| Index: media/filters/video_renderer_algorithm.cc
|
| diff --git a/media/filters/video_renderer_algorithm.cc b/media/filters/video_renderer_algorithm.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..0a2bc57f8e5b317426116c21dc9f4699e80f037f
|
| --- /dev/null
|
| +++ b/media/filters/video_renderer_algorithm.cc
|
| @@ -0,0 +1,627 @@
|
| +// Copyright 2015 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "media/filters/video_renderer_algorithm.h"
|
| +
|
| +#include <algorithm>
|
| +#include <limits>
|
| +
|
| +namespace media {
|
| +
|
| +// The number of frames to store for moving average calculations. Value picked
|
| +// after experimenting with playback of various local media and YouTube clips.
|
| +const int kMovingAverageSamples = 25;
|
| +
|
| +VideoRendererAlgorithm::ReadyFrame::ReadyFrame(
|
| + const scoped_refptr<VideoFrame>& ready_frame)
|
| + : frame(ready_frame),
|
| + ideal_render_count(0),
|
| + render_count(0),
|
| + drop_count(0) {
|
| +}
|
| +
|
| +VideoRendererAlgorithm::ReadyFrame::~ReadyFrame() {
|
| +}
|
| +
|
| +bool VideoRendererAlgorithm::ReadyFrame::operator<(
|
| + const ReadyFrame& other) const {
|
| + return frame->timestamp() < other.frame->timestamp();
|
| +}
|
| +
|
| +VideoRendererAlgorithm::VideoRendererAlgorithm(
|
| + const TimeConverterCB& time_converter_cb)
|
| + : cadence_estimator_(base::TimeDelta::FromSeconds(
|
| + kMinimumAcceptableTimeBetweenGlitchesSecs)),
|
| + time_converter_cb_(time_converter_cb),
|
| + frame_duration_calculator_(kMovingAverageSamples),
|
| + frame_dropping_disabled_(false) {
|
| + DCHECK(!time_converter_cb_.is_null());
|
| + Reset();
|
| +}
|
| +
|
| +VideoRendererAlgorithm::~VideoRendererAlgorithm() {
|
| +}
|
| +
|
| +scoped_refptr<VideoFrame> VideoRendererAlgorithm::Render(
|
| + base::TimeTicks deadline_min,
|
| + base::TimeTicks deadline_max,
|
| + size_t* frames_dropped) {
|
| + DCHECK_LT(deadline_min, deadline_max);
|
| +
|
| + if (frame_queue_.empty())
|
| + return nullptr;
|
| +
|
| + if (frames_dropped)
|
| + *frames_dropped = 0;
|
| +
|
| + // Once Render() is called |last_frame_index_| has meaning and should thus be
|
| + // preserved even if better frames come in before it due to out of order
|
| + // timestamps.
|
| + have_rendered_frames_ = true;
|
| +
|
| + // Step 1: Update the current render interval for subroutines.
|
| + render_interval_ = deadline_max - deadline_min;
|
| +
|
| + // Step 2: Figure out if any intervals have been skipped since the last call
|
| + // to Render(). If so, we assume the last frame provided was rendered during
|
| + // those intervals and adjust its render count appropriately.
|
| + AccountForMissedIntervals(deadline_min, deadline_max);
|
| + last_deadline_max_ = deadline_max;
|
| +
|
| + // Step 3: Update the wall clock timestamps and frame duration estimates for
|
| + // all frames currently in the |frame_queue_|.
|
| + if (!UpdateFrameStatistics()) {
|
| + DVLOG(2) << "Failed to update frame statistics.";
|
| +
|
| + ReadyFrame& ready_frame = frame_queue_[last_frame_index_];
|
| + DCHECK(ready_frame.frame);
|
| +
|
| + // If duration is unknown, we don't have enough frames to make a good guess
|
| + // about which frame to use, so always choose the first.
|
| + if (average_frame_duration_ == base::TimeDelta() &&
|
| + !ready_frame.wall_clock_time.is_null()) {
|
| + ++ready_frame.render_count;
|
| + }
|
| +
|
| + return ready_frame.frame;
|
| + }
|
| +
|
| + DCHECK_GT(average_frame_duration_, base::TimeDelta());
|
| +
|
| + base::TimeDelta selected_frame_drift;
|
| +
|
| + // Step 4: Attempt to find the best frame by cadence.
|
| + int frame_to_render = FindBestFrameByCadence();
|
| + if (frame_to_render >= 0) {
|
| + selected_frame_drift =
|
| + CalculateAbsoluteDriftForFrame(deadline_min, frame_to_render);
|
| + }
|
| +
|
| + // Step 5: If no frame could be found by cadence or the selected frame exceeds
|
| + // acceptable drift, try to find the best frame by coverage of the deadline.
|
| + if (frame_to_render < 0 || selected_frame_drift > max_acceptable_drift_) {
|
| + int second_best_by_coverage = -1;
|
| + const int best_by_coverage = FindBestFrameByCoverage(
|
| + deadline_min, deadline_max, &second_best_by_coverage);
|
| +
|
| + // If the frame was previously selected based on cadence, we're only here
|
| + // because the drift is too large, so even if the cadence frame has the best
|
| + // coverage, fallback to the second best by coverage if it has better drift.
|
| + if (frame_to_render == best_by_coverage && second_best_by_coverage >= 0 &&
|
| + CalculateAbsoluteDriftForFrame(deadline_min, second_best_by_coverage) <=
|
| + selected_frame_drift) {
|
| + frame_to_render = second_best_by_coverage;
|
| + } else {
|
| + frame_to_render = best_by_coverage;
|
| + }
|
| +
|
| + if (frame_to_render >= 0) {
|
| + selected_frame_drift =
|
| + CalculateAbsoluteDriftForFrame(deadline_min, frame_to_render);
|
| + }
|
| + }
|
| +
|
| + // Step 6: If _still_ no frame could be found by coverage, try to choose the
|
| + // least crappy option based on the drift from the deadline. If we're here the
|
| + // selection is going to be bad because it means no suitable frame has any
|
| + // coverage of the deadline interval.
|
| + if (frame_to_render < 0 || selected_frame_drift > max_acceptable_drift_)
|
| + frame_to_render = FindBestFrameByDrift(deadline_min, &selected_frame_drift);
|
| +
|
| + last_render_had_glitch_ = selected_frame_drift > max_acceptable_drift_;
|
| + DVLOG_IF(2, last_render_had_glitch_)
|
| + << "Frame drift is too far: " << selected_frame_drift.InMillisecondsF()
|
| + << "ms";
|
| +
|
| + DCHECK_GE(frame_to_render, 0);
|
| +
|
| + // Drop some debugging information if a frame had poor cadence.
|
| + if (cadence_estimator_.has_cadence()) {
|
| + const ReadyFrame& last_frame_info = frame_queue_[last_frame_index_];
|
| + if (static_cast<size_t>(frame_to_render) != last_frame_index_ &&
|
| + last_frame_info.render_count < last_frame_info.ideal_render_count) {
|
| + last_render_had_glitch_ = true;
|
| + DVLOG(2) << "Under-rendered frame " << last_frame_info.frame->timestamp()
|
| + << "; only " << last_frame_info.render_count
|
| + << " times instead of " << last_frame_info.ideal_render_count;
|
| + } else if (static_cast<size_t>(frame_to_render) == last_frame_index_ &&
|
| + last_frame_info.render_count >=
|
| + last_frame_info.ideal_render_count) {
|
| + DVLOG(2) << "Over-rendered frame " << last_frame_info.frame->timestamp()
|
| + << "; rendered " << last_frame_info.render_count + 1
|
| + << " times instead of " << last_frame_info.ideal_render_count;
|
| + last_render_had_glitch_ = true;
|
| + }
|
| + }
|
| +
|
| + // Step 7: Drop frames which occur prior to the frame to be rendered. If any
|
| + // frame has a zero render count it should be reported as dropped.
|
| + if (frame_to_render > 0) {
|
| + if (frames_dropped) {
|
| + for (int i = 0; i < frame_to_render; ++i) {
|
| + const ReadyFrame& frame = frame_queue_[i];
|
| + if (frame.render_count != frame.drop_count)
|
| + continue;
|
| +
|
| + // If frame dropping is disabled, ignore the results of the algorithm
|
| + // and return the earliest unrendered frame.
|
| + if (frame_dropping_disabled_) {
|
| + frame_to_render = i;
|
| + break;
|
| + }
|
| +
|
| + DVLOG(2) << "Dropping unrendered (or always dropped) frame "
|
| + << frame.frame->timestamp()
|
| + << ", wall clock: " << frame.wall_clock_time.ToInternalValue()
|
| + << " (" << frame.render_count << ", " << frame.drop_count
|
| + << ")";
|
| + ++(*frames_dropped);
|
| + if (!cadence_estimator_.has_cadence() || frame.ideal_render_count)
|
| + last_render_had_glitch_ = true;
|
| + }
|
| + }
|
| +
|
| + frame_queue_.erase(frame_queue_.begin(),
|
| + frame_queue_.begin() + frame_to_render);
|
| + }
|
| +
|
| + if (last_render_had_glitch_) {
|
| + DVLOG(2) << "Deadline: [" << deadline_min.ToInternalValue() << ", "
|
| + << deadline_max.ToInternalValue()
|
| + << "], Interval: " << render_interval_.InMicroseconds()
|
| + << ", Duration: " << average_frame_duration_.InMicroseconds();
|
| + }
|
| +
|
| + // Step 8: Congratulations, the frame selection gauntlet has been passed!
|
| + last_frame_index_ = 0;
|
| + ++frame_queue_.front().render_count;
|
| + DCHECK(frame_queue_.front().frame);
|
| + return frame_queue_.front().frame;
|
| +}
|
| +
|
| +size_t VideoRendererAlgorithm::RemoveExpiredFrames(base::TimeTicks deadline) {
|
| + // Update |last_deadline_max_| if it's no longer accurate; this should always
|
| + // be done or EffectiveFramesQueued() may never expire the last frame.
|
| + if (deadline > last_deadline_max_)
|
| + last_deadline_max_ = deadline;
|
| +
|
| + if (!UpdateFrameStatistics() || frame_queue_.size() < 2)
|
| + return 0;
|
| +
|
| + DCHECK_GT(average_frame_duration_, base::TimeDelta());
|
| +
|
| + // Finds and removes all frames which are too old to be used; I.e., the end of
|
| + // their render interval is further than |max_acceptable_drift_| from the
|
| + // given |deadline|.
|
| + size_t frames_to_expire = 0;
|
| + const base::TimeTicks minimum_frame_time =
|
| + deadline - max_acceptable_drift_ - average_frame_duration_;
|
| + for (; frames_to_expire < frame_queue_.size() - 1; ++frames_to_expire) {
|
| + if (frame_queue_[frames_to_expire].wall_clock_time >= minimum_frame_time)
|
| + break;
|
| + }
|
| +
|
| + if (!frames_to_expire)
|
| + return 0;
|
| +
|
| + frame_queue_.erase(frame_queue_.begin(),
|
| + frame_queue_.begin() + frames_to_expire);
|
| +
|
| + last_frame_index_ = last_frame_index_ > frames_to_expire
|
| + ? last_frame_index_ - frames_to_expire
|
| + : 0;
|
| + return frames_to_expire;
|
| +}
|
| +
|
| +void VideoRendererAlgorithm::OnLastFrameDropped() {
|
| + DCHECK(have_rendered_frames_);
|
| + DCHECK(!frame_queue_.empty());
|
| + // If frames were expired by RemoveExpiredFrames() this count may be zero when
|
| + // the OnLastFrameDropped() call comes in.
|
| + if (!frame_queue_[last_frame_index_].render_count)
|
| + return;
|
| +
|
| + ++frame_queue_[last_frame_index_].drop_count;
|
| + DCHECK_LE(frame_queue_[last_frame_index_].drop_count,
|
| + frame_queue_[last_frame_index_].render_count);
|
| +}
|
| +
|
| +void VideoRendererAlgorithm::Reset() {
|
| + last_frame_index_ = 0;
|
| + have_rendered_frames_ = last_render_had_glitch_ = false;
|
| + last_deadline_max_ = base::TimeTicks();
|
| + average_frame_duration_ = render_interval_ = base::TimeDelta();
|
| + frame_queue_.clear();
|
| + cadence_estimator_.Reset();
|
| + frame_duration_calculator_.Reset();
|
| +
|
| + // Default to ATSC IS/191 recommendations for maximum acceptable drift before
|
| + // we have enough frames to base the maximum on frame duration.
|
| + max_acceptable_drift_ = base::TimeDelta::FromMilliseconds(15);
|
| +}
|
| +
|
| +size_t VideoRendererAlgorithm::EffectiveFramesQueued() const {
|
| + if (frame_queue_.empty() || average_frame_duration_ == base::TimeDelta() ||
|
| + last_deadline_max_.is_null()) {
|
| + return frame_queue_.size();
|
| + }
|
| +
|
| + // If we don't have cadence, subtract off any frames which are before
|
| + // the last rendered frame or are past their expected rendering time.
|
| + if (!cadence_estimator_.has_cadence()) {
|
| + size_t expired_frames = last_frame_index_;
|
| + DCHECK_LT(last_frame_index_, frame_queue_.size());
|
| + for (; expired_frames < frame_queue_.size(); ++expired_frames) {
|
| + if (frame_queue_[expired_frames].wall_clock_time.is_null() ||
|
| + EndTimeForFrame(expired_frames) > last_deadline_max_) {
|
| + break;
|
| + }
|
| + }
|
| + return frame_queue_.size() - expired_frames;
|
| + }
|
| +
|
| + // Find the first usable frame to start counting from.
|
| + const int start_index = FindBestFrameByCadenceInternal(nullptr);
|
| + if (start_index < 0)
|
| + return 0;
|
| +
|
| + size_t renderable_frame_count = 0;
|
| + for (size_t i = start_index; i < frame_queue_.size(); ++i) {
|
| + if (frame_queue_[i].render_count < frame_queue_[i].ideal_render_count)
|
| + ++renderable_frame_count;
|
| + }
|
| +
|
| + return renderable_frame_count;
|
| +}
|
| +
|
| +void VideoRendererAlgorithm::EnqueueFrame(
|
| + const scoped_refptr<VideoFrame>& frame) {
|
| + DCHECK(frame);
|
| + DCHECK(!frame->end_of_stream());
|
| +
|
| + ReadyFrame ready_frame(frame);
|
| + auto it = frame_queue_.empty() ? frame_queue_.end()
|
| + : std::lower_bound(frame_queue_.begin(),
|
| + frame_queue_.end(), frame);
|
| + DCHECK_GE(it - frame_queue_.begin(), 0);
|
| +
|
| + // If a frame was inserted before the first frame, update the index. On the
|
| + // next call to Render() it will be dropped.
|
| + if (static_cast<size_t>(it - frame_queue_.begin()) <= last_frame_index_ &&
|
| + have_rendered_frames_) {
|
| + ++last_frame_index_;
|
| + }
|
| +
|
| + // The vast majority of cases should always append to the back, but in rare
|
| + // circumstance we get out of order timestamps, http://crbug.com/386551.
|
| + it = frame_queue_.insert(it, ready_frame);
|
| +
|
| + // Project the current cadence calculations to include the new frame. These
|
| + // may not be accurate until the next Render() call. These updates are done
|
| + // to ensure EffectiveFramesQueued() returns a semi-reliable result.
|
| + if (cadence_estimator_.has_cadence())
|
| + UpdateCadenceForFrames();
|
| +
|
| +#ifndef NDEBUG
|
| + // Verify sorted order in debug mode.
|
| + for (size_t i = 0; i < frame_queue_.size() - 1; ++i) {
|
| + DCHECK(frame_queue_[i].frame->timestamp() <=
|
| + frame_queue_[i + 1].frame->timestamp());
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +void VideoRendererAlgorithm::AccountForMissedIntervals(
|
| + base::TimeTicks deadline_min,
|
| + base::TimeTicks deadline_max) {
|
| + if (last_deadline_max_.is_null() || deadline_min <= last_deadline_max_ ||
|
| + !have_rendered_frames_) {
|
| + return;
|
| + }
|
| +
|
| + DCHECK_GT(render_interval_, base::TimeDelta());
|
| + const int64 render_cycle_count =
|
| + (deadline_min - last_deadline_max_) / render_interval_;
|
| +
|
| + // In the ideal case this value will be zero.
|
| + if (!render_cycle_count)
|
| + return;
|
| +
|
| + DVLOG(2) << "Missed " << render_cycle_count << " Render() intervals.";
|
| +
|
| + // Only update render count if the frame was rendered at all; it may not have
|
| + // been if the frame is at the head because we haven't rendered anything yet
|
| + // or because previous frames were removed via RemoveExpiredFrames().
|
| + ReadyFrame& ready_frame = frame_queue_[last_frame_index_];
|
| + if (!ready_frame.render_count)
|
| + return;
|
| +
|
| + // If the frame was never really rendered since it was dropped each attempt,
|
| + // we need to increase the drop count as well to match the new render count.
|
| + // Otherwise we won't properly count the frame as dropped when it's discarded.
|
| + // We always update the render count so FindBestFrameByCadenceInternal() can
|
| + // properly account for potentially over-rendered frames.
|
| + if (ready_frame.render_count == ready_frame.drop_count)
|
| + ready_frame.drop_count += render_cycle_count;
|
| + ready_frame.render_count += render_cycle_count;
|
| +}
|
| +
|
| +bool VideoRendererAlgorithm::UpdateFrameStatistics() {
|
| + // Figure out all current ready frame times at once so we minimize the drift
|
| + // relative to real time as the code below executes.
|
| + for (size_t i = 0; i < frame_queue_.size(); ++i) {
|
| + ReadyFrame& frame = frame_queue_[i];
|
| + const bool new_frame = frame.wall_clock_time.is_null();
|
| + frame.wall_clock_time = time_converter_cb_.Run(frame.frame->timestamp());
|
| +
|
| + // If time stops or never started, exit immediately.
|
| + if (frame.wall_clock_time.is_null())
|
| + return false;
|
| +
|
| + // TODO(dalecurtis): An unlucky tick of a playback rate change could cause
|
| + // this to skew so much that time goes backwards between calls. Fix this by
|
| + // either converting all timestamps at once or with some retry logic.
|
| + if (i > 0) {
|
| + const base::TimeDelta delta =
|
| + frame.wall_clock_time - frame_queue_[i - 1].wall_clock_time;
|
| + CHECK_GT(delta, base::TimeDelta());
|
| + if (new_frame)
|
| + frame_duration_calculator_.AddSample(delta);
|
| + }
|
| + }
|
| +
|
| + // Do we have enough frames to compute statistics?
|
| + const bool have_frame_duration = average_frame_duration_ != base::TimeDelta();
|
| + if (frame_queue_.size() < 2 && !have_frame_duration)
|
| + return false;
|
| +
|
| + // Compute |average_frame_duration_|, a moving average of the last few frames;
|
| + // see kMovingAverageSamples for the exact number.
|
| + average_frame_duration_ = frame_duration_calculator_.Average();
|
| +
|
| + // ITU-R BR.265 recommends a maximum acceptable drift of +/- half of the frame
|
| + // duration; there are other asymmetric, more lenient measures, that we're
|
| + // forgoing in favor of simplicity.
|
| + //
|
| + // We'll always allow at least 8.33ms of drift since literature suggests it's
|
| + // well below the floor of detection.
|
| + max_acceptable_drift_ = std::max(average_frame_duration_ / 2,
|
| + base::TimeDelta::FromSecondsD(1.0 / 120));
|
| +
|
| + // If we were called via RemoveExpiredFrames() and Render() was never called,
|
| + // we may not have a render interval yet.
|
| + if (render_interval_ == base::TimeDelta())
|
| + return true;
|
| +
|
| + const bool cadence_changed = cadence_estimator_.UpdateCadenceEstimate(
|
| + render_interval_, average_frame_duration_, max_acceptable_drift_);
|
| +
|
| + // No need to update cadence if there's been no change; cadence will be set
|
| + // as frames are added to the queue.
|
| + if (!cadence_changed)
|
| + return true;
|
| +
|
| + UpdateCadenceForFrames();
|
| +
|
| + // Thus far there appears to be no need for special 3:2 considerations, the
|
| + // smoothness scores seem to naturally fit that pattern based on maximizing
|
| + // frame coverage.
|
| + return true;
|
| +}
|
| +
|
| +void VideoRendererAlgorithm::UpdateCadenceForFrames() {
|
| + for (size_t i = last_frame_index_; i < frame_queue_.size(); ++i) {
|
| + // It's always okay to adjust the ideal render count, since the cadence
|
| + // selection method will still count its current render count towards
|
| + // cadence selection.
|
| + frame_queue_[i].ideal_render_count =
|
| + cadence_estimator_.has_cadence()
|
| + ? cadence_estimator_.GetCadenceForFrame(i - last_frame_index_)
|
| + : 0;
|
| + }
|
| +}
|
| +
|
| +int VideoRendererAlgorithm::FindBestFrameByCadence() {
|
| + DCHECK(!frame_queue_.empty());
|
| + if (!cadence_estimator_.has_cadence())
|
| + return -1;
|
| +
|
| + int new_ideal_render_count = 0;
|
| + const int best_frame =
|
| + FindBestFrameByCadenceInternal(&new_ideal_render_count);
|
| + if (best_frame < 0)
|
| + return -1;
|
| +
|
| + DCHECK_GT(new_ideal_render_count, 0);
|
| + frame_queue_[best_frame].ideal_render_count = new_ideal_render_count;
|
| + return best_frame;
|
| +}
|
| +
|
| +int VideoRendererAlgorithm::FindBestFrameByCadenceInternal(
|
| + int* adjusted_ideal_render_count) const {
|
| + DCHECK(!frame_queue_.empty());
|
| + DCHECK(cadence_estimator_.has_cadence());
|
| + const ReadyFrame& current_frame = frame_queue_[last_frame_index_];
|
| +
|
| + // If the current frame is below cadence, we should prefer it.
|
| + if (current_frame.render_count < current_frame.ideal_render_count) {
|
| + if (adjusted_ideal_render_count)
|
| + *adjusted_ideal_render_count = current_frame.ideal_render_count;
|
| + return last_frame_index_;
|
| + }
|
| +
|
| + // For over-rendered frames we need to ensure we skip frames and subtract
|
| + // each skipped frame's ideal cadence from the over-render count until we
|
| + // find a frame which still has a positive ideal render count.
|
| + int render_count_overage = std::max(
|
| + 0, current_frame.render_count - current_frame.ideal_render_count);
|
| +
|
| + // If the current frame is on cadence or over cadence, find the next frame
|
| + // with a positive ideal render count.
|
| + for (size_t i = last_frame_index_ + 1; i < frame_queue_.size(); ++i) {
|
| + const ReadyFrame& frame = frame_queue_[i];
|
| + if (frame.ideal_render_count > render_count_overage) {
|
| + if (adjusted_ideal_render_count) {
|
| + *adjusted_ideal_render_count =
|
| + frame.ideal_render_count - render_count_overage;
|
| + }
|
| + return i;
|
| + } else {
|
| + // The ideal render count should always be zero or smaller than the
|
| + // over-render count.
|
| + render_count_overage -= frame.ideal_render_count;
|
| + DCHECK_GE(render_count_overage, 0);
|
| + }
|
| + }
|
| +
|
| + // We don't have enough frames to find a better once by cadence.
|
| + return -1;
|
| +}
|
| +
|
| +int VideoRendererAlgorithm::FindBestFrameByCoverage(
|
| + base::TimeTicks deadline_min,
|
| + base::TimeTicks deadline_max,
|
| + int* second_best) const {
|
| + DCHECK(!frame_queue_.empty());
|
| +
|
| + // Find the frame which covers the most of the interval [deadline_min,
|
| + // deadline_max]. Frames outside of the interval are considered to have no
|
| + // coverage, while those which completely overlap the interval have complete
|
| + // coverage.
|
| + int best_frame_by_coverage = -1;
|
| + base::TimeDelta best_coverage;
|
| + std::vector<base::TimeDelta> coverage(frame_queue_.size(), base::TimeDelta());
|
| + for (size_t i = last_frame_index_; i < frame_queue_.size(); ++i) {
|
| + // Frames which start after the deadline interval have zero coverage.
|
| + if (frame_queue_[i].wall_clock_time > deadline_max)
|
| + break;
|
| +
|
| + // Clamp frame end times to a maximum of |deadline_max|.
|
| + const base::TimeTicks frame_end_time =
|
| + std::min(deadline_max, EndTimeForFrame(i));
|
| +
|
| + // Frames entirely before the deadline interval have zero coverage.
|
| + if (frame_end_time < deadline_min)
|
| + continue;
|
| +
|
| + // If we're here, the current frame overlaps the deadline in some way; so
|
| + // compute the duration of the interval which is covered.
|
| + const base::TimeDelta duration =
|
| + frame_end_time -
|
| + std::max(deadline_min, frame_queue_[i].wall_clock_time);
|
| +
|
| + coverage[i] = duration;
|
| + if (coverage[i] > best_coverage) {
|
| + best_frame_by_coverage = i;
|
| + best_coverage = coverage[i];
|
| + }
|
| + }
|
| +
|
| + // Find the second best frame by coverage; done by zeroing the coverage for
|
| + // the previous best and recomputing the maximum.
|
| + *second_best = -1;
|
| + if (best_frame_by_coverage >= 0) {
|
| + coverage[best_frame_by_coverage] = base::TimeDelta();
|
| + auto it = std::max_element(coverage.begin(), coverage.end());
|
| + if (*it > base::TimeDelta())
|
| + *second_best = it - coverage.begin();
|
| + }
|
| +
|
| + // If two frames have coverage within half a millisecond, prefer the earliest
|
| + // frame as having the best coverage. Value chosen via experimentation to
|
| + // ensure proper coverage calculation for 24fps in 60Hz where +/- 100us of
|
| + // jitter is present within the |render_interval_|. At 60Hz this works out to
|
| + // an allowed jitter of 3%.
|
| + const base::TimeDelta kAllowableJitter =
|
| + base::TimeDelta::FromMicroseconds(500);
|
| + if (*second_best >= 0 && best_frame_by_coverage > *second_best &&
|
| + (best_coverage - coverage[*second_best]).magnitude() <=
|
| + kAllowableJitter) {
|
| + std::swap(best_frame_by_coverage, *second_best);
|
| + }
|
| +
|
| + // TODO(dalecurtis): We may want to make a better decision about what to do
|
| + // when multiple frames have equivalent coverage over an interval. Jitter in
|
| + // the render interval may result in irregular frame selection which may be
|
| + // visible to a viewer.
|
| + //
|
| + // 23.974fps and 24fps in 60Hz are the most common susceptible rates, so
|
| + // extensive tests have been added to ensure these cases work properly.
|
| +
|
| + return best_frame_by_coverage;
|
| +}
|
| +
|
| +int VideoRendererAlgorithm::FindBestFrameByDrift(
|
| + base::TimeTicks deadline_min,
|
| + base::TimeDelta* selected_frame_drift) const {
|
| + DCHECK(!frame_queue_.empty());
|
| +
|
| + int best_frame_by_drift = -1;
|
| + *selected_frame_drift = base::TimeDelta::Max();
|
| +
|
| + for (size_t i = last_frame_index_; i < frame_queue_.size(); ++i) {
|
| + const base::TimeDelta drift =
|
| + CalculateAbsoluteDriftForFrame(deadline_min, i);
|
| + // We use <= here to prefer the latest frame with minimum drift.
|
| + if (drift <= *selected_frame_drift) {
|
| + *selected_frame_drift = drift;
|
| + best_frame_by_drift = i;
|
| + }
|
| + }
|
| +
|
| + return best_frame_by_drift;
|
| +}
|
| +
|
| +base::TimeDelta VideoRendererAlgorithm::CalculateAbsoluteDriftForFrame(
|
| + base::TimeTicks deadline_min,
|
| + int frame_index) const {
|
| + // If the frame lies before the deadline, compute the delta against the end
|
| + // of the frame's duration.
|
| + const base::TimeTicks frame_end_time = EndTimeForFrame(frame_index);
|
| + if (frame_end_time < deadline_min)
|
| + return deadline_min - frame_end_time;
|
| +
|
| + // If the frame lies after the deadline, compute the delta against the frame's
|
| + // wall clock time.
|
| + const ReadyFrame& frame = frame_queue_[frame_index];
|
| + if (frame.wall_clock_time > deadline_min)
|
| + return frame.wall_clock_time - deadline_min;
|
| +
|
| + // Drift is zero for frames which overlap the deadline interval.
|
| + DCHECK_GE(deadline_min, frame.wall_clock_time);
|
| + DCHECK_GE(frame_end_time, deadline_min);
|
| + return base::TimeDelta();
|
| +}
|
| +
|
| +base::TimeTicks VideoRendererAlgorithm::EndTimeForFrame(
|
| + size_t frame_index) const {
|
| + DCHECK_LT(frame_index, frame_queue_.size());
|
| + DCHECK_GT(average_frame_duration_, base::TimeDelta());
|
| + return frame_index + 1 < frame_queue_.size()
|
| + ? frame_queue_[frame_index + 1].wall_clock_time
|
| + : frame_queue_[frame_index].wall_clock_time +
|
| + average_frame_duration_;
|
| +}
|
| +
|
| +} // namespace media
|
|
|