Chromium Code Reviews| Index: cc/resources/texture_compressor_etc1.cc |
| diff --git a/cc/resources/texture_compressor_etc1.cc b/cc/resources/texture_compressor_etc1.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..61c4438c21862342f8cf0ca10b19a375364a581c |
| --- /dev/null |
| +++ b/cc/resources/texture_compressor_etc1.cc |
| @@ -0,0 +1,503 @@ |
| +// Copyright 2015 The Chromium Authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +// See the following specification for details on the ETC1 format: |
| +// https://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt |
| + |
| +#include "cc/resources/texture_compressor_etc1.h" |
| + |
| +#include <string.h> |
| +#include <limits> |
| + |
| +#include "base/logging.h" |
| + |
| +// Defining the following macro will cause the error metric function to weigh |
| +// each color channel differently depending on how the human eye can perceive |
| +// them. This can give a slight improvement in image quality at the cost of a |
| +// performance hit. |
| +// #define USE_PERCEIVED_ERROR_METRIC |
| + |
| +namespace { |
| + |
| +template <typename T> |
| +inline T clamp(T val, T min, T max) { |
| + return val < min ? min : (val > max ? max : val); |
| +} |
| + |
| +inline uint8_t round_to_5_bits(float val) { |
| + return clamp<uint8_t>(val * 31.0f / 255.0f + 0.5f, 0, 31); |
| +} |
| + |
| +inline uint8_t round_to_4_bits(float val) { |
| + return clamp<uint8_t>(val * 15.0f / 255.0f + 0.5f, 0, 15); |
| +} |
| + |
| +union Color { |
| + struct BgraColorType { |
| + uint8_t b; |
| + uint8_t g; |
| + uint8_t r; |
| + uint8_t a; |
| + } channels; |
| + uint8_t components[4]; |
| + uint32_t bits; |
| +}; |
| + |
| +/* |
| + * Codeword tables. |
| + * See: Table 3.17.2 |
| + */ |
| +static const int16_t g_codeword_tables[8][4] = {{-8, -2, 2, 8}, |
| + {-17, -5, 5, 17}, |
| + {-29, -9, 9, 29}, |
| + {-42, -13, 13, 42}, |
| + {-60, -18, 18, 60}, |
| + {-80, -24, 24, 80}, |
| + {-106, -33, 33, 106}, |
| + {-183, -47, 47, 183}}; |
| + |
| +/* |
| + * Maps modifier indices to pixel index values. |
| + * See: Table 3.17.3 |
| + */ |
| +static const uint8_t g_mod_to_pix[4] = {3, 2, 0, 1}; |
| + |
| +/* |
| + * The ETC1 specification index texels as follows: |
| + * |
| + * [a][e][i][m] [ 0][ 4][ 8][12] |
| + * [b][f][j][n] <-> [ 1][ 5][ 9][13] |
| + * [c][g][k][o] [ 2][ 6][10][14] |
| + * [d][h][l][p] [ 3][ 7][11][15] |
| + * |
| + * However, when extracting sub blocks from BGRA data the natural array |
| + * indexing order ends up different: |
| + * |
| + * vertical0: [a][e][b][f] horizontal0: [a][e][i][m] |
| + * [c][g][d][h] [b][f][j][n] |
| + * vertical1: [i][m][j][n] horizontal1: [c][g][k][o] |
| + * [k][o][l][p] [d][h][l][p] |
| + * |
| + * In order to translate from the natural array indices in a sub block to the |
| + * indices (number) used by specification and hardware we use this table. |
| + */ |
| +static const uint8_t g_idx_to_num[4][8] = { |
| + {0, 4, 1, 5, 2, 6, 3, 7}, // Vertical block 0. |
| + {8, 12, 9, 13, 10, 14, 11, 15}, // Vertical block 1. |
| + {0, 4, 8, 12, 1, 5, 9, 13}, // Horizontal block 0. |
| + {2, 6, 10, 14, 3, 7, 11, 15} // Horizontal block 1. |
| +}; |
| + |
| +inline void WriteColors444(uint8_t* block, |
| + const Color& color0, |
| + const Color& color1) { |
| + block[0] = (color0.channels.r & 0xf0) | (color1.channels.r >> 4); |
| + block[1] = (color0.channels.g & 0xf0) | (color1.channels.g >> 4); |
| + block[2] = (color0.channels.b & 0xf0) | (color1.channels.b >> 4); |
| +} |
| + |
| +inline void WriteColors555(uint8_t* block, |
| + const Color& color0, |
| + const Color& color1) { |
| + // Table for conversion to 3-bit two complement format. |
| + static const uint8_t two_compl_trans_table[8] = { |
| + 4, // -4 (100b) |
| + 5, // -3 (101b) |
| + 6, // -2 (110b) |
| + 7, // -1 (111b) |
| + 0, // 0 (000b) |
| + 1, // 1 (001b) |
| + 2, // 2 (010b) |
| + 3, // 3 (011b) |
| + }; |
| + |
| + int16_t delta_r = |
| + static_cast<int16_t>(color1.channels.r >> 3) - (color0.channels.r >> 3); |
| + int16_t delta_g = |
| + static_cast<int16_t>(color1.channels.g >> 3) - (color0.channels.g >> 3); |
| + int16_t delta_b = |
| + static_cast<int16_t>(color1.channels.b >> 3) - (color0.channels.b >> 3); |
| + DCHECK(delta_r >= -4 && delta_r <= 3); |
| + DCHECK(delta_g >= -4 && delta_g <= 3); |
| + DCHECK(delta_b >= -4 && delta_b <= 3); |
| + |
| + block[0] = (color0.channels.r & 0xf8) | two_compl_trans_table[delta_r + 4]; |
| + block[1] = (color0.channels.g & 0xf8) | two_compl_trans_table[delta_g + 4]; |
| + block[2] = (color0.channels.b & 0xf8) | two_compl_trans_table[delta_b + 4]; |
| +} |
| + |
| +inline void WriteCodewordTable(uint8_t* block, |
| + uint8_t sub_block_id, |
| + uint8_t table) { |
| + DCHECK_LT(sub_block_id, 2); |
| + DCHECK_LT(table, 8); |
| + |
| + uint8_t shift = (2 + (3 - sub_block_id * 3)); |
| + block[3] &= ~(0x07 << shift); |
| + block[3] |= table << shift; |
| +} |
| + |
| +inline void WritePixelData(uint8_t* block, uint32_t pixel_data) { |
| + block[4] |= pixel_data >> 24; |
| + block[5] |= (pixel_data >> 16) & 0xff; |
| + block[6] |= (pixel_data >> 8) & 0xff; |
| + block[7] |= pixel_data & 0xff; |
| +} |
| + |
| +inline void WriteFlip(uint8_t* block, bool flip) { |
| + block[3] &= ~0x01; |
| + block[3] |= static_cast<uint8_t>(flip); |
| +} |
| + |
| +inline void WriteDiff(uint8_t* block, bool diff) { |
| + block[3] &= ~0x02; |
| + block[3] |= static_cast<uint8_t>(diff) << 1; |
| +} |
| + |
| +/** |
| + * Compress and rounds BGR888 into BGR444. The resulting BGR444 color is |
| + * expanded to BGR888 as it would be in hardware after decompression. The |
| + * actual 444-bit data is available in the four most significant bits of each |
| + * channel. |
| + */ |
| +inline Color MakeColor444(const float* bgr) { |
| + uint8_t b4 = round_to_4_bits(bgr[0]); |
| + uint8_t g4 = round_to_4_bits(bgr[1]); |
| + uint8_t r4 = round_to_4_bits(bgr[2]); |
| + Color bgr444; |
| + bgr444.channels.b = (b4 << 4) | b4; |
| + bgr444.channels.g = (g4 << 4) | g4; |
| + bgr444.channels.r = (r4 << 4) | r4; |
| + return bgr444; |
| +} |
| + |
| +/** |
| + * Compress and rounds BGR888 into BGR555. The resulting BGR555 color is |
| + * expanded to BGR888 as it would be in hardware after decompression. The |
| + * actual 555-bit data is available in the five most significant bits of each |
| + * channel. |
| + */ |
| +inline Color MakeColor555(const float* bgr) { |
| + uint8_t b5 = round_to_5_bits(bgr[0]); |
| + uint8_t g5 = round_to_5_bits(bgr[1]); |
| + uint8_t r5 = round_to_5_bits(bgr[2]); |
| + Color bgr555; |
| + bgr555.channels.b = (b5 << 3) | (b5 >> 2); |
| + bgr555.channels.g = (g5 << 3) | (g5 >> 2); |
| + bgr555.channels.r = (r5 << 3) | (r5 >> 2); |
| + return bgr555; |
| +} |
| + |
| +/** |
| + * Constructs a color from a given base color and luminance value. |
| + */ |
| +inline Color MakeColor(const Color& base, int16_t lum) { |
| + int b = static_cast<int>(base.channels.b) + lum; |
| + int g = static_cast<int>(base.channels.g) + lum; |
| + int r = static_cast<int>(base.channels.r) + lum; |
| + Color color; |
| + color.channels.b = static_cast<uint8_t>(clamp(b, 0, 255)); |
| + color.channels.g = static_cast<uint8_t>(clamp(g, 0, 255)); |
| + color.channels.r = static_cast<uint8_t>(clamp(r, 0, 255)); |
| + return color; |
| +} |
| + |
| +/** |
| + * Calculates the error metric for two colors. A small error signals that the |
| + * colors are similar to each other, a large error the signals the opposite. |
| + */ |
| +inline uint32_t GetColorError(const Color& u, const Color& v) { |
| +#ifdef USE_PERCEIVED_ERROR_METRIC |
| + float delta_b = static_cast<float>(u.channels.b) - v.channels.b; |
| + float delta_g = static_cast<float>(u.channels.g) - v.channels.g; |
| + float delta_r = static_cast<float>(u.channels.r) - v.channels.r; |
| + return static_cast<uint32_t>(0.299f * delta_b * delta_b + |
| + 0.587f * delta_g * delta_g + |
| + 0.114f * delta_r * delta_r); |
| +#else |
| + int delta_b = static_cast<int>(u.channels.b) - v.channels.b; |
| + int delta_g = static_cast<int>(u.channels.g) - v.channels.g; |
| + int delta_r = static_cast<int>(u.channels.r) - v.channels.r; |
| + return delta_b * delta_b + delta_g * delta_g + delta_r * delta_r; |
| +#endif |
| +} |
| + |
| +void GetAverageColor(const Color* src, float* avg_color) { |
| + uint32_t sum_b = 0, sum_g = 0, sum_r = 0; |
| + |
| + for (unsigned int i = 0; i < 8; ++i) { |
| + sum_b += src[i].channels.b; |
| + sum_g += src[i].channels.g; |
| + sum_r += src[i].channels.r; |
| + } |
| + |
| + const float kInv8 = 1.0f / 8.0f; |
| + avg_color[0] = static_cast<float>(sum_b) * kInv8; |
| + avg_color[1] = static_cast<float>(sum_g) * kInv8; |
| + avg_color[2] = static_cast<float>(sum_r) * kInv8; |
| +} |
| + |
| +void ComputeLuminance(uint8_t* block, |
| + const Color* src, |
| + const Color& base, |
| + int sub_block_id, |
| + const uint8_t* idx_to_num_tab) { |
| + uint32_t best_tbl_err = std::numeric_limits<uint32_t>::max(); |
| + uint8_t best_tbl_idx = 0; |
| + uint8_t best_mod_idx[8][8]; // [table][texel] |
| + |
| + // Try all codeword tables to find the one giving the best results for this |
| + // block. |
| + for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { |
| + // Pre-compute all the candidate colors; combinations of the base color and |
| + // all available luminance values. |
| + Color candidate_color[4]; // [modifier] |
| + for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) { |
| + int16_t lum = g_codeword_tables[tbl_idx][mod_idx]; |
| + candidate_color[mod_idx] = MakeColor(base, lum); |
| + } |
| + |
| + uint32_t tbl_err = 0; |
| + |
| + for (unsigned int i = 0; i < 8; ++i) { |
| + // Try all modifiers in the current table to find which one gives the |
| + // smallest error. |
| + uint32_t best_mod_err = std::numeric_limits<uint32_t>::max(); |
| + for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) { |
| + const Color& color = candidate_color[mod_idx]; |
| + |
| + uint32_t mod_err = GetColorError(src[i], color); |
| + if (mod_err < best_mod_err) { |
| + best_mod_idx[tbl_idx][i] = mod_idx; |
| + best_mod_err = mod_err; |
| + |
| + if (mod_err == 0) |
| + break; // We cannot do any better than this. |
| + } |
| + } |
| + |
| + tbl_err += best_mod_err; |
| + if (tbl_err > best_tbl_err) |
| + break; // We're already doing worse than the best table so skip. |
| + } |
| + |
| + if (tbl_err < best_tbl_err) { |
| + best_tbl_err = tbl_err; |
| + best_tbl_idx = tbl_idx; |
| + |
| + if (tbl_err == 0) |
| + break; // We cannot do any better than this. |
| + } |
| + } |
| + |
| + WriteCodewordTable(block, sub_block_id, best_tbl_idx); |
| + |
| + uint32_t pix_data = 0; |
| + |
| + for (unsigned int i = 0; i < 8; ++i) { |
| + uint8_t mod_idx = best_mod_idx[best_tbl_idx][i]; |
| + uint8_t pix_idx = g_mod_to_pix[mod_idx]; |
| + |
| + uint32_t lsb = pix_idx & 0x1; |
| + uint32_t msb = pix_idx >> 1; |
| + |
| + // Obtain the texel number as specified in the standard. |
| + int texel_num = idx_to_num_tab[i]; |
| + pix_data |= msb << (texel_num + 16); |
| + pix_data |= lsb << (texel_num); |
| + } |
| + |
| + WritePixelData(block, pix_data); |
| +} |
| + |
| +/** |
| + * Tries to compress the block under the assumption that it's a single color |
| + * block. If it's not the function will bail out without writing anything to |
| + * the destination buffer. |
| + */ |
| +bool TryCompressSolidBlock(uint8_t* dst, const Color* src) { |
| + for (unsigned int i = 1; i < 16; ++i) { |
| + if (src[i].bits != src[0].bits) |
| + return false; |
| + } |
| + |
| + // Clear destination buffer so that we can "or" in the results. |
| + memset(dst, 0, 8); |
| + |
| + float src_color_float[3] = {static_cast<float>(src->channels.b), |
| + static_cast<float>(src->channels.g), |
| + static_cast<float>(src->channels.r)}; |
| + Color base = MakeColor555(src_color_float); |
| + |
| + WriteDiff(dst, true); |
| + WriteFlip(dst, false); |
| + WriteColors555(dst, base, base); |
| + |
| + uint8_t best_tbl_idx = 0; |
| + uint8_t best_mod_idx = 0; |
| + uint32_t best_mod_err = std::numeric_limits<uint32_t>::max(); |
| + |
| + // Try all codeword tables to find the one giving the best results for this |
| + // block. |
| + for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { |
| + // Try all modifiers in the current table to find which one gives the |
| + // smallest error. |
| + for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) { |
| + int16_t lum = g_codeword_tables[tbl_idx][mod_idx]; |
| + const Color& color = MakeColor(base, lum); |
| + |
| + uint32_t mod_err = GetColorError(*src, color); |
| + if (mod_err < best_mod_err) { |
| + best_tbl_idx = tbl_idx; |
| + best_mod_idx = mod_idx; |
| + best_mod_err = mod_err; |
| + |
| + if (mod_err == 0) |
| + break; // We cannot do any better than this. |
| + } |
| + } |
| + |
| + if (best_mod_err == 0) |
| + break; |
| + } |
| + |
| + WriteCodewordTable(dst, 0, best_tbl_idx); |
| + WriteCodewordTable(dst, 1, best_tbl_idx); |
| + |
| + uint8_t pix_idx = g_mod_to_pix[best_mod_idx]; |
| + uint32_t lsb = pix_idx & 0x1; |
| + uint32_t msb = pix_idx >> 1; |
| + |
| + uint32_t pix_data = 0; |
| + for (unsigned int i = 0; i < 2; ++i) { |
| + for (unsigned int j = 0; j < 8; ++j) { |
| + // Obtain the texel number as specified in the standard. |
| + int texel_num = g_idx_to_num[i][j]; |
| + pix_data |= msb << (texel_num + 16); |
| + pix_data |= lsb << (texel_num); |
| + } |
| + } |
| + |
| + WritePixelData(dst, pix_data); |
| + return true; |
| +} |
| + |
| +void CompressBlock(uint8_t* dst, const Color* ver_src, const Color* hor_src) { |
| + if (TryCompressSolidBlock(dst, ver_src)) |
| + return; |
| + |
| + const Color* sub_block_src[4] = {ver_src, ver_src + 8, hor_src, hor_src + 8}; |
| + |
| + Color sub_block_avg[4]; |
| + bool use_differential[2] = {true, true}; |
| + |
| + // Compute the average color for each sub block and determine if differential |
| + // coding can be used. |
| + for (unsigned int i = 0, j = 1; i < 4; i += 2, j += 2) { |
| + float avg_color_0[3]; |
| + GetAverageColor(sub_block_src[i], avg_color_0); |
| + Color avg_color_555_0 = MakeColor555(avg_color_0); |
| + |
| + float avg_color_1[3]; |
| + GetAverageColor(sub_block_src[j], avg_color_1); |
| + Color avg_color_555_1 = MakeColor555(avg_color_1); |
| + |
| + for (unsigned int light_idx = 0; light_idx < 3; ++light_idx) { |
| + int u = avg_color_555_0.components[light_idx] >> 3; |
| + int v = avg_color_555_1.components[light_idx] >> 3; |
| + |
| + int component_diff = v - u; |
| + if (component_diff < -4 || component_diff > 3) { |
| + use_differential[i / 2] = false; |
| + sub_block_avg[i] = MakeColor444(avg_color_0); |
| + sub_block_avg[j] = MakeColor444(avg_color_1); |
|
radu.velea
2015/04/10 13:37:53
Shouldn't there be a break here? If first 2 channe
|
| + } else { |
| + sub_block_avg[i] = avg_color_555_0; |
| + sub_block_avg[j] = avg_color_555_1; |
| + } |
| + } |
| + } |
| + |
| + // Compute the error of each sub block before adjusting for luminance. These |
| + // error values are later used for determining if we should flip the sub |
| + // block or not. |
| + uint32_t sub_block_err[4] = {0}; |
| + for (unsigned int i = 0; i < 4; ++i) { |
| + for (unsigned int j = 0; j < 8; ++j) { |
| + sub_block_err[i] += GetColorError(sub_block_avg[i], sub_block_src[i][j]); |
| + } |
| + } |
| + |
| + bool flip = |
| + sub_block_err[2] + sub_block_err[3] < sub_block_err[0] + sub_block_err[1]; |
| + |
| + // Clear destination buffer so that we can "or" in the results. |
| + memset(dst, 0, 8); |
| + |
| + WriteDiff(dst, use_differential[!!flip]); |
| + WriteFlip(dst, flip); |
| + |
| + uint8_t sub_block_off_0 = flip ? 2 : 0; |
| + uint8_t sub_block_off_1 = sub_block_off_0 + 1; |
| + |
| + if (use_differential[!!flip]) { |
| + WriteColors555(dst, sub_block_avg[sub_block_off_0], |
| + sub_block_avg[sub_block_off_1]); |
| + } else { |
| + WriteColors444(dst, sub_block_avg[sub_block_off_0], |
| + sub_block_avg[sub_block_off_1]); |
| + } |
| + |
| + // Compute luminance for the first sub block. |
| + ComputeLuminance(dst, sub_block_src[sub_block_off_0], |
| + sub_block_avg[sub_block_off_0], 0, |
| + g_idx_to_num[sub_block_off_0]); |
| + // Compute luminance for the second sub block. |
| + ComputeLuminance(dst, sub_block_src[sub_block_off_1], |
| + sub_block_avg[sub_block_off_1], 1, |
| + g_idx_to_num[sub_block_off_1]); |
| +} |
| + |
| +} // namespace |
| + |
| +namespace cc { |
| + |
| +void TextureCompressorETC1::Compress(const uint8_t* src, |
| + uint8_t* dst, |
| + int width, |
| + int height, |
| + Quality quality) { |
| + DCHECK(width >= 4 && (width & 3) == 0); |
| + DCHECK(height >= 4 && (height & 3) == 0); |
| + |
| + Color ver_blocks[16]; |
| + Color hor_blocks[16]; |
| + |
| + for (int y = 0; y < height; y += 4, src += width * 4 * 4) { |
| + for (int x = 0; x < width; x += 4, dst += 8) { |
| + const Color* row0 = reinterpret_cast<const Color*>(src + x * 4); |
| + const Color* row1 = row0 + width; |
| + const Color* row2 = row1 + width; |
| + const Color* row3 = row2 + width; |
| + |
| + memcpy(ver_blocks, row0, 8); |
| + memcpy(ver_blocks + 2, row1, 8); |
| + memcpy(ver_blocks + 4, row2, 8); |
| + memcpy(ver_blocks + 6, row3, 8); |
| + memcpy(ver_blocks + 8, row0 + 2, 8); |
| + memcpy(ver_blocks + 10, row1 + 2, 8); |
| + memcpy(ver_blocks + 12, row2 + 2, 8); |
| + memcpy(ver_blocks + 14, row3 + 2, 8); |
| + |
| + memcpy(hor_blocks, row0, 16); |
| + memcpy(hor_blocks + 4, row1, 16); |
| + memcpy(hor_blocks + 8, row2, 16); |
| + memcpy(hor_blocks + 12, row3, 16); |
| + |
| + CompressBlock(dst, ver_blocks, hor_blocks); |
| + } |
| + } |
| +} |
| + |
| +} // namespace cc |