Index: src/opts/Sk2x_neon.h |
diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h |
index ef61df4823a0327cc50d6331e6625fe59c6444ab..8e6e46164b9fde728303ed43854cd5798335055a 100644 |
--- a/src/opts/Sk2x_neon.h |
+++ b/src/opts/Sk2x_neon.h |
@@ -38,6 +38,18 @@ M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } |
M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } |
M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } |
+M(Sk2f) approxInvert() const { |
+ float32x2_t est0 = vrecpe_f32(fVec), |
+ est1 = vmul_f32(vrecps_f32(est0, fVec), est0); |
+ return est1; |
+} |
+ |
+M(Sk2f) invert() const { |
+ float32x2_t est1 = this->approxInvert().fVec, |
+ est2 = vmul_f32(vrecps_f32(est1, fVec), est1); |
+ return est2; |
+} |
+ |
M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } |
M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } |
M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } |
@@ -45,10 +57,7 @@ M(Sk2f) divide(const Sk2f& o) const { |
#if defined(SK_CPU_ARM64) |
return vdiv_f32(fVec, o.fVec); |
#else |
- float32x2_t est0 = vrecpe_f32(o.fVec), |
- est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0), |
- est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1); |
- return vmul_f32(est2, fVec); |
+ return vmul_f32(fVec, o.invert().fVec); |
#endif |
} |
@@ -99,6 +108,19 @@ M(Sk2f) sqrt() const { |
} |
M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); } |
+ M(Sk2d) approxInvert() const { |
+ float64x2_t est0 = vrecpeq_f64(fVec), |
+ est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0); |
+ return est1; |
+ } |
+ |
+ M(Sk2d) invert() const { |
+ float64x2_t est1 = this->approxInvert().fVec, |
+ est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1), |
+ est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2); |
+ return est3; |
+ } |
+ |
#else // Scalar implementation for 32-bit chips, which don't have float64x2_t. |
M() Sk2x() {} |
M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
@@ -126,6 +148,9 @@ M(Sk2f) sqrt() const { |
M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } |
M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } |
+ |
+ M(Sk2d) invert() const { return Sk2d(1.0 / fVec[0], 1.0 / fVec[1]); } |
+ M(Sk2d) approxInvert() const { return this->invert(); } |
#endif |
#undef M |