| Index: src/opts/Sk2x_neon.h
|
| diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h
|
| index ef61df4823a0327cc50d6331e6625fe59c6444ab..8e6e46164b9fde728303ed43854cd5798335055a 100644
|
| --- a/src/opts/Sk2x_neon.h
|
| +++ b/src/opts/Sk2x_neon.h
|
| @@ -38,6 +38,18 @@ M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; }
|
| M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); }
|
| M(void) store(float vals[2]) const { vst1_f32(vals, fVec); }
|
|
|
| +M(Sk2f) approxInvert() const {
|
| + float32x2_t est0 = vrecpe_f32(fVec),
|
| + est1 = vmul_f32(vrecps_f32(est0, fVec), est0);
|
| + return est1;
|
| +}
|
| +
|
| +M(Sk2f) invert() const {
|
| + float32x2_t est1 = this->approxInvert().fVec,
|
| + est2 = vmul_f32(vrecps_f32(est1, fVec), est1);
|
| + return est2;
|
| +}
|
| +
|
| M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); }
|
| M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); }
|
| M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); }
|
| @@ -45,10 +57,7 @@ M(Sk2f) divide(const Sk2f& o) const {
|
| #if defined(SK_CPU_ARM64)
|
| return vdiv_f32(fVec, o.fVec);
|
| #else
|
| - float32x2_t est0 = vrecpe_f32(o.fVec),
|
| - est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0),
|
| - est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1);
|
| - return vmul_f32(est2, fVec);
|
| + return vmul_f32(fVec, o.invert().fVec);
|
| #endif
|
| }
|
|
|
| @@ -99,6 +108,19 @@ M(Sk2f) sqrt() const {
|
| }
|
| M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); }
|
|
|
| + M(Sk2d) approxInvert() const {
|
| + float64x2_t est0 = vrecpeq_f64(fVec),
|
| + est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0);
|
| + return est1;
|
| + }
|
| +
|
| + M(Sk2d) invert() const {
|
| + float64x2_t est1 = this->approxInvert().fVec,
|
| + est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1),
|
| + est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2);
|
| + return est3;
|
| + }
|
| +
|
| #else // Scalar implementation for 32-bit chips, which don't have float64x2_t.
|
| M() Sk2x() {}
|
| M() Sk2x(double val) { fVec[0] = fVec[1] = val; }
|
| @@ -126,6 +148,9 @@ M(Sk2f) sqrt() const {
|
|
|
| M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); }
|
| M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); }
|
| +
|
| + M(Sk2d) invert() const { return Sk2d(1.0 / fVec[0], 1.0 / fVec[1]); }
|
| + M(Sk2d) approxInvert() const { return this->invert(); }
|
| #endif
|
|
|
| #undef M
|
|
|