Index: base/tracked_objects.cc |
diff --git a/base/tracked_objects.cc b/base/tracked_objects.cc |
index a60e260b23660b31140593f6b7e0b63652a18f8b..574745813ad20cffb09699ff1774ec24b3676e5a 100644 |
--- a/base/tracked_objects.cc |
+++ b/base/tracked_objects.cc |
@@ -37,7 +37,7 @@ const bool kTrackParentChildLinks = false; |
// record all of the startup-time tasks, or should we start up DEACTIVATED, so |
// that we only record after parsing the command line flag --enable-tracking. |
// Note that the flag may force either state, so this really controls only the |
-// period of time up until that flag is parsed. If there is no flag seen, then |
+// period of time up until that flag is parsed. If there is no flag seen, then |
// this state may prevail for much or all of the process lifetime. |
const ThreadData::Status kInitialStartupState = |
ThreadData::PROFILING_CHILDREN_ACTIVE; |
@@ -61,9 +61,10 @@ enum { |
// State of the profiler timing enabledness. |
base::subtle::Atomic32 g_profiler_timing_enabled = UNDEFINED_TIMING; |
-// Returns whether profiler timing is enabled. The default is true, but this may |
-// be overridden by a command-line flag. Some platforms may programmatically set |
-// this command-line flag to the "off" value if it's not specified. |
+// Returns whether profiler timing is enabled. The default is true, but this |
+// may be overridden by a command-line flag. Some platforms may |
+// programmatically set this command-line flag to the "off" value if it's not |
+// specified. |
// This in turn can be overridden by explicitly calling |
// ThreadData::EnableProfilerTiming, say, based on a field trial. |
inline bool IsProfilerTimingEnabled() { |
@@ -92,13 +93,40 @@ inline bool IsProfilerTimingEnabled() { |
//------------------------------------------------------------------------------ |
// DeathData tallies durations when a death takes place. |
-DeathData::DeathData() { |
- Clear(); |
-} |
- |
-DeathData::DeathData(int count) { |
- Clear(); |
- count_ = count; |
+DeathData::DeathData() |
+ : count_(0), |
+ sample_probability_count_(0), |
+ run_duration_sum_(0), |
+ queue_duration_sum_(0), |
+ run_duration_max_(0), |
+ queue_duration_max_(0), |
+ run_duration_sample_(0), |
+ queue_duration_sample_(0), |
+ last_phase_snapshot_(nullptr) { |
+} |
+ |
+DeathData::DeathData(const DeathData& other) |
+ : count_(other.count_), |
+ sample_probability_count_(other.sample_probability_count_), |
+ run_duration_sum_(other.run_duration_sum_), |
+ queue_duration_sum_(other.queue_duration_sum_), |
+ run_duration_max_(other.run_duration_max_), |
+ queue_duration_max_(other.queue_duration_max_), |
+ run_duration_sample_(other.run_duration_sample_), |
+ queue_duration_sample_(other.queue_duration_sample_), |
+ last_phase_snapshot_(nullptr) { |
+ // This constructor will be used by std::map when adding new DeathData values |
+ // to the map. At that point, last_phase_snapshot_ is still NULL, so we don't |
+ // need to worry about ownership transfer. |
+ DCHECK(other.last_phase_snapshot_ == nullptr); |
+} |
+ |
+DeathData::~DeathData() { |
+ while (last_phase_snapshot_) { |
+ const DeathDataPhaseSnapshot* snapshot = last_phase_snapshot_; |
+ last_phase_snapshot_ = snapshot->prev; |
+ delete snapshot; |
+ } |
} |
// TODO(jar): I need to see if this macro to optimize branching is worth using. |
@@ -117,6 +145,12 @@ void DeathData::RecordDeath(const int32 queue_duration, |
// We'll just clamp at INT_MAX, but we should note this in the UI as such. |
if (count_ < INT_MAX) |
++count_; |
+ |
+ int sample_probability_count = sample_probability_count_; |
Dmitry Vyukov
2015/04/28 04:14:15
This is still racy and can cause all the same effe
vadimt
2015/04/28 15:15:37
Please note that we use local variable sample_prob
Dmitry Vyukov
2015/04/28 15:24:26
This code contains a data race, sample_probability
|
+ if (sample_probability_count < INT_MAX) |
+ ++sample_probability_count; |
+ sample_probability_count_ = sample_probability_count; |
+ |
queue_duration_sum_ += queue_duration; |
run_duration_sum_ += run_duration; |
@@ -125,14 +159,16 @@ void DeathData::RecordDeath(const int32 queue_duration, |
if (run_duration_max_ < run_duration) |
run_duration_max_ = run_duration; |
- // Take a uniformly distributed sample over all durations ever supplied. |
- // The probability that we (instead) use this new sample is 1/count_. This |
- // results in a completely uniform selection of the sample (at least when we |
- // don't clamp count_... but that should be inconsequentially likely). |
- // We ignore the fact that we correlated our selection of a sample to the run |
- // and queue times (i.e., we used them to generate random_number). |
- CHECK_GT(count_, 0); |
- if (0 == (random_number % count_)) { |
+ // Take a uniformly distributed sample over all durations ever supplied during |
+ // the current profiling phase. |
+ // The probability that we (instead) use this new sample is |
+ // 1/sample_probability_count_. This results in a completely uniform selection |
+ // of the sample (at least when we don't clamp sample_probability_count_... |
+ // but that should be inconsequentially likely). We ignore the fact that we |
+ // correlated our selection of a sample to the run and queue times (i.e., we |
+ // used them to generate random_number). |
+ CHECK_GT(sample_probability_count, 0); |
+ if (0 == (random_number % sample_probability_count)) { |
queue_duration_sample_ = queue_duration; |
run_duration_sample_ = run_duration; |
} |
@@ -160,14 +196,43 @@ int32 DeathData::queue_duration_sample() const { |
return queue_duration_sample_; |
} |
-void DeathData::Clear() { |
- count_ = 0; |
- run_duration_sum_ = 0; |
+const DeathDataPhaseSnapshot* DeathData::last_phase_snapshot() const { |
+ return last_phase_snapshot_; |
+} |
+ |
+void DeathData::OnProfilingPhaseCompleted(int profiling_phase) { |
+ // Snapshotting and storing current state. |
+ last_phase_snapshot_ = new DeathDataPhaseSnapshot( |
+ profiling_phase, count_, run_duration_sum_, run_duration_max_, |
+ run_duration_sample_, queue_duration_sum_, queue_duration_max_, |
+ queue_duration_sample_, last_phase_snapshot_); |
+ |
+ // Not touching fields for which a delta can be computed by comparing with a |
+ // snapshot from the previous phase. Resetting other fields. Sample values |
+ // will be reset upon next death recording because sample_probability_count_ |
+ // is set to 0. |
+ // We avoid resetting to 0 in favor of deltas whenever possible. The reason |
+ // is that for incrementable fields, resetting to 0 from the snapshot thread |
+ // potentially in parallel with incrementing in the death thread may result in |
+ // significant data corruption that has a potential to grow with time. Not |
+ // resetting incrementable fields and using deltas will cause any |
+ // off-by-little corruptions to be likely fixed at the next snapshot. |
+ // The max values are not incrementable, and cannot be deduced using deltas |
+ // for a given phase. Hence, we have to reset them to 0. But the potential |
+ // damage is limited to getting the previous phase's max to apply for the next |
+ // phase, and the error doesn't have a potential to keep growing with new |
+ // resets. |
+ // sample_probability_count_ is incrementable, but must be reset to 0 at the |
+ // phase end, so that we start a new uniformly randomized sample selection |
+ // after the reset. Corruptions due to race conditions are possible, but the |
+ // damage is limited to selecting a wrong sample, which is not something that |
+ // can cause accumulating or cascading effects. |
+ // If there were no corruptions caused by race conditions, we never send a |
+ // sample for the previous phase in the next phase's snapshot because |
+ // ThreadData::SnapshotExecutedTasks doesn't send deltas with 0 count. |
+ sample_probability_count_ = 0; |
Dmitry Vyukov
2015/04/28 04:14:15
This store needs to be an atomic store.
vadimt
2015/04/28 15:15:37
We should try avoiding using barriers. Performance
Dmitry Vyukov
2015/04/28 15:24:26
It is you who said about barriers. I did not.
|
run_duration_max_ = 0; |
- run_duration_sample_ = 0; |
- queue_duration_sum_ = 0; |
queue_duration_max_ = 0; |
- queue_duration_sample_ = 0; |
} |
//------------------------------------------------------------------------------ |
@@ -181,20 +246,34 @@ DeathDataSnapshot::DeathDataSnapshot() |
queue_duration_sample(-1) { |
} |
-DeathDataSnapshot::DeathDataSnapshot( |
- const tracked_objects::DeathData& death_data) |
- : count(death_data.count()), |
- run_duration_sum(death_data.run_duration_sum()), |
- run_duration_max(death_data.run_duration_max()), |
- run_duration_sample(death_data.run_duration_sample()), |
- queue_duration_sum(death_data.queue_duration_sum()), |
- queue_duration_max(death_data.queue_duration_max()), |
- queue_duration_sample(death_data.queue_duration_sample()) { |
+DeathDataSnapshot::DeathDataSnapshot(int count, |
+ int32 run_duration_sum, |
+ int32 run_duration_max, |
+ int32 run_duration_sample, |
+ int32 queue_duration_sum, |
+ int32 queue_duration_max, |
+ int32 queue_duration_sample) |
+ : count(count), |
+ run_duration_sum(run_duration_sum), |
+ run_duration_max(run_duration_max), |
+ run_duration_sample(run_duration_sample), |
+ queue_duration_sum(queue_duration_sum), |
+ queue_duration_max(queue_duration_max), |
+ queue_duration_sample(queue_duration_sample) { |
} |
DeathDataSnapshot::~DeathDataSnapshot() { |
} |
+DeathDataSnapshot DeathDataSnapshot::Delta( |
+ const DeathDataSnapshot& older) const { |
+ return DeathDataSnapshot(count - older.count, |
+ run_duration_sum - older.run_duration_sum, |
+ run_duration_max, run_duration_sample, |
+ queue_duration_sum - older.queue_duration_sum, |
+ queue_duration_max, queue_duration_sample); |
+} |
+ |
//------------------------------------------------------------------------------ |
BirthOnThread::BirthOnThread(const Location& location, |
const ThreadData& current) |
@@ -206,8 +285,7 @@ BirthOnThread::BirthOnThread(const Location& location, |
BirthOnThreadSnapshot::BirthOnThreadSnapshot() { |
} |
-BirthOnThreadSnapshot::BirthOnThreadSnapshot( |
- const tracked_objects::BirthOnThread& birth) |
+BirthOnThreadSnapshot::BirthOnThreadSnapshot(const BirthOnThread& birth) |
: location(birth.location()), |
thread_name(birth.birth_thread()->thread_name()) { |
} |
@@ -238,9 +316,9 @@ NowFunction* ThreadData::now_function_ = NULL; |
// static |
bool ThreadData::now_function_is_time_ = false; |
-// A TLS slot which points to the ThreadData instance for the current thread. We |
-// do a fake initialization here (zeroing out data), and then the real in-place |
-// construction happens when we call tls_index_.Initialize(). |
+// A TLS slot which points to the ThreadData instance for the current thread. |
+// We do a fake initialization here (zeroing out data), and then the real |
+// in-place construction happens when we call tls_index_.Initialize(). |
// static |
base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER; |
@@ -288,7 +366,8 @@ ThreadData::ThreadData(int thread_number) |
PushToHeadOfList(); // Which sets real incarnation_count_for_pool_. |
} |
-ThreadData::~ThreadData() {} |
+ThreadData::~ThreadData() { |
+} |
void ThreadData::PushToHeadOfList() { |
// Toss in a hint of randomness (atop the uniniitalized value). |
@@ -361,7 +440,7 @@ ThreadData* ThreadData::Get() { |
// static |
void ThreadData::OnThreadTermination(void* thread_data) { |
DCHECK(thread_data); // TLS should *never* call us with a NULL. |
- // We must NOT do any allocations during this callback. There is a chance |
+ // We must NOT do any allocations during this callback. There is a chance |
// that the allocator is no longer active on this thread. |
reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup(); |
} |
@@ -385,9 +464,54 @@ void ThreadData::OnThreadTerminationCleanup() { |
} |
// static |
-void ThreadData::Snapshot(ProcessDataSnapshot* process_data_snapshot) { |
- ThreadData::SnapshotCurrentPhase( |
- &process_data_snapshot->phased_process_data_snapshots[0]); |
+void ThreadData::Snapshot(int current_profiling_phase, |
+ ProcessDataSnapshot* process_data_snapshot) { |
+ // Get an unchanging copy of a ThreadData list. |
+ ThreadData* my_list = ThreadData::first(); |
+ |
+ // Gather data serially. |
+ // This hackish approach *can* get some slightly corrupt tallies, as we are |
+ // grabbing values without the protection of a lock, but it has the advantage |
+ // of working even with threads that don't have message loops. If a user |
+ // sees any strangeness, they can always just run their stats gathering a |
+ // second time. |
+ BirthCountMap birth_counts; |
+ for (ThreadData* thread_data = my_list; thread_data; |
+ thread_data = thread_data->next()) { |
+ thread_data->SnapshotExecutedTasks(current_profiling_phase, |
+ &process_data_snapshot->phased_snapshots, |
+ &birth_counts); |
+ } |
+ |
+ // Add births that are still active -- i.e. objects that have tallied a birth, |
+ // but have not yet tallied a matching death, and hence must be either |
+ // running, queued up, or being held in limbo for future posting. |
+ auto* current_phase_tasks = |
+ &process_data_snapshot->phased_snapshots[current_profiling_phase].tasks; |
+ for (const auto& birth_count : birth_counts) { |
+ if (birth_count.second > 0) { |
+ current_phase_tasks->push_back( |
+ TaskSnapshot(BirthOnThreadSnapshot(*birth_count.first), |
+ DeathDataSnapshot(birth_count.second, 0, 0, 0, 0, 0, 0), |
+ "Still_Alive")); |
+ } |
+ } |
+} |
+ |
+// static |
+void ThreadData::OnProfilingPhaseCompleted(int profiling_phase) { |
+ // Get an unchanging copy of a ThreadData list. |
+ ThreadData* my_list = ThreadData::first(); |
+ |
+ // Add snapshots for all instances of death data in all threads serially. |
+ // This hackish approach *can* get some slightly corrupt tallies, as we are |
+ // grabbing values without the protection of a lock, but it has the advantage |
+ // of working even with threads that don't have message loops. Any corruption |
+ // shouldn't cause "cascading damage" to anything else (in later phases). |
+ for (ThreadData* thread_data = my_list; thread_data; |
+ thread_data = thread_data->next()) { |
+ thread_data->OnProfilingPhaseCompletedOnThread(profiling_phase); |
+ } |
} |
Births* ThreadData::TallyABirth(const Location& location) { |
@@ -419,7 +543,7 @@ Births* ThreadData::TallyABirth(const Location& location) { |
return child; |
} |
-void ThreadData::TallyADeath(const Births& birth, |
+void ThreadData::TallyADeath(const Births& births, |
int32 queue_duration, |
const TaskStopwatch& stopwatch) { |
int32 run_duration = stopwatch.RunDurationMs(); |
@@ -428,9 +552,9 @@ void ThreadData::TallyADeath(const Births& birth, |
const uint32 kSomePrimeNumber = 2147483647; |
random_number_ += queue_duration + run_duration + kSomePrimeNumber; |
// An address is going to have some randomness to it as well ;-). |
- random_number_ ^= static_cast<uint32>(&birth - reinterpret_cast<Births*>(0)); |
+ random_number_ ^= static_cast<uint32>(&births - reinterpret_cast<Births*>(0)); |
- // We don't have queue durations without OS timer. OS timer is automatically |
+ // We don't have queue durations without OS timer. OS timer is automatically |
// used for task-post-timing, so the use of an alternate timer implies all |
// queue times are invalid, unless it was explicitly said that we can trust |
// the alternate timer. |
@@ -440,20 +564,20 @@ void ThreadData::TallyADeath(const Births& birth, |
queue_duration = 0; |
} |
- DeathMap::iterator it = death_map_.find(&birth); |
+ DeathMap::iterator it = death_map_.find(&births); |
DeathData* death_data; |
if (it != death_map_.end()) { |
death_data = &it->second; |
} else { |
base::AutoLock lock(map_lock_); // Lock as the map may get relocated now. |
- death_data = &death_map_[&birth]; |
+ death_data = &death_map_[&births]; |
} // Release lock ASAP. |
death_data->RecordDeath(queue_duration, run_duration, random_number_); |
if (!kTrackParentChildLinks) |
return; |
if (!parent_stack_.empty()) { // We might get turned off. |
- DCHECK_EQ(parent_stack_.top(), &birth); |
+ DCHECK_EQ(parent_stack_.top(), &births); |
parent_stack_.pop(); |
} |
} |
@@ -475,8 +599,8 @@ void ThreadData::TallyRunOnNamedThreadIfTracking( |
// Even if we have been DEACTIVATED, we will process any pending births so |
// that our data structures (which counted the outstanding births) remain |
// consistent. |
- const Births* birth = completed_task.birth_tally; |
- if (!birth) |
+ const Births* births = completed_task.birth_tally; |
+ if (!births) |
return; |
ThreadData* current_thread_data = stopwatch.GetThreadData(); |
if (!current_thread_data) |
@@ -485,7 +609,7 @@ void ThreadData::TallyRunOnNamedThreadIfTracking( |
// Watch out for a race where status_ is changing, and hence one or both |
// of start_of_run or end_of_run is zero. In that case, we didn't bother to |
// get a time value since we "weren't tracking" and we were trying to be |
- // efficient by not calling for a genuine time value. For simplicity, we'll |
+ // efficient by not calling for a genuine time value. For simplicity, we'll |
// use a default zero duration when we can't calculate a true value. |
TrackedTime start_of_run = stopwatch.StartTime(); |
int32 queue_duration = 0; |
@@ -493,18 +617,18 @@ void ThreadData::TallyRunOnNamedThreadIfTracking( |
queue_duration = (start_of_run - completed_task.EffectiveTimePosted()) |
.InMilliseconds(); |
} |
- current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); |
+ current_thread_data->TallyADeath(*births, queue_duration, stopwatch); |
} |
// static |
void ThreadData::TallyRunOnWorkerThreadIfTracking( |
- const Births* birth, |
+ const Births* births, |
const TrackedTime& time_posted, |
const TaskStopwatch& stopwatch) { |
// Even if we have been DEACTIVATED, we will process any pending births so |
// that our data structures (which counted the outstanding births) remain |
// consistent. |
- if (!birth) |
+ if (!births) |
return; |
// TODO(jar): Support the option to coalesce all worker-thread activity under |
@@ -512,7 +636,7 @@ void ThreadData::TallyRunOnWorkerThreadIfTracking( |
// reduce memory (making it provably bounded), but run incrementally slower |
// (since we'll use locks on TallyABirth and TallyADeath). The good news is |
// that the locks on TallyADeath will be *after* the worker thread has run, |
- // and hence nothing will be waiting for the completion (... besides some |
+ // and hence nothing will be waiting for the completion (... besides some |
// other thread that might like to run). Also, the worker threads tasks are |
// generally longer, and hence the cost of the lock may perchance be amortized |
// over the long task's lifetime. |
@@ -525,17 +649,17 @@ void ThreadData::TallyRunOnWorkerThreadIfTracking( |
if (!start_of_run.is_null()) { |
queue_duration = (start_of_run - time_posted).InMilliseconds(); |
} |
- current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); |
+ current_thread_data->TallyADeath(*births, queue_duration, stopwatch); |
} |
// static |
void ThreadData::TallyRunInAScopedRegionIfTracking( |
- const Births* birth, |
+ const Births* births, |
const TaskStopwatch& stopwatch) { |
// Even if we have been DEACTIVATED, we will process any pending births so |
// that our data structures (which counted the outstanding births) remain |
// consistent. |
- if (!birth) |
+ if (!births) |
return; |
ThreadData* current_thread_data = stopwatch.GetThreadData(); |
@@ -543,87 +667,68 @@ void ThreadData::TallyRunInAScopedRegionIfTracking( |
return; |
int32 queue_duration = 0; |
- current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); |
-} |
- |
-// static |
-void ThreadData::SnapshotAllExecutedTasks( |
- ProcessDataPhaseSnapshot* process_data_phase, |
- BirthCountMap* birth_counts) { |
- // Get an unchanging copy of a ThreadData list. |
- ThreadData* my_list = ThreadData::first(); |
- |
- // Gather data serially. |
- // This hackish approach *can* get some slighly corrupt tallies, as we are |
- // grabbing values without the protection of a lock, but it has the advantage |
- // of working even with threads that don't have message loops. If a user |
- // sees any strangeness, they can always just run their stats gathering a |
- // second time. |
- for (ThreadData* thread_data = my_list; |
- thread_data; |
- thread_data = thread_data->next()) { |
- thread_data->SnapshotExecutedTasks(process_data_phase, birth_counts); |
- } |
-} |
- |
-// static |
-void ThreadData::SnapshotCurrentPhase( |
- ProcessDataPhaseSnapshot* process_data_phase) { |
- // Add births that have run to completion to |collected_data|. |
- // |birth_counts| tracks the total number of births recorded at each location |
- // for which we have not seen a death count. |
- BirthCountMap birth_counts; |
- ThreadData::SnapshotAllExecutedTasks(process_data_phase, &birth_counts); |
- |
- // Add births that are still active -- i.e. objects that have tallied a birth, |
- // but have not yet tallied a matching death, and hence must be either |
- // running, queued up, or being held in limbo for future posting. |
- for (const auto& birth_count : birth_counts) { |
- if (birth_count.second > 0) { |
- process_data_phase->tasks.push_back(TaskSnapshot( |
- *birth_count.first, DeathData(birth_count.second), "Still_Alive")); |
- } |
- } |
+ current_thread_data->TallyADeath(*births, queue_duration, stopwatch); |
} |
void ThreadData::SnapshotExecutedTasks( |
- ProcessDataPhaseSnapshot* process_data_phase, |
+ int current_profiling_phase, |
+ PhasedProcessDataSnapshotMap* phased_snapshots, |
BirthCountMap* birth_counts) { |
// Get copy of data, so that the data will not change during the iterations |
// and processing. |
- ThreadData::BirthMap birth_map; |
- ThreadData::DeathMap death_map; |
- ThreadData::ParentChildSet parent_child_set; |
- SnapshotMaps(&birth_map, &death_map, &parent_child_set); |
- |
- for (const auto& death : death_map) { |
- process_data_phase->tasks.push_back( |
- TaskSnapshot(*death.first, death.second, thread_name())); |
- (*birth_counts)[death.first] -= death.first->birth_count(); |
- } |
+ BirthMap birth_map; |
+ DeathsSnapshot deaths; |
+ ParentChildSet parent_child_set; |
+ SnapshotMaps(current_profiling_phase, &birth_map, &deaths, &parent_child_set); |
for (const auto& birth : birth_map) { |
(*birth_counts)[birth.second] += birth.second->birth_count(); |
} |
- if (!kTrackParentChildLinks) |
- return; |
+ for (const auto& death : deaths) { |
+ (*birth_counts)[death.first] -= death.first->birth_count(); |
- for (const auto& parent_child : parent_child_set) { |
- process_data_phase->descendants.push_back( |
- ParentChildPairSnapshot(parent_child)); |
+ // For the current death data, walk through all its snapshots, starting from |
+ // the current one, then from the previous profiling phase etc., and for |
+ // each snapshot calculate the delta between the snapshot and the previous |
+ // phase, if any. Store the deltas in the result. |
+ for (const DeathDataPhaseSnapshot* phase = &death.second; phase; |
+ phase = phase->prev) { |
+ const DeathDataSnapshot& death_data = |
+ phase->prev ? phase->death_data.Delta(phase->prev->death_data) |
+ : phase->death_data; |
+ |
+ if (death_data.count > 0) { |
+ (*phased_snapshots)[phase->profiling_phase].tasks.push_back( |
+ TaskSnapshot(BirthOnThreadSnapshot(*death.first), death_data, |
+ thread_name())); |
+ } |
+ } |
} |
} |
// This may be called from another thread. |
-void ThreadData::SnapshotMaps(BirthMap* birth_map, |
- DeathMap* death_map, |
+void ThreadData::SnapshotMaps(int profiling_phase, |
+ BirthMap* birth_map, |
+ DeathsSnapshot* deaths, |
ParentChildSet* parent_child_set) { |
base::AutoLock lock(map_lock_); |
+ |
for (const auto& birth : birth_map_) |
(*birth_map)[birth.first] = birth.second; |
- for (const auto& death : death_map_) |
- (*death_map)[death.first] = death.second; |
+ |
+ for (const auto& death : death_map_) { |
+ deaths->push_back(std::make_pair( |
+ death.first, |
+ DeathDataPhaseSnapshot(profiling_phase, death.second.count(), |
+ death.second.run_duration_sum(), |
+ death.second.run_duration_max(), |
+ death.second.run_duration_sample(), |
+ death.second.queue_duration_sum(), |
+ death.second.queue_duration_max(), |
+ death.second.queue_duration_sample(), |
+ death.second.last_phase_snapshot()))); |
+ } |
if (!kTrackParentChildLinks) |
return; |
@@ -632,6 +737,14 @@ void ThreadData::SnapshotMaps(BirthMap* birth_map, |
parent_child_set->insert(parent_child); |
} |
+void ThreadData::OnProfilingPhaseCompletedOnThread(int profiling_phase) { |
+ base::AutoLock lock(map_lock_); |
+ |
+ for (auto& death : death_map_) { |
+ death.second.OnProfilingPhaseCompleted(profiling_phase); |
+ } |
+} |
+ |
static void OptionallyInitializeAlternateTimer() { |
NowFunction* alternate_time_source = GetAlternateTimeSource(); |
if (alternate_time_source) |
@@ -674,7 +787,7 @@ bool ThreadData::Initialize() { |
// never again change in this process. |
++incarnation_counter_; |
- // The lock is not critical for setting status_, but it doesn't hurt. It also |
+ // The lock is not critical for setting status_, but it doesn't hurt. It also |
// ensures that if we have a racy initialization, that we'll bail as soon as |
// we get the lock earlier in this method. |
status_ = kInitialStartupState; |
@@ -909,11 +1022,37 @@ ThreadData* TaskStopwatch::GetThreadData() const { |
} |
//------------------------------------------------------------------------------ |
+// DeathDataPhaseSnapshot |
+ |
+DeathDataPhaseSnapshot::DeathDataPhaseSnapshot( |
+ int profiling_phase, |
+ int count, |
+ int32 run_duration_sum, |
+ int32 run_duration_max, |
+ int32 run_duration_sample, |
+ int32 queue_duration_sum, |
+ int32 queue_duration_max, |
+ int32 queue_duration_sample, |
+ const DeathDataPhaseSnapshot* prev) |
+ : profiling_phase(profiling_phase), |
+ death_data(count, |
+ run_duration_sum, |
+ run_duration_max, |
+ run_duration_sample, |
+ queue_duration_sum, |
+ queue_duration_max, |
+ queue_duration_sample), |
+ prev(prev) { |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// TaskSnapshot |
+ |
TaskSnapshot::TaskSnapshot() { |
} |
-TaskSnapshot::TaskSnapshot(const BirthOnThread& birth, |
- const DeathData& death_data, |
+TaskSnapshot::TaskSnapshot(const BirthOnThreadSnapshot& birth, |
+ const DeathDataSnapshot& death_data, |
const std::string& death_thread_name) |
: birth(birth), |
death_data(death_data), |