Index: src/opts/Sk2x_neon.h |
diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..cc4e799490927c2fd4562df7bdd3336d26cfcf48 |
--- /dev/null |
+++ b/src/opts/Sk2x_neon.h |
@@ -0,0 +1,93 @@ |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+// It is important _not_ to put header guards here. |
+// This file will be intentionally included three times. |
+ |
+#include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 |
+ |
+#if defined(SK2X_PREAMBLE) |
+ #include <arm_neon.h> |
+ #include <math.h> |
+ template <typename T> struct SkScalarToSIMD; |
+ template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; |
+ template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; |
+ |
+ |
+#elif defined(SK2X_PRIVATE) |
+ typename SkScalarToSIMD<T>::Type fVec; |
+ /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec; } |
+ |
+#else |
+ |
+#define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: |
+ |
+M() Sk2x() {} |
+M() Sk2x(float val) { fVec = vdup_n_f32(val); } |
+M() Sk2x(float a, float b) { |
+ fVec = vset_lane_f32(a, fVec, 0); |
+ fVec = vset_lane_f32(b, fVec, 1); |
+} |
+M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } |
+ |
+M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } |
+M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } |
+ |
+M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } |
+M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } |
+M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } |
+ |
+M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } |
+M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } |
+ |
+M(Sk2f) rsqrt() const { |
+ float32x2_t est0 = vrsqrte_f32(fVec), |
+ est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); |
+ return est1; |
+} |
+M(Sk2f) sqrt() const { |
+ float32x2_t est1 = this->rsqrt().fVec, |
+ // An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
+ est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
+ return vmul_f32(fVec, est2); |
+} |
+ |
+#undef M |
+ |
+#define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: |
+ |
+// TODO: #ifdef SK_CPU_ARM64 use float64x2_t for Sk2d. |
+ |
+M() Sk2x() {} |
+M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
+M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
+M(Sk2d&) operator=(const Sk2d& o) { |
+ fVec[0] = o.fVec[0]; |
+ fVec[1] = o.fVec[1]; |
+ return *this; |
+} |
+ |
+M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
+M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } |
+ |
+M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } |
+M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } |
+M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } |
+ |
+M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
+ return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
+} |
+M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
+ return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
+} |
+ |
+M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } |
+M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } |
+ |
+#undef M |
+ |
+#endif |