Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(142)

Side by Side Diff: src/core/Sk4x_neon.h

Issue 1021713004: Reorg Sk4x to match the pattern of SkPMFloat. (Closed) Base URL: https://skia.googlesource.com/skia@master
Patch Set: Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/core/Sk4x.h ('k') | src/core/Sk4x_portable.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // It is important _not_ to put header guards here.
2 // This file will be intentionally included three times.
3
4 #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362
5
6 #if defined(SK4X_PREAMBLE)
7 #include <arm_neon.h>
8
9 // Template metaprogramming to map scalar types to vector types.
10 template <typename T> struct SkScalarToSIMD;
11 template <> struct SkScalarToSIMD<float> { typedef float32x4_t Type; };
12 template <> struct SkScalarToSIMD<int32_t> { typedef int32x4_t Type; };
13
14 #elif defined(SK4X_PRIVATE)
15 Sk4x(float32x4_t);
16 Sk4x(int32x4_t);
17
18 typename SkScalarToSIMD<T>::Type fVec;
19
20 #else
21
22 // Vector Constructors
23 //template <> inline Sk4f::Sk4x(int32x4_t v) : fVec(vcvtq_f32_s32(v)) {}
24 template <> inline Sk4f::Sk4x(float32x4_t v) : fVec(v) {}
25 template <> inline Sk4i::Sk4x(int32x4_t v) : fVec(v) {}
26 //template <> inline Sk4i::Sk4x(float32x4_t v) : fVec(vcvtq_s32_f32(v)) {}
27
28 // Generic Methods
29 template <typename T> Sk4x<T>::Sk4x() {}
30 template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; }
31 template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) {
32 fVec = other.fVec;
33 return *this;
34 }
35
36 // Sk4f Methods
37 #define M(...) template <> inline __VA_ARGS__ Sk4f::
38
39 M() Sk4x(float v) : fVec(vdupq_n_f32(v)) {}
40 M() Sk4x(float a, float b, float c, float d) {
41 // NEON lacks an intrinsic to make this easy. It is recommended to avoid
42 // this constructor unless it is absolutely necessary.
43
44 // I am choosing to use the set lane intrinsics. Particularly, in the case
45 // of floating point, it is likely that the values are already in the right
46 // register file, so this may be the best approach. However, I am not
47 // certain that this is the fastest approach and experimentation might be
48 // useful.
49 fVec = vsetq_lane_f32(a, fVec, 0);
50 fVec = vsetq_lane_f32(b, fVec, 1);
51 fVec = vsetq_lane_f32(c, fVec, 2);
52 fVec = vsetq_lane_f32(d, fVec, 3);
53 }
54
55 // As far as I can tell, it's not possible to provide an alignment hint to
56 // NEON using intrinsics. However, I think it is possible at the assembly
57 // level if we want to get into that.
58 // TODO: Write our own aligned load and store.
59 M(Sk4f) Load (const float fs[4]) { return vld1q_f32(fs); }
60 M(Sk4f) LoadAligned(const float fs[4]) { return vld1q_f32(fs); }
61 M(void) store (float fs[4]) const { vst1q_f32(fs, fVec); }
62 M(void) storeAligned(float fs[4]) const { vst1q_f32 (fs, fVec); }
63
64 template <>
65 M(Sk4i) reinterpret<Sk4i>() const { return vreinterpretq_s32_f32(fVec); }
66
67 template <>
68 M(Sk4i) cast<Sk4i>() const { return vcvtq_s32_f32(fVec); }
69
70 // We're going to skip allTrue(), anyTrue(), and bit-manipulators
71 // for Sk4f. Code that calls them probably does so accidentally.
72 // Ask msarett or mtklein to fill these in if you really need them.
73 M(Sk4f) add (const Sk4f& o) const { return vaddq_f32(fVec, o.fVec); }
74 M(Sk4f) subtract(const Sk4f& o) const { return vsubq_f32(fVec, o.fVec); }
75 M(Sk4f) multiply(const Sk4f& o) const { return vmulq_f32(fVec, o.fVec); }
76
77 M(Sk4f) divide (const Sk4f& o) const {
78 float32x4_t est0 = vrecpeq_f32(o.fVec);
79 float32x4_t est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0);
80 float32x4_t est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1);
81 return vmulq_f32(est2, fVec);
82 }
83
84 M(Sk4f) rsqrt() const {
85 float32x4_t est0 = vrsqrteq_f32(fVec);
86 float32x4_t est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0 );
87 float32x4_t est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1 );
88 return est2;
89 }
90
91 M(Sk4f) sqrt() const { return this->multiply(this->rsqrt()); }
92
93 M(Sk4i) equal (const Sk4f& o) const { return vreinterpretq_s32_u32(vce qq_f32(fVec, o.fVec)); }
94 M(Sk4i) notEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vmv nq_u32(vceqq_f32(fVec, o.fVec))); }
95 M(Sk4i) lessThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcl tq_f32(fVec, o.fVec)); }
96 M(Sk4i) greaterThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcg tq_f32(fVec, o.fVec)); }
97 M(Sk4i) lessThanEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vcl eq_f32(fVec, o.fVec)); }
98 M(Sk4i) greaterThanEqual(const Sk4f& o) const { return vreinterpretq_s32_u32(vcg eq_f32(fVec, o.fVec)); }
99
100 M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return vminq_f32(a.fVec, b.fVec); }
101 M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return vmaxq_f32(a.fVec, b.fVec); }
102
103 // These shuffle operations are implemented more efficiently with SSE.
104 // NEON has efficient zip, unzip, and transpose, but it is more costly to
105 // exploit zip and unzip in order to shuffle.
106 M(Sk4f) zwxy() const {
107 float32x4x2_t zip = vzipq_f32(fVec, vdupq_n_f32(0.0));
108 return vuzpq_f32(zip.val[1], zip.val[0]).val[0];
109 }
110 // Note that XYAB and ZWCD share code. If both are needed, they could be
111 // implemented more efficiently together. Also, ABXY and CDZW are available
112 // as well.
113 M(Sk4f) XYAB(const Sk4f& xyzw, const Sk4f& abcd) {
114 float32x4x2_t xayb_zcwd = vzipq_f32(xyzw.fVec, abcd.fVec);
115 float32x4x2_t axby_czdw = vzipq_f32(abcd.fVec, xyzw.fVec);
116 return vuzpq_f32(xayb_zcwd.val[0], axby_czdw.val[0]).val[0];
117 }
118 M(Sk4f) ZWCD(const Sk4f& xyzw, const Sk4f& abcd) {
119 float32x4x2_t xayb_zcwd = vzipq_f32(xyzw.fVec, abcd.fVec);
120 float32x4x2_t axby_czdw = vzipq_f32(abcd.fVec, xyzw.fVec);
121 return vuzpq_f32(xayb_zcwd.val[1], axby_czdw.val[1]).val[0];
122 }
123
124 // Sk4i Methods
125 #undef M
126 #define M(...) template <> inline __VA_ARGS__ Sk4i::
127
128 M() Sk4x(int32_t v) : fVec(vdupq_n_s32(v)) {}
129 M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) {
130 // NEON lacks an intrinsic to make this easy. It is recommended to avoid
131 // this constructor unless it is absolutely necessary.
132
133 // There are a few different implementation strategies.
134
135 // uint64_t ab_i = ((uint32_t) a) | (((uint64_t) b) << 32);
136 // uint64_t cd_i = ((uint32_t) c) | (((uint64_t) d) << 32);
137 // int32x2_t ab = vcreate_s32(ab_i);
138 // int32x2_t cd = vcreate_s32(cd_i);
139 // fVec = vcombine_s32(ab, cd);
140 // This might not be a bad idea for the integer case. Either way I think,
141 // we will need to move values from general registers to NEON registers.
142
143 // I am choosing to use the set lane intrinsics. I am not certain that
144 // this is the fastest approach. It may be useful to try the above code
145 // for integers.
146 fVec = vsetq_lane_s32(a, fVec, 0);
147 fVec = vsetq_lane_s32(b, fVec, 1);
148 fVec = vsetq_lane_s32(c, fVec, 2);
149 fVec = vsetq_lane_s32(d, fVec, 3);
150 }
151
152 // As far as I can tell, it's not possible to provide an alignment hint to
153 // NEON using intrinsics. However, I think it is possible at the assembly
154 // level if we want to get into that.
155 M(Sk4i) Load (const int32_t is[4]) { return vld1q_s32(is); }
156 M(Sk4i) LoadAligned(const int32_t is[4]) { return vld1q_s32(is); }
157 M(void) store (int32_t is[4]) const { vst1q_s32(is, fVec); }
158 M(void) storeAligned(int32_t is[4]) const { vst1q_s32 (is, fVec); }
159
160 template <>
161 M(Sk4f) reinterpret<Sk4f>() const { return vreinterpretq_f32_s32(fVec); }
162
163 template <>
164 M(Sk4f) cast<Sk4f>() const { return vcvtq_f32_s32(fVec); }
165
166 M(bool) allTrue() const {
167 int32_t a = vgetq_lane_s32(fVec, 0);
168 int32_t b = vgetq_lane_s32(fVec, 1);
169 int32_t c = vgetq_lane_s32(fVec, 2);
170 int32_t d = vgetq_lane_s32(fVec, 3);
171 return a & b & c & d;
172 }
173 M(bool) anyTrue() const {
174 int32_t a = vgetq_lane_s32(fVec, 0);
175 int32_t b = vgetq_lane_s32(fVec, 1);
176 int32_t c = vgetq_lane_s32(fVec, 2);
177 int32_t d = vgetq_lane_s32(fVec, 3);
178 return a | b | c | d;
179 }
180
181 M(Sk4i) bitNot() const { return vmvnq_s32(fVec); }
182 M(Sk4i) bitAnd(const Sk4i& o) const { return vandq_s32(fVec, o.fVec); }
183 M(Sk4i) bitOr (const Sk4i& o) const { return vorrq_s32(fVec, o.fVec); }
184
185 M(Sk4i) equal (const Sk4i& o) const { return vreinterpretq_s32_u32(vce qq_s32(fVec, o.fVec)); }
186 M(Sk4i) notEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vmv nq_u32(vceqq_s32(fVec, o.fVec))); }
187 M(Sk4i) lessThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcl tq_s32(fVec, o.fVec)); }
188 M(Sk4i) greaterThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcg tq_s32(fVec, o.fVec)); }
189 M(Sk4i) lessThanEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vcl eq_s32(fVec, o.fVec)); }
190 M(Sk4i) greaterThanEqual(const Sk4i& o) const { return vreinterpretq_s32_u32(vcg eq_s32(fVec, o.fVec)); }
191
192 M(Sk4i) add (const Sk4i& o) const { return vaddq_s32(fVec, o.fVec); }
193 M(Sk4i) subtract(const Sk4i& o) const { return vsubq_s32(fVec, o.fVec); }
194 M(Sk4i) multiply(const Sk4i& o) const { return vmulq_s32(fVec, o.fVec); }
195 // NEON does not have integer reciprocal, sqrt, or division.
196 M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return vminq_s32(a.fVec, b.fVec); }
197 M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return vmaxq_s32(a.fVec, b.fVec); }
198
199 // These shuffle operations are implemented more efficiently with SSE.
200 // NEON has efficient zip, unzip, and transpose, but it is more costly to
201 // exploit zip and unzip in order to shuffle.
202 M(Sk4i) zwxy() const {
203 int32x4x2_t zip = vzipq_s32(fVec, vdupq_n_s32(0.0));
204 return vuzpq_s32(zip.val[1], zip.val[0]).val[0];
205 }
206 // Note that XYAB and ZWCD share code. If both are needed, they could be
207 // implemented more efficiently together. Also, ABXY and CDZW are available
208 // as well.
209 M(Sk4i) XYAB(const Sk4i& xyzw, const Sk4i& abcd) {
210 int32x4x2_t xayb_zcwd = vzipq_s32(xyzw.fVec, abcd.fVec);
211 int32x4x2_t axby_czdw = vzipq_s32(abcd.fVec, xyzw.fVec);
212 return vuzpq_s32(xayb_zcwd.val[0], axby_czdw.val[0]).val[0];
213 }
214 M(Sk4i) ZWCD(const Sk4i& xyzw, const Sk4i& abcd) {
215 int32x4x2_t xayb_zcwd = vzipq_s32(xyzw.fVec, abcd.fVec);
216 int32x4x2_t axby_czdw = vzipq_s32(abcd.fVec, xyzw.fVec);
217 return vuzpq_s32(xayb_zcwd.val[1], axby_czdw.val[1]).val[0];
218 }
219
220 #undef M
221
222 #endif
OLDNEW
« no previous file with comments | « src/core/Sk4x.h ('k') | src/core/Sk4x_portable.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698