OLD | NEW |
(Empty) | |
| 1 // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c |
| 2 /* |
| 3 * Roots3And4.c |
| 4 * |
| 5 * Utility functions to find cubic and quartic roots, |
| 6 * coefficients are passed like this: |
| 7 * |
| 8 * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 |
| 9 * |
| 10 * The functions return the number of non-complex roots and |
| 11 * put the values into the s array. |
| 12 * |
| 13 * Author: Jochen Schwarze (schwarze@isa.de) |
| 14 * |
| 15 * Jan 26, 1990 Version for Graphics Gems |
| 16 * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic |
| 17 * (reported by Mark Podlipec), |
| 18 * Old-style function definitions, |
| 19 * IsZero() as a macro |
| 20 * Nov 23, 1990 Some systems do not declare acos() and cbrt() in |
| 21 * <math.h>, though the functions exist in the library. |
| 22 * If large coefficients are used, EQN_EPS should be |
| 23 * reduced considerably (e.g. to 1E-30), results will be |
| 24 * correct but multiple roots might be reported more |
| 25 * than once. |
| 26 */ |
| 27 |
| 28 #include "SkPathOpsCubic.h" |
| 29 #include "SkPathOpsQuad.h" |
| 30 #include "SkQuarticRoot.h" |
| 31 |
| 32 int SkReducedQuarticRoots(const double t4, const double t3, const double t2, con
st double t1, |
| 33 const double t0, const bool oneHint, double roots[4]) { |
| 34 #ifdef SK_DEBUG |
| 35 // create a string mathematica understands |
| 36 // GDB set print repe 15 # if repeated digits is a bother |
| 37 // set print elements 400 # if line doesn't fit |
| 38 char str[1024]; |
| 39 sk_bzero(str, sizeof(str)); |
| 40 SK_SNPRINTF(str, sizeof(str), |
| 41 "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0
, x]", |
| 42 t4, t3, t2, t1, t0); |
| 43 SkPathOpsDebug::MathematicaIze(str, sizeof(str)); |
| 44 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
| 45 SkDebugf("%s\n", str); |
| 46 #endif |
| 47 #endif |
| 48 if (approximately_zero_when_compared_to(t4, t0) // 0 is one root |
| 49 && approximately_zero_when_compared_to(t4, t1) |
| 50 && approximately_zero_when_compared_to(t4, t2)) { |
| 51 if (approximately_zero_when_compared_to(t3, t0) |
| 52 && approximately_zero_when_compared_to(t3, t1) |
| 53 && approximately_zero_when_compared_to(t3, t2)) { |
| 54 return SkDQuad::RootsReal(t2, t1, t0, roots); |
| 55 } |
| 56 if (approximately_zero_when_compared_to(t4, t3)) { |
| 57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots); |
| 58 } |
| 59 } |
| 60 if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))
// 0 is one root |
| 61 // && approximately_zero_when_compared_to(t0, t2) |
| 62 && approximately_zero_when_compared_to(t0, t3) |
| 63 && approximately_zero_when_compared_to(t0, t4)) { |
| 64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); |
| 65 for (int i = 0; i < num; ++i) { |
| 66 if (approximately_zero(roots[i])) { |
| 67 return num; |
| 68 } |
| 69 } |
| 70 roots[num++] = 0; |
| 71 return num; |
| 72 } |
| 73 if (oneHint) { |
| 74 SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0) || |
| 75 approximately_zero_when_compared_to(t4 + t3 + t2 + t1 + t0, //
1 is one root |
| 76 SkTMax(fabs(t4), SkTMax(fabs(t3), SkTMax(fabs(t2), SkTMax(fabs(t
1), fabs(t0))))))); |
| 77 // note that -C == A + B + D + E |
| 78 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); |
| 79 for (int i = 0; i < num; ++i) { |
| 80 if (approximately_equal(roots[i], 1)) { |
| 81 return num; |
| 82 } |
| 83 } |
| 84 roots[num++] = 1; |
| 85 return num; |
| 86 } |
| 87 return -1; |
| 88 } |
| 89 |
| 90 int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const
double C, |
| 91 const double D, const double E, double s[4]) { |
| 92 double u, v; |
| 93 /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ |
| 94 const double invA = 1 / A; |
| 95 const double a = B * invA; |
| 96 const double b = C * invA; |
| 97 const double c = D * invA; |
| 98 const double d = E * invA; |
| 99 /* substitute x = y - a/4 to eliminate cubic term: |
| 100 x^4 + px^2 + qx + r = 0 */ |
| 101 const double a2 = a * a; |
| 102 const double p = -3 * a2 / 8 + b; |
| 103 const double q = a2 * a / 8 - a * b / 2 + c; |
| 104 const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; |
| 105 int num; |
| 106 double largest = SkTMax(fabs(p), fabs(q)); |
| 107 if (approximately_zero_when_compared_to(r, largest)) { |
| 108 /* no absolute term: y(y^3 + py + q) = 0 */ |
| 109 num = SkDCubic::RootsReal(1, 0, p, q, s); |
| 110 s[num++] = 0; |
| 111 } else { |
| 112 /* solve the resolvent cubic ... */ |
| 113 double cubicRoots[3]; |
| 114 int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cu
bicRoots); |
| 115 int index; |
| 116 /* ... and take one real solution ... */ |
| 117 double z; |
| 118 num = 0; |
| 119 int num2 = 0; |
| 120 for (index = firstCubicRoot; index < roots; ++index) { |
| 121 z = cubicRoots[index]; |
| 122 /* ... to build two quadric equations */ |
| 123 u = z * z - r; |
| 124 v = 2 * z - p; |
| 125 if (approximately_zero_squared(u)) { |
| 126 u = 0; |
| 127 } else if (u > 0) { |
| 128 u = sqrt(u); |
| 129 } else { |
| 130 continue; |
| 131 } |
| 132 if (approximately_zero_squared(v)) { |
| 133 v = 0; |
| 134 } else if (v > 0) { |
| 135 v = sqrt(v); |
| 136 } else { |
| 137 continue; |
| 138 } |
| 139 num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s); |
| 140 num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num); |
| 141 if (!((num | num2) & 1)) { |
| 142 break; // prefer solutions without single quad roots |
| 143 } |
| 144 } |
| 145 num += num2; |
| 146 if (!num) { |
| 147 return 0; // no valid cubic root |
| 148 } |
| 149 } |
| 150 /* resubstitute */ |
| 151 const double sub = a / 4; |
| 152 for (int i = 0; i < num; ++i) { |
| 153 s[i] -= sub; |
| 154 } |
| 155 // eliminate duplicates |
| 156 for (int i = 0; i < num - 1; ++i) { |
| 157 for (int j = i + 1; j < num; ) { |
| 158 if (AlmostDequalUlps(s[i], s[j])) { |
| 159 if (j < --num) { |
| 160 s[j] = s[num]; |
| 161 } |
| 162 } else { |
| 163 ++j; |
| 164 } |
| 165 } |
| 166 } |
| 167 return num; |
| 168 } |
OLD | NEW |