OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 #include "PathOpsTestCommon.h" | 7 #include "PathOpsTestCommon.h" |
8 #include "SkPathOpsBounds.h" | 8 #include "SkPathOpsBounds.h" |
9 #include "SkPathOpsCubic.h" | 9 #include "SkPathOpsCubic.h" |
10 #include "SkPathOpsLine.h" | 10 #include "SkPathOpsLine.h" |
11 #include "SkPathOpsQuad.h" | 11 #include "SkPathOpsQuad.h" |
12 #include "SkReduceOrder.h" | 12 #include "SkPathOpsTriangle.h" |
13 #include "SkTSort.h" | |
14 | |
15 static double calc_t_div(const SkDCubic& cubic, double precision, double start)
{ | |
16 const double adjust = sqrt(3.) / 36; | |
17 SkDCubic sub; | |
18 const SkDCubic* cPtr; | |
19 if (start == 0) { | |
20 cPtr = &cubic; | |
21 } else { | |
22 // OPTIMIZE: special-case half-split ? | |
23 sub = cubic.subDivide(start, 1); | |
24 cPtr = ⊂ | |
25 } | |
26 const SkDCubic& c = *cPtr; | |
27 double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; | |
28 double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; | |
29 double dist = sqrt(dx * dx + dy * dy); | |
30 double tDiv3 = precision / (adjust * dist); | |
31 double t = SkDCubeRoot(tDiv3); | |
32 if (start > 0) { | |
33 t = start + (1 - start) * t; | |
34 } | |
35 return t; | |
36 } | |
37 | |
38 static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<doub
le, true>* ts) { | |
39 double tDiv = calc_t_div(cubic, precision, 0); | |
40 if (tDiv >= 1) { | |
41 return true; | |
42 } | |
43 if (tDiv >= 0.5) { | |
44 ts->push_back(0.5); | |
45 return true; | |
46 } | |
47 return false; | |
48 } | |
49 | |
50 static void addTs(const SkDCubic& cubic, double precision, double start, double
end, | |
51 SkTArray<double, true>* ts) { | |
52 double tDiv = calc_t_div(cubic, precision, 0); | |
53 double parts = ceil(1.0 / tDiv); | |
54 for (double index = 0; index < parts; ++index) { | |
55 double newT = start + (index / parts) * (end - start); | |
56 if (newT > 0 && newT < 1) { | |
57 ts->push_back(newT); | |
58 } | |
59 } | |
60 } | |
61 | |
62 static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<doub
le, true>* ts) { | |
63 SkReduceOrder reducer; | |
64 int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics); | |
65 if (order < 3) { | |
66 return; | |
67 } | |
68 double inflectT[5]; | |
69 int inflections = cubic->findInflections(inflectT); | |
70 SkASSERT(inflections <= 2); | |
71 if (!cubic->endsAreExtremaInXOrY()) { | |
72 inflections += cubic->findMaxCurvature(&inflectT[inflections]); | |
73 SkASSERT(inflections <= 5); | |
74 } | |
75 SkTQSort<double>(inflectT, &inflectT[inflections - 1]); | |
76 // OPTIMIZATION: is this filtering common enough that it needs to be pulled
out into its | |
77 // own subroutine? | |
78 while (inflections && approximately_less_than_zero(inflectT[0])) { | |
79 memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); | |
80 } | |
81 int start = 0; | |
82 int next = 1; | |
83 while (next < inflections) { | |
84 if (!approximately_equal(inflectT[start], inflectT[next])) { | |
85 ++start; | |
86 ++next; | |
87 continue; | |
88 } | |
89 memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--infl
ections - start)); | |
90 } | |
91 | |
92 while (inflections && approximately_greater_than_one(inflectT[inflections -
1])) { | |
93 --inflections; | |
94 } | |
95 SkDCubicPair pair; | |
96 if (inflections == 1) { | |
97 pair = cubic->chopAt(inflectT[0]); | |
98 int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics
); | |
99 if (orderP1 < 2) { | |
100 --inflections; | |
101 } else { | |
102 int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadr
atics); | |
103 if (orderP2 < 2) { | |
104 --inflections; | |
105 } | |
106 } | |
107 } | |
108 if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) { | |
109 return; | |
110 } | |
111 if (inflections == 1) { | |
112 pair = cubic->chopAt(inflectT[0]); | |
113 addTs(pair.first(), precision, 0, inflectT[0], ts); | |
114 addTs(pair.second(), precision, inflectT[0], 1, ts); | |
115 return; | |
116 } | |
117 if (inflections > 1) { | |
118 SkDCubic part = cubic->subDivide(0, inflectT[0]); | |
119 addTs(part, precision, 0, inflectT[0], ts); | |
120 int last = inflections - 1; | |
121 for (int idx = 0; idx < last; ++idx) { | |
122 part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]); | |
123 addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); | |
124 } | |
125 part = cubic->subDivide(inflectT[last], 1); | |
126 addTs(part, precision, inflectT[last], 1, ts); | |
127 return; | |
128 } | |
129 addTs(*cubic, precision, 0, 1, ts); | |
130 } | |
131 | 13 |
132 void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, tru
e>& quads) { | 14 void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, tru
e>& quads) { |
133 SkTArray<double, true> ts; | 15 SkTArray<double, true> ts; |
134 toQuadraticTs(&cubic, precision, &ts); | 16 cubic.toQuadraticTs(precision, &ts); |
135 if (ts.count() <= 0) { | 17 if (ts.count() <= 0) { |
136 SkDQuad quad = cubic.toQuad(); | 18 SkDQuad quad = cubic.toQuad(); |
137 quads.push_back(quad); | 19 quads.push_back(quad); |
138 return; | 20 return; |
139 } | 21 } |
140 double tStart = 0; | 22 double tStart = 0; |
141 for (int i1 = 0; i1 <= ts.count(); ++i1) { | 23 for (int i1 = 0; i1 <= ts.count(); ++i1) { |
142 const double tEnd = i1 < ts.count() ? ts[i1] : 1; | 24 const double tEnd = i1 < ts.count() ? ts[i1] : 1; |
143 SkDCubic part = cubic.subDivide(tStart, tEnd); | 25 SkDCubic part = cubic.subDivide(tStart, tEnd); |
144 SkDQuad quad = part.toQuad(); | 26 SkDQuad quad = part.toQuad(); |
(...skipping 146 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
291 | 173 |
292 bool ValidQuad(const SkDQuad& quad) { | 174 bool ValidQuad(const SkDQuad& quad) { |
293 for (int index = 0; index < 3; ++index) { | 175 for (int index = 0; index < 3; ++index) { |
294 if (!ValidPoint(quad[index])) { | 176 if (!ValidPoint(quad[index])) { |
295 return false; | 177 return false; |
296 } | 178 } |
297 } | 179 } |
298 return true; | 180 return true; |
299 } | 181 } |
300 | 182 |
| 183 bool ValidTriangle(const SkDTriangle& triangle) { |
| 184 for (int index = 0; index < 3; ++index) { |
| 185 if (!ValidPoint(triangle.fPts[index])) { |
| 186 return false; |
| 187 } |
| 188 } |
| 189 return true; |
| 190 } |
| 191 |
301 bool ValidVector(const SkDVector& v) { | 192 bool ValidVector(const SkDVector& v) { |
302 if (SkDoubleIsNaN(v.fX)) { | 193 if (SkDoubleIsNaN(v.fX)) { |
303 return false; | 194 return false; |
304 } | 195 } |
305 return !SkDoubleIsNaN(v.fY); | 196 return !SkDoubleIsNaN(v.fY); |
306 } | 197 } |
OLD | NEW |