Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(224)

Side by Side Diff: base/tracked_objects.cc

Issue 1021053003: Delivering the FIRST_NONEMPTY_PAINT phase changing event to base/ (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@phase_splitting
Patch Set: Continuation of dialogue with asvitkine@. Created 5 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "base/tracked_objects.h" 5 #include "base/tracked_objects.h"
6 6
7 #include <limits.h> 7 #include <limits.h>
8 #include <stdlib.h> 8 #include <stdlib.h>
9 9
10 #include "base/atomicops.h" 10 #include "base/atomicops.h"
11 #include "base/base_switches.h" 11 #include "base/base_switches.h"
12 #include "base/command_line.h" 12 #include "base/command_line.h"
13 #include "base/compiler_specific.h" 13 #include "base/compiler_specific.h"
14 #include "base/debug/leak_annotations.h" 14 #include "base/debug/leak_annotations.h"
15 #include "base/logging.h" 15 #include "base/logging.h"
16 #include "base/process/process_handle.h" 16 #include "base/process/process_handle.h"
17 #include "base/profiler/alternate_timer.h" 17 #include "base/profiler/alternate_timer.h"
18 #include "base/stl_util.h"
Alexei Svitkine (slow) 2015/04/10 15:27:27 Nit: Is this include needed?
vadimt 2015/04/14 15:52:05 Done.
18 #include "base/strings/stringprintf.h" 19 #include "base/strings/stringprintf.h"
19 #include "base/third_party/valgrind/memcheck.h" 20 #include "base/third_party/valgrind/memcheck.h"
20 #include "base/tracking_info.h" 21 #include "base/tracking_info.h"
21 22
22 using base::TimeDelta; 23 using base::TimeDelta;
23 24
24 namespace base { 25 namespace base {
25 class TimeDelta; 26 class TimeDelta;
26 } 27 }
27 28
(...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after
86 } 87 }
87 return current_timing_enabled == ENABLED_TIMING; 88 return current_timing_enabled == ENABLED_TIMING;
88 } 89 }
89 90
90 } // namespace 91 } // namespace
91 92
92 //------------------------------------------------------------------------------ 93 //------------------------------------------------------------------------------
93 // DeathData tallies durations when a death takes place. 94 // DeathData tallies durations when a death takes place.
94 95
95 DeathData::DeathData() { 96 DeathData::DeathData() {
96 Clear(); 97 count_ = 0;
98 sample_probability_count_ = 0;
99 run_duration_sum_ = 0;
100 run_duration_max_ = 0;
101 run_duration_sample_ = 0;
102 queue_duration_sum_ = 0;
103 queue_duration_max_ = 0;
104 queue_duration_sample_ = 0;
105 last_phase_snapshot_ = nullptr;
97 } 106 }
98 107
99 DeathData::DeathData(int count) { 108 DeathData::~DeathData() {
100 Clear(); 109 while (last_phase_snapshot_) {
101 count_ = count; 110 DeathDataPhaseSnapshot* snapshot = last_phase_snapshot_;
111 last_phase_snapshot_ = snapshot->prev;
112 delete snapshot;
113 }
102 } 114 }
103 115
104 // TODO(jar): I need to see if this macro to optimize branching is worth using. 116 // TODO(jar): I need to see if this macro to optimize branching is worth using.
105 // 117 //
106 // This macro has no branching, so it is surely fast, and is equivalent to: 118 // This macro has no branching, so it is surely fast, and is equivalent to:
107 // if (assign_it) 119 // if (assign_it)
108 // target = source; 120 // target = source;
109 // We use a macro rather than a template to force this to inline. 121 // We use a macro rather than a template to force this to inline.
110 // Related code for calculating max is discussed on the web. 122 // Related code for calculating max is discussed on the web.
111 #define CONDITIONAL_ASSIGN(assign_it, target, source) \ 123 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
112 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it)) 124 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
113 125
114 void DeathData::RecordDeath(const int32 queue_duration, 126 void DeathData::RecordDeath(const int32 queue_duration,
115 const int32 run_duration, 127 const int32 run_duration,
116 const uint32 random_number) { 128 const uint32 random_number) {
117 // We'll just clamp at INT_MAX, but we should note this in the UI as such. 129 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
118 if (count_ < INT_MAX) 130 if (count_ < INT_MAX)
119 ++count_; 131 ++count_;
132 if (sample_probability_count_ < INT_MAX)
133 ++sample_probability_count_;
120 queue_duration_sum_ += queue_duration; 134 queue_duration_sum_ += queue_duration;
121 run_duration_sum_ += run_duration; 135 run_duration_sum_ += run_duration;
122 136
123 if (queue_duration_max_ < queue_duration) 137 if (queue_duration_max_ < queue_duration)
124 queue_duration_max_ = queue_duration; 138 queue_duration_max_ = queue_duration;
125 if (run_duration_max_ < run_duration) 139 if (run_duration_max_ < run_duration)
126 run_duration_max_ = run_duration; 140 run_duration_max_ = run_duration;
127 141
128 // Take a uniformly distributed sample over all durations ever supplied. 142 // Take a uniformly distributed sample over all durations ever supplied during
129 // The probability that we (instead) use this new sample is 1/count_. This 143 // currrent profiling phase.
130 // results in a completely uniform selection of the sample (at least when we 144 // The probability that we (instead) use this new sample is
131 // don't clamp count_... but that should be inconsequentially likely). 145 // 1/sample_probability_count_. This results in a completely uniform selection
132 // We ignore the fact that we correlated our selection of a sample to the run 146 // of the sample (at least when we don't clamp sample_probability_count_...
133 // and queue times (i.e., we used them to generate random_number). 147 // but that should be inconsequentially likely). We ignore the fact that we
134 CHECK_GT(count_, 0); 148 // correlated our selection of a sample to the run and queue times (i.e., we
135 if (0 == (random_number % count_)) { 149 // used them to generate random_number).
150 CHECK_GT(sample_probability_count_, 0);
151 if (0 == (random_number % sample_probability_count_)) {
136 queue_duration_sample_ = queue_duration; 152 queue_duration_sample_ = queue_duration;
137 run_duration_sample_ = run_duration; 153 run_duration_sample_ = run_duration;
138 } 154 }
139 } 155 }
140 156
141 int DeathData::count() const { return count_; } 157 int DeathData::count() const { return count_; }
142 158
143 int32 DeathData::run_duration_sum() const { return run_duration_sum_; } 159 int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
144 160
145 int32 DeathData::run_duration_max() const { return run_duration_max_; } 161 int32 DeathData::run_duration_max() const { return run_duration_max_; }
146 162
147 int32 DeathData::run_duration_sample() const { 163 int32 DeathData::run_duration_sample() const {
148 return run_duration_sample_; 164 return run_duration_sample_;
149 } 165 }
150 166
151 int32 DeathData::queue_duration_sum() const { 167 int32 DeathData::queue_duration_sum() const {
152 return queue_duration_sum_; 168 return queue_duration_sum_;
153 } 169 }
154 170
155 int32 DeathData::queue_duration_max() const { 171 int32 DeathData::queue_duration_max() const {
156 return queue_duration_max_; 172 return queue_duration_max_;
157 } 173 }
158 174
159 int32 DeathData::queue_duration_sample() const { 175 int32 DeathData::queue_duration_sample() const {
160 return queue_duration_sample_; 176 return queue_duration_sample_;
161 } 177 }
162 178
163 void DeathData::Clear() { 179 DeathDataPhaseSnapshot* DeathData::last_phase_snapshot() const {
164 count_ = 0; 180 return last_phase_snapshot_;
165 run_duration_sum_ = 0; 181 }
182
183 void DeathData::OnProfilingPhaseCompleted(int profiling_phase) {
184 // Snapshotting and storing current state.
185 last_phase_snapshot_ = new DeathDataPhaseSnapshot(
186 profiling_phase, count_, run_duration_sum_, run_duration_max_,
187 run_duration_sample_, queue_duration_sum_, queue_duration_max_,
188 queue_duration_sample_, last_phase_snapshot_);
189
190 // Not touching fields for which a delta can be computed by comparing with a
191 // snapshot from previos phase. Resetting other fields. Sample values will be
192 // reset upon next death recording because sample_probability_count_ is set to
193 // 0.
194 // We avoid resetting to 0 in favor of deltas whenever possible. The reason is
195 // that for incrementable fields, resetting to 0 from the snapshot thread
196 // potentially in parallel with incrementing in the death thread may result in
197 // significant data corruption that has a potential to grow with time. Not
198 // resetting incrementable fields and using deltas will cause any
199 // off-by-little corruptions to be likely fixed at the next snapshot.
200 // The max values are not incrementable, and cannot be deduced using deltas
201 // for a given phase. Hence, we have to reset them to 0. But the potential
202 // damage is limited to getting the previous phase's max to apply for the next
203 // phase, and the error doesn't have a potential to keep growing with new
204 // resets.
205 // sample_probability_count_ is incrementable, but must be reset to 0 at the
206 // phase end, so that we start a new uniformly randomized sample selection
207 // after the reset. Corruptions due to race conditions are possible, but the
208 // damage is limited to selecting a wrong sample, which is not something that
209 // can cause accumulating or cascading effects.
Alexei Svitkine (slow) 2015/04/10 15:27:27 Thanks for this write-up - this makes sense. I wo
210 sample_probability_count_ = 0;
166 run_duration_max_ = 0; 211 run_duration_max_ = 0;
167 run_duration_sample_ = 0;
168 queue_duration_sum_ = 0;
169 queue_duration_max_ = 0; 212 queue_duration_max_ = 0;
170 queue_duration_sample_ = 0;
171 } 213 }
172 214
173 //------------------------------------------------------------------------------ 215 //------------------------------------------------------------------------------
174 DeathDataSnapshot::DeathDataSnapshot() 216 DeathDataSnapshot::DeathDataSnapshot()
175 : count(-1), 217 : count(-1),
176 run_duration_sum(-1), 218 run_duration_sum(-1),
177 run_duration_max(-1), 219 run_duration_max(-1),
178 run_duration_sample(-1), 220 run_duration_sample(-1),
179 queue_duration_sum(-1), 221 queue_duration_sum(-1),
180 queue_duration_max(-1), 222 queue_duration_max(-1),
181 queue_duration_sample(-1) { 223 queue_duration_sample(-1) {
182 } 224 }
183 225
184 DeathDataSnapshot::DeathDataSnapshot( 226 DeathDataSnapshot::DeathDataSnapshot(int count,
185 const tracked_objects::DeathData& death_data) 227 int32 run_duration_sum,
186 : count(death_data.count()), 228 int32 run_duration_max,
187 run_duration_sum(death_data.run_duration_sum()), 229 int32 run_duration_sample,
188 run_duration_max(death_data.run_duration_max()), 230 int32 queue_duration_sum,
189 run_duration_sample(death_data.run_duration_sample()), 231 int32 queue_duration_max,
190 queue_duration_sum(death_data.queue_duration_sum()), 232 int32 queue_duration_sample)
191 queue_duration_max(death_data.queue_duration_max()), 233 : count(count),
192 queue_duration_sample(death_data.queue_duration_sample()) { 234 run_duration_sum(run_duration_sum),
235 run_duration_max(run_duration_max),
236 run_duration_sample(run_duration_sample),
237 queue_duration_sum(queue_duration_sum),
238 queue_duration_max(queue_duration_max),
239 queue_duration_sample(queue_duration_sample) {
193 } 240 }
194 241
195 DeathDataSnapshot::~DeathDataSnapshot() { 242 DeathDataSnapshot::~DeathDataSnapshot() {
196 } 243 }
197 244
245 void DeathDataSnapshot::SubtractOlderSnapshot(const DeathDataSnapshot& older) {
246 count -= older.count;
247 run_duration_sum -= older.run_duration_sum;
248 queue_duration_sum -= older.queue_duration_sum;
249 }
250
198 //------------------------------------------------------------------------------ 251 //------------------------------------------------------------------------------
199 BirthOnThread::BirthOnThread(const Location& location, 252 BirthOnThread::BirthOnThread(const Location& location,
200 const ThreadData& current) 253 const ThreadData& current)
201 : location_(location), 254 : location_(location),
202 birth_thread_(&current) { 255 birth_thread_(&current) {
203 } 256 }
204 257
205 //------------------------------------------------------------------------------ 258 //------------------------------------------------------------------------------
206 BirthOnThreadSnapshot::BirthOnThreadSnapshot() { 259 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
207 } 260 }
208 261
209 BirthOnThreadSnapshot::BirthOnThreadSnapshot( 262 BirthOnThreadSnapshot::BirthOnThreadSnapshot(const BirthOnThread& birth)
210 const tracked_objects::BirthOnThread& birth)
211 : location(birth.location()), 263 : location(birth.location()),
212 thread_name(birth.birth_thread()->thread_name()) { 264 thread_name(birth.birth_thread()->thread_name()) {
213 } 265 }
214 266
215 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() { 267 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
216 } 268 }
217 269
218 //------------------------------------------------------------------------------ 270 //------------------------------------------------------------------------------
219 Births::Births(const Location& location, const ThreadData& current) 271 Births::Births(const Location& location, const ThreadData& current)
220 : BirthOnThread(location, current), 272 : BirthOnThread(location, current),
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
257 ThreadData* ThreadData::all_thread_data_list_head_ = NULL; 309 ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
258 310
259 // static 311 // static
260 ThreadData* ThreadData::first_retired_worker_ = NULL; 312 ThreadData* ThreadData::first_retired_worker_ = NULL;
261 313
262 // static 314 // static
263 base::LazyInstance<base::Lock>::Leaky 315 base::LazyInstance<base::Lock>::Leaky
264 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER; 316 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
265 317
266 // static 318 // static
319 base::LazyInstance<base::ThreadChecker>::Leaky
320 ThreadData::snapshot_thread_checker_ = LAZY_INSTANCE_INITIALIZER;
321
322 // static
267 ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED; 323 ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
268 324
269 ThreadData::ThreadData(const std::string& suggested_name) 325 ThreadData::ThreadData(const std::string& suggested_name)
270 : next_(NULL), 326 : next_(NULL),
271 next_retired_worker_(NULL), 327 next_retired_worker_(NULL),
272 worker_thread_number_(0), 328 worker_thread_number_(0),
273 incarnation_count_for_pool_(-1), 329 incarnation_count_for_pool_(-1),
274 current_stopwatch_(NULL) { 330 current_stopwatch_(NULL) {
275 DCHECK_GE(suggested_name.size(), 0u); 331 DCHECK_GE(suggested_name.size(), 0u);
276 thread_name_ = suggested_name; 332 thread_name_ = suggested_name;
(...skipping 101 matching lines...) Expand 10 before | Expand all | Expand 10 after
378 return; 434 return;
379 } 435 }
380 // We must NOT do any allocations during this callback. 436 // We must NOT do any allocations during this callback.
381 // Using the simple linked lists avoids all allocations. 437 // Using the simple linked lists avoids all allocations.
382 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL)); 438 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
383 this->next_retired_worker_ = first_retired_worker_; 439 this->next_retired_worker_ = first_retired_worker_;
384 first_retired_worker_ = this; 440 first_retired_worker_ = this;
385 } 441 }
386 442
387 // static 443 // static
388 void ThreadData::Snapshot(ProcessDataSnapshot* process_data_snapshot) { 444 void ThreadData::Snapshot(int current_profiling_phase,
389 ThreadData::SnapshotCurrentPhase( 445 ProcessDataSnapshot* process_data_snapshot) {
390 &process_data_snapshot->phased_process_data_snapshots[0]); 446 DCHECK(snapshot_thread_checker_.Get().CalledOnValidThread());
447 BirthCountMap birth_counts;
Alexei Svitkine (slow) 2015/04/10 15:27:27 Nit: Move this closer to where it's used .. e.g. a
vadimt 2015/04/14 15:52:05 Done.
448
449 // Get an unchanging copy of a ThreadData list.
450 ThreadData* my_list = ThreadData::first();
451
452 // Gather data serially.
453 // This hackish approach *can* get some slighly corrupt tallies, as we are
454 // grabbing values without the protection of a lock, but it has the advantage
455 // of working even with threads that don't have message loops. If a user
456 // sees any strangeness, they can always just run their stats gathering a
457 // second time.
458 for (ThreadData* thread_data = my_list; thread_data;
459 thread_data = thread_data->next()) {
460 thread_data->SnapshotExecutedTasks(
461 current_profiling_phase,
462 &process_data_snapshot->phased_process_data_snapshots, &birth_counts);
463 }
464
465 // Add births that are still active -- i.e. objects that have tallied a birth,
466 // but have not yet tallied a matching death, and hence must be either
467 // running, queued up, or being held in limbo for future posting.
468 auto current_phase_tasks =
469 &process_data_snapshot
470 ->phased_process_data_snapshots[current_profiling_phase]
471 .tasks;
Alexei Svitkine (slow) 2015/04/09 22:19:44 Nit: The .tasks can definitely go on the previous
vadimt 2015/04/09 22:42:20 git cl format will return it to the new line after
Alexei Svitkine (slow) 2015/04/10 15:27:27 Hmm, that's too bad. I really dislike excessive w
472 for (const auto& birth_count : birth_counts) {
473 if (birth_count.second > 0) {
474 current_phase_tasks->push_back(
475 TaskSnapshot(BirthOnThreadSnapshot(*birth_count.first),
476 DeathDataSnapshot(birth_count.second, 0, 0, 0, 0, 0, 0),
477 "Still_Alive"));
478 }
479 }
480 }
481
482 // static
483 void ThreadData::OnProfilingPhaseCompleted(int profiling_phase) {
484 DCHECK(snapshot_thread_checker_.Get().CalledOnValidThread());
485 // Get an unchanging copy of a ThreadData list.
486 ThreadData* my_list = ThreadData::first();
487
488 // Add snapshots for all death datas in all threads serially.
489 // This hackish approach *can* get some slighly corrupt tallies, as we are
490 // grabbing values without the protection of a lock, but it has the advantage
491 // of working even with threads that don't have message loops. Any corruption
492 // shouldn't cause "cascading damage" to anything else (in later phases).
493 for (ThreadData* thread_data = my_list; thread_data;
494 thread_data = thread_data->next()) {
495 thread_data->OnProfilingPhaseCompletionOnThread(profiling_phase);
496 }
391 } 497 }
392 498
393 Births* ThreadData::TallyABirth(const Location& location) { 499 Births* ThreadData::TallyABirth(const Location& location) {
394 BirthMap::iterator it = birth_map_.find(location); 500 BirthMap::iterator it = birth_map_.find(location);
395 Births* child; 501 Births* child;
396 if (it != birth_map_.end()) { 502 if (it != birth_map_.end()) {
397 child = it->second; 503 child = it->second;
398 child->RecordBirth(); 504 child->RecordBirth();
399 } else { 505 } else {
400 child = new Births(location, *this); // Leak this. 506 child = new Births(location, *this); // Leak this.
(...skipping 11 matching lines...) Expand all
412 // Lock since the map may get relocated now, and other threads sometimes 518 // Lock since the map may get relocated now, and other threads sometimes
413 // snapshot it (but they lock before copying it). 519 // snapshot it (but they lock before copying it).
414 base::AutoLock lock(map_lock_); 520 base::AutoLock lock(map_lock_);
415 parent_child_set_.insert(pair); 521 parent_child_set_.insert(pair);
416 } 522 }
417 } 523 }
418 524
419 return child; 525 return child;
420 } 526 }
421 527
422 void ThreadData::TallyADeath(const Births& birth, 528 void ThreadData::TallyADeath(const Births& births,
423 int32 queue_duration, 529 int32 queue_duration,
424 const TaskStopwatch& stopwatch) { 530 const TaskStopwatch& stopwatch) {
425 int32 run_duration = stopwatch.RunDurationMs(); 531 int32 run_duration = stopwatch.RunDurationMs();
426 532
427 // Stir in some randomness, plus add constant in case durations are zero. 533 // Stir in some randomness, plus add constant in case durations are zero.
428 const uint32 kSomePrimeNumber = 2147483647; 534 const uint32 kSomePrimeNumber = 2147483647;
429 random_number_ += queue_duration + run_duration + kSomePrimeNumber; 535 random_number_ += queue_duration + run_duration + kSomePrimeNumber;
430 // An address is going to have some randomness to it as well ;-). 536 // An address is going to have some randomness to it as well ;-).
431 random_number_ ^= static_cast<uint32>(&birth - reinterpret_cast<Births*>(0)); 537 random_number_ ^= static_cast<uint32>(&births - reinterpret_cast<Births*>(0));
432 538
433 // We don't have queue durations without OS timer. OS timer is automatically 539 // We don't have queue durations without OS timer. OS timer is automatically
434 // used for task-post-timing, so the use of an alternate timer implies all 540 // used for task-post-timing, so the use of an alternate timer implies all
435 // queue times are invalid, unless it was explicitly said that we can trust 541 // queue times are invalid, unless it was explicitly said that we can trust
436 // the alternate timer. 542 // the alternate timer.
437 if (kAllowAlternateTimeSourceHandling && 543 if (kAllowAlternateTimeSourceHandling &&
438 now_function_ && 544 now_function_ &&
439 !now_function_is_time_) { 545 !now_function_is_time_) {
440 queue_duration = 0; 546 queue_duration = 0;
441 } 547 }
442 548
443 DeathMap::iterator it = death_map_.find(&birth); 549 DeathMap::iterator it = death_map_.find(&births);
444 DeathData* death_data; 550 DeathData* death_data;
445 if (it != death_map_.end()) { 551 if (it != death_map_.end()) {
446 death_data = &it->second; 552 death_data = &it->second;
447 } else { 553 } else {
448 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now. 554 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
449 death_data = &death_map_[&birth]; 555 death_data = &death_map_[&births];
450 } // Release lock ASAP. 556 } // Release lock ASAP.
451 death_data->RecordDeath(queue_duration, run_duration, random_number_); 557 death_data->RecordDeath(queue_duration, run_duration, random_number_);
452 558
453 if (!kTrackParentChildLinks) 559 if (!kTrackParentChildLinks)
454 return; 560 return;
455 if (!parent_stack_.empty()) { // We might get turned off. 561 if (!parent_stack_.empty()) { // We might get turned off.
456 DCHECK_EQ(parent_stack_.top(), &birth); 562 DCHECK_EQ(parent_stack_.top(), &births);
457 parent_stack_.pop(); 563 parent_stack_.pop();
458 } 564 }
459 } 565 }
460 566
461 // static 567 // static
462 Births* ThreadData::TallyABirthIfActive(const Location& location) { 568 Births* ThreadData::TallyABirthIfActive(const Location& location) {
463 if (!TrackingStatus()) 569 if (!TrackingStatus())
464 return NULL; 570 return NULL;
465 ThreadData* current_thread_data = Get(); 571 ThreadData* current_thread_data = Get();
466 if (!current_thread_data) 572 if (!current_thread_data)
467 return NULL; 573 return NULL;
468 return current_thread_data->TallyABirth(location); 574 return current_thread_data->TallyABirth(location);
469 } 575 }
470 576
471 // static 577 // static
472 void ThreadData::TallyRunOnNamedThreadIfTracking( 578 void ThreadData::TallyRunOnNamedThreadIfTracking(
473 const base::TrackingInfo& completed_task, 579 const base::TrackingInfo& completed_task,
474 const TaskStopwatch& stopwatch) { 580 const TaskStopwatch& stopwatch) {
475 // Even if we have been DEACTIVATED, we will process any pending births so 581 // Even if we have been DEACTIVATED, we will process any pending births so
476 // that our data structures (which counted the outstanding births) remain 582 // that our data structures (which counted the outstanding births) remain
477 // consistent. 583 // consistent.
478 const Births* birth = completed_task.birth_tally; 584 const Births* births = completed_task.birth_tally;
479 if (!birth) 585 if (!births)
480 return; 586 return;
481 ThreadData* current_thread_data = stopwatch.GetThreadData(); 587 ThreadData* current_thread_data = stopwatch.GetThreadData();
482 if (!current_thread_data) 588 if (!current_thread_data)
483 return; 589 return;
484 590
485 // Watch out for a race where status_ is changing, and hence one or both 591 // Watch out for a race where status_ is changing, and hence one or both
486 // of start_of_run or end_of_run is zero. In that case, we didn't bother to 592 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
487 // get a time value since we "weren't tracking" and we were trying to be 593 // get a time value since we "weren't tracking" and we were trying to be
488 // efficient by not calling for a genuine time value. For simplicity, we'll 594 // efficient by not calling for a genuine time value. For simplicity, we'll
489 // use a default zero duration when we can't calculate a true value. 595 // use a default zero duration when we can't calculate a true value.
490 TrackedTime start_of_run = stopwatch.StartTime(); 596 TrackedTime start_of_run = stopwatch.StartTime();
491 int32 queue_duration = 0; 597 int32 queue_duration = 0;
492 if (!start_of_run.is_null()) { 598 if (!start_of_run.is_null()) {
493 queue_duration = (start_of_run - completed_task.EffectiveTimePosted()) 599 queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
494 .InMilliseconds(); 600 .InMilliseconds();
495 } 601 }
496 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 602 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
497 } 603 }
498 604
499 // static 605 // static
500 void ThreadData::TallyRunOnWorkerThreadIfTracking( 606 void ThreadData::TallyRunOnWorkerThreadIfTracking(
501 const Births* birth, 607 const Births* births,
502 const TrackedTime& time_posted, 608 const TrackedTime& time_posted,
503 const TaskStopwatch& stopwatch) { 609 const TaskStopwatch& stopwatch) {
504 // Even if we have been DEACTIVATED, we will process any pending births so 610 // Even if we have been DEACTIVATED, we will process any pending births so
505 // that our data structures (which counted the outstanding births) remain 611 // that our data structures (which counted the outstanding births) remain
506 // consistent. 612 // consistent.
507 if (!birth) 613 if (!births)
508 return; 614 return;
509 615
510 // TODO(jar): Support the option to coalesce all worker-thread activity under 616 // TODO(jar): Support the option to coalesce all worker-thread activity under
511 // one ThreadData instance that uses locks to protect *all* access. This will 617 // one ThreadData instance that uses locks to protect *all* access. This will
512 // reduce memory (making it provably bounded), but run incrementally slower 618 // reduce memory (making it provably bounded), but run incrementally slower
513 // (since we'll use locks on TallyABirth and TallyADeath). The good news is 619 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
514 // that the locks on TallyADeath will be *after* the worker thread has run, 620 // that the locks on TallyADeath will be *after* the worker thread has run,
515 // and hence nothing will be waiting for the completion (... besides some 621 // and hence nothing will be waiting for the completion (... besides some
516 // other thread that might like to run). Also, the worker threads tasks are 622 // other thread that might like to run). Also, the worker threads tasks are
517 // generally longer, and hence the cost of the lock may perchance be amortized 623 // generally longer, and hence the cost of the lock may perchance be amortized
518 // over the long task's lifetime. 624 // over the long task's lifetime.
519 ThreadData* current_thread_data = stopwatch.GetThreadData(); 625 ThreadData* current_thread_data = stopwatch.GetThreadData();
520 if (!current_thread_data) 626 if (!current_thread_data)
521 return; 627 return;
522 628
523 TrackedTime start_of_run = stopwatch.StartTime(); 629 TrackedTime start_of_run = stopwatch.StartTime();
524 int32 queue_duration = 0; 630 int32 queue_duration = 0;
525 if (!start_of_run.is_null()) { 631 if (!start_of_run.is_null()) {
526 queue_duration = (start_of_run - time_posted).InMilliseconds(); 632 queue_duration = (start_of_run - time_posted).InMilliseconds();
527 } 633 }
528 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 634 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
529 } 635 }
530 636
531 // static 637 // static
532 void ThreadData::TallyRunInAScopedRegionIfTracking( 638 void ThreadData::TallyRunInAScopedRegionIfTracking(
533 const Births* birth, 639 const Births* births,
534 const TaskStopwatch& stopwatch) { 640 const TaskStopwatch& stopwatch) {
535 // Even if we have been DEACTIVATED, we will process any pending births so 641 // Even if we have been DEACTIVATED, we will process any pending births so
536 // that our data structures (which counted the outstanding births) remain 642 // that our data structures (which counted the outstanding births) remain
537 // consistent. 643 // consistent.
538 if (!birth) 644 if (!births)
539 return; 645 return;
540 646
541 ThreadData* current_thread_data = stopwatch.GetThreadData(); 647 ThreadData* current_thread_data = stopwatch.GetThreadData();
542 if (!current_thread_data) 648 if (!current_thread_data)
543 return; 649 return;
544 650
545 int32 queue_duration = 0; 651 int32 queue_duration = 0;
546 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 652 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
547 }
548
549 // static
550 void ThreadData::SnapshotAllExecutedTasks(
551 ProcessDataPhaseSnapshot* process_data_phase,
552 BirthCountMap* birth_counts) {
553 // Get an unchanging copy of a ThreadData list.
554 ThreadData* my_list = ThreadData::first();
555
556 // Gather data serially.
557 // This hackish approach *can* get some slighly corrupt tallies, as we are
558 // grabbing values without the protection of a lock, but it has the advantage
559 // of working even with threads that don't have message loops. If a user
560 // sees any strangeness, they can always just run their stats gathering a
561 // second time.
562 for (ThreadData* thread_data = my_list;
563 thread_data;
564 thread_data = thread_data->next()) {
565 thread_data->SnapshotExecutedTasks(process_data_phase, birth_counts);
566 }
567 }
568
569 // static
570 void ThreadData::SnapshotCurrentPhase(
571 ProcessDataPhaseSnapshot* process_data_phase) {
572 // Add births that have run to completion to |collected_data|.
573 // |birth_counts| tracks the total number of births recorded at each location
574 // for which we have not seen a death count.
575 BirthCountMap birth_counts;
576 ThreadData::SnapshotAllExecutedTasks(process_data_phase, &birth_counts);
577
578 // Add births that are still active -- i.e. objects that have tallied a birth,
579 // but have not yet tallied a matching death, and hence must be either
580 // running, queued up, or being held in limbo for future posting.
581 for (const auto& birth_count : birth_counts) {
582 if (birth_count.second > 0) {
583 process_data_phase->tasks.push_back(TaskSnapshot(
584 *birth_count.first, DeathData(birth_count.second), "Still_Alive"));
585 }
586 }
587 } 653 }
588 654
589 void ThreadData::SnapshotExecutedTasks( 655 void ThreadData::SnapshotExecutedTasks(
590 ProcessDataPhaseSnapshot* process_data_phase, 656 int current_profiling_phase,
657 PhasedProcessDataSnapshotMap* phased_process_data_snapshots,
591 BirthCountMap* birth_counts) { 658 BirthCountMap* birth_counts) {
592 // Get copy of data, so that the data will not change during the iterations 659 // Get copy of data, so that the data will not change during the iterations
593 // and processing. 660 // and processing.
594 ThreadData::BirthMap birth_map; 661 BirthMap birth_map;
595 ThreadData::DeathMap death_map; 662 DeathsSnapshot deaths;
596 ThreadData::ParentChildSet parent_child_set; 663 ParentChildSet parent_child_set;
597 SnapshotMaps(&birth_map, &death_map, &parent_child_set); 664 SnapshotMaps(current_profiling_phase, &birth_map, &deaths, &parent_child_set);
598
599 for (const auto& death : death_map) {
600 process_data_phase->tasks.push_back(
601 TaskSnapshot(*death.first, death.second, thread_name()));
602 (*birth_counts)[death.first] -= death.first->birth_count();
603 }
604 665
605 for (const auto& birth : birth_map) { 666 for (const auto& birth : birth_map) {
606 (*birth_counts)[birth.second] += birth.second->birth_count(); 667 (*birth_counts)[birth.second] += birth.second->birth_count();
607 } 668 }
608 669
609 if (!kTrackParentChildLinks) 670 for (const auto& death : deaths) {
610 return; 671 (*birth_counts)[death.first] -= death.first->birth_count();
Alexei Svitkine (slow) 2015/04/10 15:27:27 Can you add a DCHECK that the existing value is in
vadimt 2015/04/14 15:52:05 This value can temporarily be negative. We may fir
611 672
612 for (const auto& parent_child : parent_child_set) { 673 // For the current death data, walk through all its snapshots, starting from
613 process_data_phase->descendants.push_back( 674 // the current one, then from the previous profiling phase etc., and for
614 ParentChildPairSnapshot(parent_child)); 675 // each snapshot calculate the delta between the snapshot and the previous
676 // phase, if any. Store the deltas in the result.
677 for (const DeathDataPhaseSnapshot* phase = &death.second; phase;
678 phase = phase->prev) {
679 // Taking a temporary copy of the DeathDataSnapshot. We need this copy to
680 // avoid modification of the original snapshots in the DeathData’s list by
681 // calling SubtractOlderSnapshot on them. If we modified them, then future
682 // calls to SnapshotExecutedTasks would return increasingly corrupt
683 // results.
684 DeathDataSnapshot death_data = phase->death_data;
685
686 if (phase->prev)
687 death_data.SubtractOlderSnapshot(phase->prev->death_data);
688
689 if (death_data.count > 0) {
690 (*phased_process_data_snapshots)[phase->profiling_phase]
691 .tasks.push_back(TaskSnapshot(BirthOnThreadSnapshot(*death.first),
692 death_data, thread_name()));
693 }
694 }
615 } 695 }
616 } 696 }
617 697
618 // This may be called from another thread. 698 // This may be called from another thread.
619 void ThreadData::SnapshotMaps(BirthMap* birth_map, 699 void ThreadData::SnapshotMaps(int profiling_phase,
620 DeathMap* death_map, 700 BirthMap* birth_map,
701 DeathsSnapshot* deaths,
621 ParentChildSet* parent_child_set) { 702 ParentChildSet* parent_child_set) {
622 base::AutoLock lock(map_lock_); 703 base::AutoLock lock(map_lock_);
704
623 for (const auto& birth : birth_map_) 705 for (const auto& birth : birth_map_)
624 (*birth_map)[birth.first] = birth.second; 706 (*birth_map)[birth.first] = birth.second;
625 for (const auto& death : death_map_) 707
626 (*death_map)[death.first] = death.second; 708 for (const auto& death : death_map_) {
709 deaths->push_back(DeathsSnapshot::value_type(
710 death.first,
711 DeathDataPhaseSnapshot(profiling_phase, death.second.count(),
712 death.second.run_duration_sum(),
713 death.second.run_duration_max(),
714 death.second.run_duration_sample(),
715 death.second.queue_duration_sum(),
716 death.second.queue_duration_max(),
717 death.second.queue_duration_sample(),
718 death.second.last_phase_snapshot())));
719 }
627 720
628 if (!kTrackParentChildLinks) 721 if (!kTrackParentChildLinks)
629 return; 722 return;
630 723
631 for (const auto& parent_child : parent_child_set_) 724 for (const auto& parent_child : parent_child_set_)
632 parent_child_set->insert(parent_child); 725 parent_child_set->insert(parent_child);
633 } 726 }
634 727
728 void ThreadData::OnProfilingPhaseCompletionOnThread(int profiling_phase) {
729 base::AutoLock lock(map_lock_);
730
731 for (auto& death : death_map_) {
732 death.second.OnProfilingPhaseCompleted(profiling_phase);
733 }
734 }
735
635 static void OptionallyInitializeAlternateTimer() { 736 static void OptionallyInitializeAlternateTimer() {
636 NowFunction* alternate_time_source = GetAlternateTimeSource(); 737 NowFunction* alternate_time_source = GetAlternateTimeSource();
637 if (alternate_time_source) 738 if (alternate_time_source)
638 ThreadData::SetAlternateTimeSource(alternate_time_source); 739 ThreadData::SetAlternateTimeSource(alternate_time_source);
639 } 740 }
640 741
641 bool ThreadData::Initialize() { 742 bool ThreadData::Initialize() {
642 if (status_ >= DEACTIVATED) 743 if (status_ >= DEACTIVATED)
643 return true; // Someone else did the initialization. 744 return true; // Someone else did the initialization.
644 // Due to racy lazy initialization in tests, we'll need to recheck status_ 745 // Due to racy lazy initialization in tests, we'll need to recheck status_
(...skipping 257 matching lines...) Expand 10 before | Expand all | Expand 10 after
902 1003
903 ThreadData* TaskStopwatch::GetThreadData() const { 1004 ThreadData* TaskStopwatch::GetThreadData() const {
904 #if DCHECK_IS_ON() 1005 #if DCHECK_IS_ON()
905 DCHECK(state_ != CREATED); 1006 DCHECK(state_ != CREATED);
906 #endif 1007 #endif
907 1008
908 return current_thread_data_; 1009 return current_thread_data_;
909 } 1010 }
910 1011
911 //------------------------------------------------------------------------------ 1012 //------------------------------------------------------------------------------
1013 // DeathDataPhaseSnapshot
1014
1015 DeathDataPhaseSnapshot::DeathDataPhaseSnapshot(int profiling_phase,
1016 int count,
1017 int32 run_duration_sum,
1018 int32 run_duration_max,
1019 int32 run_duration_sample,
1020 int32 queue_duration_sum,
1021 int32 queue_duration_max,
1022 int32 queue_duration_sample,
1023 DeathDataPhaseSnapshot* prev)
1024 : profiling_phase(profiling_phase),
1025 death_data(count,
1026 run_duration_sum,
1027 run_duration_max,
1028 run_duration_sample,
1029 queue_duration_sum,
1030 queue_duration_max,
1031 queue_duration_sample),
1032 prev(prev) {
1033 }
1034
1035 //------------------------------------------------------------------------------
1036 // TaskSnapshot
1037
912 TaskSnapshot::TaskSnapshot() { 1038 TaskSnapshot::TaskSnapshot() {
913 } 1039 }
914 1040
915 TaskSnapshot::TaskSnapshot(const BirthOnThread& birth, 1041 TaskSnapshot::TaskSnapshot(const BirthOnThreadSnapshot& birth,
916 const DeathData& death_data, 1042 const DeathDataSnapshot& death_data,
917 const std::string& death_thread_name) 1043 const std::string& death_thread_name)
918 : birth(birth), 1044 : birth(birth),
919 death_data(death_data), 1045 death_data(death_data),
920 death_thread_name(death_thread_name) { 1046 death_thread_name(death_thread_name) {
921 } 1047 }
922 1048
923 TaskSnapshot::~TaskSnapshot() { 1049 TaskSnapshot::~TaskSnapshot() {
924 } 1050 }
925 1051
926 //------------------------------------------------------------------------------ 1052 //------------------------------------------------------------------------------
(...skipping 28 matching lines...) Expand all
955 : process_id(base::GetCurrentProcId()) { 1081 : process_id(base::GetCurrentProcId()) {
956 #else 1082 #else
957 : process_id(base::kNullProcessId) { 1083 : process_id(base::kNullProcessId) {
958 #endif 1084 #endif
959 } 1085 }
960 1086
961 ProcessDataSnapshot::~ProcessDataSnapshot() { 1087 ProcessDataSnapshot::~ProcessDataSnapshot() {
962 } 1088 }
963 1089
964 } // namespace tracked_objects 1090 } // namespace tracked_objects
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698