fX, cubic[3].fY, tStart, tEnd); | 
| +    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" | 
| +             "  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", | 
| +            part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, | 
| +            part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, | 
| +            quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); | 
| +#if DEBUG_QUAD_PART_SHOW_SIMPLE | 
| +    SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); | 
| +    if (order > 1) { | 
| +        SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); | 
| +    } | 
| +    if (order > 2) { | 
| +        SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); | 
| +    } | 
| +    SkDebugf(")\n"); | 
| +    SkASSERT(order < 4 && order > 0); | 
| +#endif | 
| +#endif | 
| +    return order; | 
| +} | 
| + | 
| +static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, | 
| +        int order2, SkIntersections& i) { | 
| +    if (order1 == 3 && order2 == 3) { | 
| +        i.intersect(simple1, simple2); | 
| +    } else if (order1 <= 2 && order2 <= 2) { | 
| +        i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); | 
| +    } else if (order1 == 3 && order2 <= 2) { | 
| +        i.intersect(simple1, (const SkDLine&) simple2); | 
| +    } else { | 
| +        SkASSERT(order1 <= 2 && order2 == 3); | 
| +        i.intersect(simple2, (const SkDLine&) simple1); | 
| +        i.swapPts(); | 
| +    } | 
| +} | 
| + | 
| +// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently | 
| +// chase intersections near quadratic ends, requiring odd hacks to find them. | 
| +static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, | 
| +        double t2s, double t2e, double precisionScale, SkIntersections& i) { | 
| +    i.upDepth(); | 
| +    SkDCubic c1 = cubic1.subDivide(t1s, t1e); | 
| +    SkDCubic c2 = cubic2.subDivide(t2s, t2e); | 
| +    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1; | 
| +    // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) | 
| +    c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); | 
| +    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2; | 
| +    c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); | 
| +    double t1Start = t1s; | 
| +    int ts1Count = ts1.count(); | 
| +    for (int i1 = 0; i1 <= ts1Count; ++i1) { | 
| +        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; | 
| +        const double t1 = t1s + (t1e - t1s) * tEnd1; | 
| +        SkReduceOrder s1; | 
| +        int o1 = quadPart(cubic1, t1Start, t1, &s1); | 
| +        double t2Start = t2s; | 
| +        int ts2Count = ts2.count(); | 
| +        for (int i2 = 0; i2 <= ts2Count; ++i2) { | 
| +            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; | 
| +            const double t2 = t2s + (t2e - t2s) * tEnd2; | 
| +            if (&cubic1 == &cubic2 && t1Start >= t2Start) { | 
| +                t2Start = t2; | 
| +                continue; | 
| +            } | 
| +            SkReduceOrder s2; | 
| +            int o2 = quadPart(cubic2, t2Start, t2, &s2); | 
| +        #if ONE_OFF_DEBUG | 
| +            char tab[] = "                  "; | 
| +            if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 | 
| +                    && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { | 
| +                SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, | 
| +                        __FUNCTION__, t1Start, t1, t2Start, t2); | 
| +                SkIntersections xlocals; | 
| +                xlocals.allowNear(false); | 
| +                xlocals.allowFlatMeasure(true); | 
| +                intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); | 
| +                SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); | 
| +            } | 
| +        #endif | 
| +            SkIntersections locals; | 
| +            locals.allowNear(false); | 
| +            locals.allowFlatMeasure(true); | 
| +            intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); | 
| +            int tCount = locals.used(); | 
| +            for (int tIdx = 0; tIdx < tCount; ++tIdx) { | 
| +                double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; | 
| +                double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; | 
| +    // if the computed t is not sufficiently precise, iterate | 
| +                SkDPoint p1 = cubic1.ptAtT(to1); | 
| +                SkDPoint p2 = cubic2.ptAtT(to2); | 
| +                if (p1.approximatelyEqual(p2)) { | 
| +    // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller | 
| +//                    SkASSERT(!locals.isCoincident(tIdx)); | 
| +                    if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { | 
| +                        if (i.swapped()) {  //  FIXME: insert should respect swap | 
| +                            i.insert(to2, to1, p1); | 
| +                        } else { | 
| +                            i.insert(to1, to2, p1); | 
| +                        } | 
| +                    } | 
| +                } else { | 
| +/*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003% | 
| +  look for nearly coincident curves. and check each 1/16th section. | 
| +*/ | 
| +                    double offset = precisionScale / 16;  // FIXME: const is arbitrary: test, refine | 
| +                    double c1Bottom = tIdx == 0 ? 0 : | 
| +                            (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; | 
| +                    double c1Min = SkTMax(c1Bottom, to1 - offset); | 
| +                    double c1Top = tIdx == tCount - 1 ? 1 : | 
| +                            (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; | 
| +                    double c1Max = SkTMin(c1Top, to1 + offset); | 
| +                    double c2Min = SkTMax(0., to2 - offset); | 
| +                    double c2Max = SkTMin(1., to2 + offset); | 
| +                #if ONE_OFF_DEBUG | 
| +                    SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, | 
| +                            __FUNCTION__, | 
| +                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | 
| +                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | 
| +                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset | 
| +                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, | 
| +                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | 
| +                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | 
| +                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset | 
| +                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); | 
| +                    SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" | 
| +                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", | 
| +                            i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., | 
| +                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); | 
| +                    SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" | 
| +                            " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, | 
| +                            c1Max, c2Min, c2Max); | 
| +                #endif | 
| +                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); | 
| +                #if ONE_OFF_DEBUG | 
| +                    SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, | 
| +                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | 
| +                #endif | 
| +                    if (tCount > 1) { | 
| +                        c1Min = SkTMax(0., to1 - offset); | 
| +                        c1Max = SkTMin(1., to1 + offset); | 
| +                        double c2Bottom = tIdx == 0 ? to2 : | 
| +                                (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; | 
| +                        double c2Top = tIdx == tCount - 1 ? to2 : | 
| +                                (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; | 
| +                        if (c2Bottom > c2Top) { | 
| +                            SkTSwap(c2Bottom, c2Top); | 
| +                        } | 
| +                        if (c2Bottom == to2) { | 
| +                            c2Bottom = 0; | 
| +                        } | 
| +                        if (c2Top == to2) { | 
| +                            c2Top = 1; | 
| +                        } | 
| +                        c2Min = SkTMax(c2Bottom, to2 - offset); | 
| +                        c2Max = SkTMin(c2Top, to2 + offset); | 
| +                    #if ONE_OFF_DEBUG | 
| +                        SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, | 
| +                            __FUNCTION__, | 
| +                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | 
| +                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | 
| +                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset | 
| +                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, | 
| +                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | 
| +                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | 
| +                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset | 
| +                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); | 
| +                        SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" | 
| +                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", | 
| +                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, | 
| +                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); | 
| +                        SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" | 
| +                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, | 
| +                                c1Max, c2Min, c2Max); | 
| +                    #endif | 
| +                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); | 
| +                #if ONE_OFF_DEBUG | 
| +                    SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, | 
| +                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | 
| +                #endif | 
| +                        c1Min = SkTMax(c1Bottom, to1 - offset); | 
| +                        c1Max = SkTMin(c1Top, to1 + offset); | 
| +                    #if ONE_OFF_DEBUG | 
| +                        SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, | 
| +                        __FUNCTION__, | 
| +                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | 
| +                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | 
| +                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset | 
| +                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, | 
| +                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | 
| +                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | 
| +                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset | 
| +                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); | 
| +                        SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" | 
| +                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", | 
| +                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, | 
| +                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); | 
| +                        SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" | 
| +                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, | 
| +                                c1Max, c2Min, c2Max); | 
| +                    #endif | 
| +                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); | 
| +                #if ONE_OFF_DEBUG | 
| +                    SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, | 
| +                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | 
| +                #endif | 
| +                    } | 
| +          //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); | 
| +                    // FIXME: if no intersection is found, either quadratics intersected where | 
| +                    // cubics did not, or the intersection was missed. In the former case, expect | 
| +                    // the quadratics to be nearly parallel at the point of intersection, and check | 
| +                    // for that. | 
| +                } | 
| +            } | 
| +            t2Start = t2; | 
| +        } | 
| +        t1Start = t1; | 
| +    } | 
| +    i.downDepth(); | 
| +} | 
| + | 
| +    // if two ends intersect, check middle for coincidence | 
| +bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) { | 
| +    if (fUsed < 2) { | 
| +        return false; | 
| +    } | 
| +    int last = fUsed - 1; | 
| +    double tRange1 = fT[0][last] - fT[0][0]; | 
| +    double tRange2 = fT[1][last] - fT[1][0]; | 
| +    for (int index = 1; index < 5; ++index) { | 
| +        double testT1 = fT[0][0] + tRange1 * index / 5; | 
| +        double testT2 = fT[1][0] + tRange2 * index / 5; | 
| +        SkDPoint testPt1 = c1.ptAtT(testT1); | 
| +        SkDPoint testPt2 = c2.ptAtT(testT2); | 
| +        if (!testPt1.approximatelyEqual(testPt2)) { | 
| +            return false; | 
| +        } | 
| +    } | 
| +    if (fUsed > 2) { | 
| +        fPt[1] = fPt[last]; | 
| +        fT[0][1] = fT[0][last]; | 
| +        fT[1][1] = fT[1][last]; | 
| +        fUsed = 2; | 
| +    } | 
| +    fIsCoincident[0] = fIsCoincident[1] = 0x03; | 
| +    return true; | 
| +} | 
| + | 
| +#define LINE_FRACTION 0.1 | 
| + | 
| +// intersect the end of the cubic with the other. Try lines from the end to control and opposite | 
| +// end to determine range of t on opposite cubic. | 
| +bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) { | 
| +    int t1Index = start ? 0 : 3; | 
| +    double testT = (double) !start; | 
| +    bool swap = swapped(); | 
| +    // quad/quad at this point checks to see if exact matches have already been found | 
| +    // cubic/cubic can't reject so easily since cubics can intersect same point more than once | 
| +    SkDLine tmpLine; | 
| +    tmpLine[0] = tmpLine[1] = cubic2[t1Index]; | 
| +    tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; | 
| +    tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; | 
| +    SkIntersections impTs; | 
| +    impTs.allowNear(false); | 
| +    impTs.allowFlatMeasure(true); | 
| +    impTs.intersectRay(cubic1, tmpLine); | 
| +    for (int index = 0; index < impTs.used(); ++index) { | 
| +        SkDPoint realPt = impTs.pt(index); | 
| +        if (!tmpLine[0].approximatelyEqual(realPt)) { | 
| +            continue; | 
| +        } | 
| +        if (swap) { | 
| +            cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1); | 
| +        } else { | 
| +            cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2); | 
| +        } | 
| +        return true; | 
| +    } | 
| +    return false; | 
| +} | 
| + | 
| + | 
| +void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt, | 
| +        const SkDCubic& cubic1, const SkDCubic& cubic2) { | 
| +    for (int index = 0; index < fUsed; ++index) { | 
| +        if (fT[0][index] == one) { | 
| +            double oldTwo = fT[1][index]; | 
| +            if (oldTwo == two) { | 
| +                return; | 
| +            } | 
| +            SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2); | 
| +            if (mid.approximatelyEqual(fPt[index])) { | 
| +                return; | 
| +            } | 
| +        } | 
| +        if (fT[1][index] == two) { | 
| +            SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2); | 
| +            if (mid.approximatelyEqual(fPt[index])) { | 
| +                return; | 
| +            } | 
| +        } | 
| +    } | 
| +    insert(one, two, pt); | 
| +} | 
| + | 
| +void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, | 
| +                         const SkDRect& bounds2) { | 
| +    SkDLine line; | 
| +    int t1Index = start ? 0 : 3; | 
| +    double testT = (double) !start; | 
| +   // don't bother if the two cubics are connnected | 
| +    static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this | 
| +    static const int kMaxLineCubicIntersections = 3; | 
| +    SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals; | 
| +    line[0] = cubic1[t1Index]; | 
| +    // this variant looks for intersections with the end point and lines parallel to other points | 
| +    for (int index = 0; index < kPointsInCubic; ++index) { | 
| +        if (index == t1Index) { | 
| +            continue; | 
| +        } | 
| +        SkDVector dxy1 = cubic1[index] - line[0]; | 
| +        dxy1 /= SkDCubic::gPrecisionUnit; | 
| +        line[1] = line[0] + dxy1; | 
| +        SkDRect lineBounds; | 
| +        lineBounds.setBounds(line); | 
| +        if (!bounds2.intersects(&lineBounds)) { | 
| +            continue; | 
| +        } | 
| +        SkIntersections local; | 
| +        if (!local.intersect(cubic2, line)) { | 
| +            continue; | 
| +        } | 
| +        for (int idx2 = 0; idx2 < local.used(); ++idx2) { | 
| +            double foundT = local[0][idx2]; | 
| +            if (approximately_less_than_zero(foundT) | 
| +                    || approximately_greater_than_one(foundT)) { | 
| +                continue; | 
| +            } | 
| +            if (local.pt(idx2).approximatelyEqual(line[0])) { | 
| +                if (swapped()) {  // FIXME: insert should respect swap | 
| +                    insert(foundT, testT, line[0]); | 
| +                } else { | 
| +                    insert(testT, foundT, line[0]); | 
| +                } | 
| +            } else { | 
| +                tVals.push_back(foundT); | 
| +            } | 
| +        } | 
| +    } | 
| +    if (tVals.count() == 0) { | 
| +        return; | 
| +    } | 
| +    SkTQSort<double>(tVals.begin(), tVals.end() - 1); | 
| +    double tMin1 = start ? 0 : 1 - LINE_FRACTION; | 
| +    double tMax1 = start ? LINE_FRACTION : 1; | 
| +    int tIdx = 0; | 
| +    do { | 
| +        int tLast = tIdx; | 
| +        while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { | 
| +            ++tLast; | 
| +        } | 
| +        double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); | 
| +        double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); | 
| +        int lastUsed = used(); | 
| +        if (start ? tMax1 < tMin2 : tMax2 < tMin1) { | 
| +            ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); | 
| +        } | 
| +        if (lastUsed == used()) { | 
| +            tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); | 
| +            tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); | 
| +            if (start ? tMax1 < tMin2 : tMax2 < tMin1) { | 
| +                ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); | 
| +            } | 
| +        } | 
| +        tIdx = tLast + 1; | 
| +    } while (tIdx < tVals.count()); | 
| +    return; | 
| +} | 
| + | 
| +const double CLOSE_ENOUGH = 0.001; | 
| + | 
| +static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { | 
| +    if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { | 
| +        return false; | 
| +    } | 
| +    pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); | 
| +    return true; | 
| +} | 
| + | 
| +static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { | 
| +    int last = i.used() - 1; | 
| +    if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { | 
| +        return false; | 
| +    } | 
| +    pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); | 
| +    return true; | 
| +} | 
| + | 
| +static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { | 
| +// the idea here is to see at minimum do a quick reject by rotating all points | 
| +// to either side of the line formed by connecting the endpoints | 
| +// if the opposite curves points are on the line or on the other side, the | 
| +// curves at most intersect at the endpoints | 
| +    for (int oddMan = 0; oddMan < 4; ++oddMan) { | 
| +        const SkDPoint* endPt[3]; | 
| +        for (int opp = 1; opp < 4; ++opp) { | 
| +            int end = oddMan ^ opp;  // choose a value not equal to oddMan | 
| +            endPt[opp - 1] = &c1[end]; | 
| +        } | 
| +        for (int triTest = 0; triTest < 3; ++triTest) { | 
| +            double origX = endPt[triTest]->fX; | 
| +            double origY = endPt[triTest]->fY; | 
| +            int oppTest = triTest + 1; | 
| +            if (3 == oppTest) { | 
| +                oppTest = 0; | 
| +            } | 
| +            double adj = endPt[oppTest]->fX - origX; | 
| +            double opp = endPt[oppTest]->fY - origY; | 
| +            if (adj == 0 && opp == 0) {  // if the other point equals the test point, ignore it | 
| +                continue; | 
| +            } | 
| +            double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp; | 
| +            if (approximately_zero(sign)) { | 
| +                goto tryNextHalfPlane; | 
| +            } | 
| +            for (int n = 0; n < 4; ++n) { | 
| +                double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp; | 
| +                if (test * sign > 0 && !precisely_zero(test)) { | 
| +                    goto tryNextHalfPlane; | 
| +                } | 
| +            } | 
| +        } | 
| +        return true; | 
| +tryNextHalfPlane: | 
| +        ; | 
| +    } | 
| +    return false; | 
| +} | 
| + | 
| +int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { | 
| +    if (fMax == 0) { | 
| +        fMax = 9; | 
| +    } | 
| +    bool selfIntersect = &c1 == &c2; | 
| +    if (selfIntersect) { | 
| +        if (c1[0].approximatelyEqual(c1[3])) { | 
| +            insert(0, 1, c1[0]); | 
| +            return fUsed; | 
| +        } | 
| +    } else { | 
| +        // OPTIMIZATION: set exact end bits here to avoid cubic exact end later | 
| +        for (int i1 = 0; i1 < 4; i1 += 3) { | 
| +            for (int i2 = 0; i2 < 4; i2 += 3) { | 
| +                if (c1[i1].approximatelyEqual(c2[i2])) { | 
| +                    insert(i1 >> 1, i2 >> 1, c1[i1]); | 
| +                } | 
| +            } | 
| +        } | 
| +    } | 
| +    SkASSERT(fUsed < 4); | 
| +    if (!selfIntersect) { | 
| +        if (only_end_pts_in_common(c1, c2)) { | 
| +            return fUsed; | 
| +        } | 
| +        if (only_end_pts_in_common(c2, c1)) { | 
| +            return fUsed; | 
| +        } | 
| +    } | 
| +    // quad/quad does linear test here -- cubic does not | 
| +    // cubics which are really lines should have been detected in reduce step earlier | 
| +    int exactEndBits = 0; | 
| +    if (selfIntersect) { | 
| +        if (fUsed) { | 
| +            return fUsed; | 
| +        } | 
| +    } else { | 
| +        exactEndBits |= cubicExactEnd(c1, false, c2) << 0; | 
| +        exactEndBits |= cubicExactEnd(c1, true, c2) << 1; | 
| +        swap(); | 
| +        exactEndBits |= cubicExactEnd(c2, false, c1) << 2; | 
| +        exactEndBits |= cubicExactEnd(c2, true, c1) << 3; | 
| +        swap(); | 
| +    } | 
| +    if (cubicCheckCoincidence(c1, c2)) { | 
| +        SkASSERT(!selfIntersect); | 
| +        return fUsed; | 
| +    } | 
| +    // FIXME: pass in cached bounds from caller | 
| +    SkDRect c2Bounds; | 
| +    c2Bounds.setBounds(c2); | 
| +    if (!(exactEndBits & 4)) { | 
| +        cubicNearEnd(c1, false, c2, c2Bounds); | 
| +    } | 
| +    if (!(exactEndBits & 8)) { | 
| +        if (selfIntersect && fUsed) { | 
| +            return fUsed; | 
| +        } | 
| +        cubicNearEnd(c1, true, c2, c2Bounds); | 
| +        if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0]) | 
| +                    && approximately_less_than_zero(fT[1][0])) | 
| +                    || (approximately_greater_than_one(fT[0][0]) | 
| +                    && approximately_greater_than_one(fT[1][0])))) { | 
| +            SkASSERT(fUsed == 1); | 
| +            fUsed = 0; | 
| +            return fUsed; | 
| +        } | 
| +    } | 
| +    if (!selfIntersect) { | 
| +        SkDRect c1Bounds; | 
| +        c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ? | 
| +        swap(); | 
| +        if (!(exactEndBits & 1)) { | 
| +            cubicNearEnd(c2, false, c1, c1Bounds); | 
| +        } | 
| +        if (!(exactEndBits & 2)) { | 
| +            cubicNearEnd(c2, true, c1, c1Bounds); | 
| +        } | 
| +        swap(); | 
| +    } | 
| +    if (cubicCheckCoincidence(c1, c2)) { | 
| +        SkASSERT(!selfIntersect); | 
| +        return fUsed; | 
| +    } | 
| +    SkIntersections i; | 
| +    i.fAllowNear = false; | 
| +    i.fFlatMeasure = true; | 
| +    i.fMax = 9; | 
| +    ::intersect(c1, 0, 1, c2, 0, 1, 1, i); | 
| +    int compCount = i.used(); | 
| +    if (compCount) { | 
| +        int exactCount = used(); | 
| +        if (exactCount == 0) { | 
| +            *this = i; | 
| +        } else { | 
| +            // at least one is exact or near, and at least one was computed. Eliminate duplicates | 
| +            for (int exIdx = 0; exIdx < exactCount; ++exIdx) { | 
| +                for (int cpIdx = 0; cpIdx < compCount; ) { | 
| +                    if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { | 
| +                        i.removeOne(cpIdx); | 
| +                        --compCount; | 
| +                        continue; | 
| +                    } | 
| +                    double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; | 
| +                    SkDPoint pt = c1.ptAtT(tAvg); | 
| +                    if (!pt.approximatelyEqual(fPt[exIdx])) { | 
| +                        ++cpIdx; | 
| +                        continue; | 
| +                    } | 
| +                    tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; | 
| +                    pt = c2.ptAtT(tAvg); | 
| +                    if (!pt.approximatelyEqual(fPt[exIdx])) { | 
| +                        ++cpIdx; | 
| +                        continue; | 
| +                    } | 
| +                    i.removeOne(cpIdx); | 
| +                    --compCount; | 
| +                } | 
| +            } | 
| +            // if mid t evaluates to nearly the same point, skip the t | 
| +            for (int cpIdx = 0; cpIdx < compCount - 1; ) { | 
| +                double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; | 
| +                SkDPoint pt = c1.ptAtT(tAvg); | 
| +                if (!pt.approximatelyEqual(fPt[cpIdx])) { | 
| +                    ++cpIdx; | 
| +                    continue; | 
| +                } | 
| +                tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; | 
| +                pt = c2.ptAtT(tAvg); | 
| +                if (!pt.approximatelyEqual(fPt[cpIdx])) { | 
| +                    ++cpIdx; | 
| +                    continue; | 
| +                } | 
| +                i.removeOne(cpIdx); | 
| +                --compCount; | 
| +            } | 
| +            // in addition to adding below missing function, think about how to say | 
| +            append(i); | 
| +        } | 
| +    } | 
| +    // If an end point and a second point very close to the end is returned, the second | 
| +    // point may have been detected because the approximate quads | 
| +    // intersected at the end and close to it. Verify that the second point is valid. | 
| +    if (fUsed <= 1) { | 
| +        return fUsed; | 
| +    } | 
| +    SkDPoint pt[2]; | 
| +    if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) | 
| +            && pt[0].approximatelyEqual(pt[1])) { | 
| +        removeOne(1); | 
| +    } | 
| +    if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) | 
| +            && pt[0].approximatelyEqual(pt[1])) { | 
| +        removeOne(used() - 2); | 
| +    } | 
| +    // vet the pairs of t values to see if the mid value is also on the curve. If so, mark | 
| +    // the span as coincident | 
| +    if (fUsed >= 2 && !coincidentUsed()) { | 
| +        int last = fUsed - 1; | 
| +        int match = 0; | 
| +        for (int index = 0; index < last; ++index) { | 
| +            double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; | 
| +            double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; | 
| +            pt[0] = c1.ptAtT(mid1); | 
| +            pt[1] = c2.ptAtT(mid2); | 
| +            if (pt[0].approximatelyEqual(pt[1])) { | 
| +                match |= 1 << index; | 
| +            } | 
| +        } | 
| +        if (match) { | 
| +#if DEBUG_CONCIDENT | 
| +            if (((match + 1) & match) != 0) { | 
| +                SkDebugf("%s coincident hole\n", __FUNCTION__); | 
| +            } | 
| +#endif | 
| +            // for now, assume that everything from start to finish is coincident | 
| +            if (fUsed > 2) { | 
| +                  fPt[1] = fPt[last]; | 
| +                  fT[0][1] = fT[0][last]; | 
| +                  fT[1][1] = fT[1][last]; | 
| +                  fIsCoincident[0] = 0x03; | 
| +                  fIsCoincident[1] = 0x03; | 
| +                  fUsed = 2; | 
| +            } | 
| +        } | 
| +    } | 
| +    return fUsed; | 
| +} | 
| + | 
| +// Up promote the quad to a cubic. | 
| +// OPTIMIZATION If this is a common use case, optimize by duplicating | 
| +// the intersect 3 loop to avoid the promotion  / demotion code | 
| +int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { | 
| +    fMax = 7; | 
| +    SkDCubic up = quad.toCubic(); | 
| +    (void) intersect(cubic, up); | 
| +    return used(); | 
| +} | 
| + | 
| +/* http://www.ag.jku.at/compass/compasssample.pdf | 
| +( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen | 
| +Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no | 
| +SINTEF Applied Mathematics http://www.sintef.no ) | 
| +describes a method to find the self intersection of a cubic by taking the gradient of the implicit | 
| +form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ | 
| + | 
| +int SkIntersections::intersect(const SkDCubic& c) { | 
| +    fMax = 1; | 
| +    // check to see if x or y end points are the extrema. Are other quick rejects possible? | 
| +    if (c.endsAreExtremaInXOrY()) { | 
| +        return false; | 
| +    } | 
| +    // OPTIMIZATION: could quick reject if neither end point tangent ray intersected the line | 
| +    // segment formed by the opposite end point to the control point | 
| +    (void) intersect(c, c); | 
| +    if (used() > 1) { | 
| +        fUsed = 0; | 
| +    } else if (used() > 0) { | 
| +        if (approximately_equal_double(fT[0][0], fT[1][0])) { | 
| +            fUsed = 0; | 
| +        } else { | 
| +            SkASSERT(used() == 1); | 
| +            if (fT[0][0] > fT[1][0]) { | 
| +                swapPts(); | 
| +            } | 
| +        } | 
| +    } | 
| +    return used(); | 
| +} | 
|  |