| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "PathOpsTestCommon.h" | 7 #include "PathOpsTestCommon.h" |
| 8 #include "SkPathOpsBounds.h" | 8 #include "SkPathOpsBounds.h" |
| 9 #include "SkPathOpsCubic.h" | 9 #include "SkPathOpsCubic.h" |
| 10 #include "SkPathOpsLine.h" | 10 #include "SkPathOpsLine.h" |
| 11 #include "SkPathOpsQuad.h" | 11 #include "SkPathOpsQuad.h" |
| 12 #include "SkReduceOrder.h" | 12 #include "SkPathOpsTriangle.h" |
| 13 #include "SkTSort.h" | |
| 14 | |
| 15 static double calc_t_div(const SkDCubic& cubic, double precision, double start)
{ | |
| 16 const double adjust = sqrt(3.) / 36; | |
| 17 SkDCubic sub; | |
| 18 const SkDCubic* cPtr; | |
| 19 if (start == 0) { | |
| 20 cPtr = &cubic; | |
| 21 } else { | |
| 22 // OPTIMIZE: special-case half-split ? | |
| 23 sub = cubic.subDivide(start, 1); | |
| 24 cPtr = ⊂ | |
| 25 } | |
| 26 const SkDCubic& c = *cPtr; | |
| 27 double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; | |
| 28 double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; | |
| 29 double dist = sqrt(dx * dx + dy * dy); | |
| 30 double tDiv3 = precision / (adjust * dist); | |
| 31 double t = SkDCubeRoot(tDiv3); | |
| 32 if (start > 0) { | |
| 33 t = start + (1 - start) * t; | |
| 34 } | |
| 35 return t; | |
| 36 } | |
| 37 | |
| 38 static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<doub
le, true>* ts) { | |
| 39 double tDiv = calc_t_div(cubic, precision, 0); | |
| 40 if (tDiv >= 1) { | |
| 41 return true; | |
| 42 } | |
| 43 if (tDiv >= 0.5) { | |
| 44 ts->push_back(0.5); | |
| 45 return true; | |
| 46 } | |
| 47 return false; | |
| 48 } | |
| 49 | |
| 50 static void addTs(const SkDCubic& cubic, double precision, double start, double
end, | |
| 51 SkTArray<double, true>* ts) { | |
| 52 double tDiv = calc_t_div(cubic, precision, 0); | |
| 53 double parts = ceil(1.0 / tDiv); | |
| 54 for (double index = 0; index < parts; ++index) { | |
| 55 double newT = start + (index / parts) * (end - start); | |
| 56 if (newT > 0 && newT < 1) { | |
| 57 ts->push_back(newT); | |
| 58 } | |
| 59 } | |
| 60 } | |
| 61 | |
| 62 static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<doub
le, true>* ts) { | |
| 63 SkReduceOrder reducer; | |
| 64 int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics); | |
| 65 if (order < 3) { | |
| 66 return; | |
| 67 } | |
| 68 double inflectT[5]; | |
| 69 int inflections = cubic->findInflections(inflectT); | |
| 70 SkASSERT(inflections <= 2); | |
| 71 if (!cubic->endsAreExtremaInXOrY()) { | |
| 72 inflections += cubic->findMaxCurvature(&inflectT[inflections]); | |
| 73 SkASSERT(inflections <= 5); | |
| 74 } | |
| 75 SkTQSort<double>(inflectT, &inflectT[inflections - 1]); | |
| 76 // OPTIMIZATION: is this filtering common enough that it needs to be pulled
out into its | |
| 77 // own subroutine? | |
| 78 while (inflections && approximately_less_than_zero(inflectT[0])) { | |
| 79 memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); | |
| 80 } | |
| 81 int start = 0; | |
| 82 int next = 1; | |
| 83 while (next < inflections) { | |
| 84 if (!approximately_equal(inflectT[start], inflectT[next])) { | |
| 85 ++start; | |
| 86 ++next; | |
| 87 continue; | |
| 88 } | |
| 89 memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--infl
ections - start)); | |
| 90 } | |
| 91 | |
| 92 while (inflections && approximately_greater_than_one(inflectT[inflections -
1])) { | |
| 93 --inflections; | |
| 94 } | |
| 95 SkDCubicPair pair; | |
| 96 if (inflections == 1) { | |
| 97 pair = cubic->chopAt(inflectT[0]); | |
| 98 int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics
); | |
| 99 if (orderP1 < 2) { | |
| 100 --inflections; | |
| 101 } else { | |
| 102 int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadr
atics); | |
| 103 if (orderP2 < 2) { | |
| 104 --inflections; | |
| 105 } | |
| 106 } | |
| 107 } | |
| 108 if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) { | |
| 109 return; | |
| 110 } | |
| 111 if (inflections == 1) { | |
| 112 pair = cubic->chopAt(inflectT[0]); | |
| 113 addTs(pair.first(), precision, 0, inflectT[0], ts); | |
| 114 addTs(pair.second(), precision, inflectT[0], 1, ts); | |
| 115 return; | |
| 116 } | |
| 117 if (inflections > 1) { | |
| 118 SkDCubic part = cubic->subDivide(0, inflectT[0]); | |
| 119 addTs(part, precision, 0, inflectT[0], ts); | |
| 120 int last = inflections - 1; | |
| 121 for (int idx = 0; idx < last; ++idx) { | |
| 122 part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]); | |
| 123 addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); | |
| 124 } | |
| 125 part = cubic->subDivide(inflectT[last], 1); | |
| 126 addTs(part, precision, inflectT[last], 1, ts); | |
| 127 return; | |
| 128 } | |
| 129 addTs(*cubic, precision, 0, 1, ts); | |
| 130 } | |
| 131 | 13 |
| 132 void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, tru
e>& quads) { | 14 void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, tru
e>& quads) { |
| 133 SkTArray<double, true> ts; | 15 SkTArray<double, true> ts; |
| 134 toQuadraticTs(&cubic, precision, &ts); | 16 cubic.toQuadraticTs(precision, &ts); |
| 135 if (ts.count() <= 0) { | 17 if (ts.count() <= 0) { |
| 136 SkDQuad quad = cubic.toQuad(); | 18 SkDQuad quad = cubic.toQuad(); |
| 137 quads.push_back(quad); | 19 quads.push_back(quad); |
| 138 return; | 20 return; |
| 139 } | 21 } |
| 140 double tStart = 0; | 22 double tStart = 0; |
| 141 for (int i1 = 0; i1 <= ts.count(); ++i1) { | 23 for (int i1 = 0; i1 <= ts.count(); ++i1) { |
| 142 const double tEnd = i1 < ts.count() ? ts[i1] : 1; | 24 const double tEnd = i1 < ts.count() ? ts[i1] : 1; |
| 143 SkDCubic part = cubic.subDivide(tStart, tEnd); | 25 SkDCubic part = cubic.subDivide(tStart, tEnd); |
| 144 SkDQuad quad = part.toQuad(); | 26 SkDQuad quad = part.toQuad(); |
| (...skipping 146 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 291 | 173 |
| 292 bool ValidQuad(const SkDQuad& quad) { | 174 bool ValidQuad(const SkDQuad& quad) { |
| 293 for (int index = 0; index < 3; ++index) { | 175 for (int index = 0; index < 3; ++index) { |
| 294 if (!ValidPoint(quad[index])) { | 176 if (!ValidPoint(quad[index])) { |
| 295 return false; | 177 return false; |
| 296 } | 178 } |
| 297 } | 179 } |
| 298 return true; | 180 return true; |
| 299 } | 181 } |
| 300 | 182 |
| 183 bool ValidTriangle(const SkDTriangle& triangle) { |
| 184 for (int index = 0; index < 3; ++index) { |
| 185 if (!ValidPoint(triangle.fPts[index])) { |
| 186 return false; |
| 187 } |
| 188 } |
| 189 return true; |
| 190 } |
| 191 |
| 301 bool ValidVector(const SkDVector& v) { | 192 bool ValidVector(const SkDVector& v) { |
| 302 if (SkDoubleIsNaN(v.fX)) { | 193 if (SkDoubleIsNaN(v.fX)) { |
| 303 return false; | 194 return false; |
| 304 } | 195 } |
| 305 return !SkDoubleIsNaN(v.fY); | 196 return !SkDoubleIsNaN(v.fY); |
| 306 } | 197 } |
| OLD | NEW |