| Index: src/opts/Sk2x_neon.h
|
| diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..cc4e799490927c2fd4562df7bdd3336d26cfcf48
|
| --- /dev/null
|
| +++ b/src/opts/Sk2x_neon.h
|
| @@ -0,0 +1,93 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +// It is important _not_ to put header guards here.
|
| +// This file will be intentionally included three times.
|
| +
|
| +#include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362
|
| +
|
| +#if defined(SK2X_PREAMBLE)
|
| + #include <arm_neon.h>
|
| + #include <math.h>
|
| + template <typename T> struct SkScalarToSIMD;
|
| + template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; };
|
| + template <> struct SkScalarToSIMD<double> { typedef double Type[2]; };
|
| +
|
| +
|
| +#elif defined(SK2X_PRIVATE)
|
| + typename SkScalarToSIMD<T>::Type fVec;
|
| + /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec; }
|
| +
|
| +#else
|
| +
|
| +#define M(...) template <> inline __VA_ARGS__ Sk2x<float>::
|
| +
|
| +M() Sk2x() {}
|
| +M() Sk2x(float val) { fVec = vdup_n_f32(val); }
|
| +M() Sk2x(float a, float b) {
|
| + fVec = vset_lane_f32(a, fVec, 0);
|
| + fVec = vset_lane_f32(b, fVec, 1);
|
| +}
|
| +M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; }
|
| +
|
| +M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); }
|
| +M(void) store(float vals[2]) const { vst1_f32(vals, fVec); }
|
| +
|
| +M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); }
|
| +M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); }
|
| +M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); }
|
| +
|
| +M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); }
|
| +M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); }
|
| +
|
| +M(Sk2f) rsqrt() const {
|
| + float32x2_t est0 = vrsqrte_f32(fVec),
|
| + est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
|
| + return est1;
|
| +}
|
| +M(Sk2f) sqrt() const {
|
| + float32x2_t est1 = this->rsqrt().fVec,
|
| + // An extra step of Newton's method to refine the estimate of 1/sqrt(this).
|
| + est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
|
| + return vmul_f32(fVec, est2);
|
| +}
|
| +
|
| +#undef M
|
| +
|
| +#define M(...) template <> inline __VA_ARGS__ Sk2x<double>::
|
| +
|
| +// TODO: #ifdef SK_CPU_ARM64 use float64x2_t for Sk2d.
|
| +
|
| +M() Sk2x() {}
|
| +M() Sk2x(double val) { fVec[0] = fVec[1] = val; }
|
| +M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; }
|
| +M(Sk2d&) operator=(const Sk2d& o) {
|
| + fVec[0] = o.fVec[0];
|
| + fVec[1] = o.fVec[1];
|
| + return *this;
|
| +}
|
| +
|
| +M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); }
|
| +M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; }
|
| +
|
| +M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); }
|
| +M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); }
|
| +M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); }
|
| +
|
| +M(Sk2d) Min(const Sk2d& a, const Sk2d& b) {
|
| + return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1]));
|
| +}
|
| +M(Sk2d) Max(const Sk2d& a, const Sk2d& b) {
|
| + return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1]));
|
| +}
|
| +
|
| +M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); }
|
| +M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); }
|
| +
|
| +#undef M
|
| +
|
| +#endif
|
|
|