OLD | NEW |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2015 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "net/quic/congestion_control/tcp_cubic_sender.h" | 5 #include "net/quic/congestion_control/tcp_cubic_bytes_sender.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 | 8 |
9 #include "base/metrics/histogram.h" | |
10 #include "net/quic/congestion_control/prr_sender.h" | 9 #include "net/quic/congestion_control/prr_sender.h" |
11 #include "net/quic/congestion_control/rtt_stats.h" | 10 #include "net/quic/congestion_control/rtt_stats.h" |
12 #include "net/quic/crypto/crypto_protocol.h" | 11 #include "net/quic/crypto/crypto_protocol.h" |
13 | 12 |
14 using std::max; | 13 using std::max; |
15 using std::min; | 14 using std::min; |
16 | 15 |
17 namespace net { | 16 namespace net { |
18 | 17 |
19 namespace { | 18 namespace { |
20 // Constants based on TCP defaults. | 19 // Constants based on TCP defaults. |
21 // The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a | 20 // The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a |
22 // fast retransmission. The cwnd after a timeout is still 1. | 21 // fast retransmission. |
23 const QuicPacketCount kMinimumCongestionWindow = 2; | 22 const QuicByteCount kMinimumCongestionWindow = 2 * kDefaultTCPMSS; |
24 const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS; | 23 const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS; |
25 const int kMaxBurstLength = 3; | 24 const int kMaxBurstLength = 3; |
26 const float kRenoBeta = 0.7f; // Reno backoff factor. | 25 const float kRenoBeta = 0.7f; // Reno backoff factor. |
27 const uint32 kDefaultNumConnections = 2; // N-connection emulation. | 26 const uint32 kDefaultNumConnections = 2; // N-connection emulation. |
28 } // namespace | 27 } // namespace |
29 | 28 |
30 TcpCubicSender::TcpCubicSender(const QuicClock* clock, | 29 TcpCubicBytesSender::TcpCubicBytesSender( |
31 const RttStats* rtt_stats, | 30 const QuicClock* clock, |
32 bool reno, | 31 const RttStats* rtt_stats, |
33 QuicPacketCount initial_tcp_congestion_window, | 32 bool reno, |
34 QuicConnectionStats* stats) | 33 QuicPacketCount initial_tcp_congestion_window, |
| 34 QuicConnectionStats* stats) |
35 : hybrid_slow_start_(clock), | 35 : hybrid_slow_start_(clock), |
36 cubic_(clock), | 36 cubic_(clock), |
37 rtt_stats_(rtt_stats), | 37 rtt_stats_(rtt_stats), |
38 stats_(stats), | 38 stats_(stats), |
39 reno_(reno), | 39 reno_(reno), |
40 num_connections_(kDefaultNumConnections), | 40 num_connections_(kDefaultNumConnections), |
41 num_acked_packets_(0), | 41 num_acked_packets_(0), |
42 largest_sent_sequence_number_(0), | 42 largest_sent_sequence_number_(0), |
43 largest_acked_sequence_number_(0), | 43 largest_acked_sequence_number_(0), |
44 largest_sent_at_last_cutback_(0), | 44 largest_sent_at_last_cutback_(0), |
45 congestion_window_(initial_tcp_congestion_window), | 45 congestion_window_(initial_tcp_congestion_window * kMaxSegmentSize), |
46 slowstart_threshold_(std::numeric_limits<uint64>::max()), | 46 slowstart_threshold_(std::numeric_limits<uint64>::max()), |
47 last_cutback_exited_slowstart_(false), | 47 last_cutback_exited_slowstart_(false), |
48 clock_(clock) { | 48 clock_(clock) { |
49 } | 49 } |
50 | 50 |
51 TcpCubicSender::~TcpCubicSender() { | 51 TcpCubicBytesSender::~TcpCubicBytesSender() { |
52 UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_); | |
53 } | 52 } |
54 | 53 |
55 void TcpCubicSender::SetFromConfig(const QuicConfig& config, | 54 void TcpCubicBytesSender::SetFromConfig(const QuicConfig& config, |
56 Perspective perspective, | 55 Perspective perspective, |
57 bool using_pacing) { | 56 bool using_pacing) { |
58 if (perspective == Perspective::IS_SERVER) { | 57 if (perspective == Perspective::IS_SERVER) { |
59 if (config.HasReceivedConnectionOptions() && | 58 if (config.HasReceivedConnectionOptions() && |
60 ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) { | 59 ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) { |
61 // Initial window experiment. | 60 // Initial window experiment. |
62 congestion_window_ = 10; | 61 congestion_window_ = 10 * kMaxSegmentSize; |
63 } | 62 } |
64 if (using_pacing) { | 63 if (using_pacing) { |
65 // Disable the ack train mode in hystart when pacing is enabled, since it | 64 // Disable the ack train mode in hystart when pacing is enabled, since it |
66 // may be falsely triggered. | 65 // may be falsely triggered. |
67 hybrid_slow_start_.set_ack_train_detection(false); | 66 hybrid_slow_start_.set_ack_train_detection(false); |
68 } | 67 } |
69 } | 68 } |
70 } | 69 } |
71 | 70 |
72 bool TcpCubicSender::ResumeConnectionState( | 71 bool TcpCubicBytesSender::ResumeConnectionState( |
73 const CachedNetworkParameters& cached_network_params) { | 72 const CachedNetworkParameters& cached_network_params) { |
74 // If the previous bandwidth estimate is less than an hour old, store in | 73 // If the previous bandwidth estimate is less than an hour old, store in |
75 // preparation for doing bandwidth resumption. | 74 // preparation for doing bandwidth resumption. |
76 int64 seconds_since_estimate = | 75 int64 seconds_since_estimate = |
77 clock_->WallNow().ToUNIXSeconds() - cached_network_params.timestamp(); | 76 clock_->WallNow().ToUNIXSeconds() - cached_network_params.timestamp(); |
78 if (seconds_since_estimate > kNumSecondsPerHour) { | 77 if (seconds_since_estimate > kNumSecondsPerHour) { |
79 return false; | 78 return false; |
80 } | 79 } |
81 | 80 |
82 QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond( | 81 QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond( |
83 cached_network_params.bandwidth_estimate_bytes_per_second()); | 82 cached_network_params.bandwidth_estimate_bytes_per_second()); |
84 QuicTime::Delta rtt_ms = | 83 QuicTime::Delta rtt_ms = |
85 QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms()); | 84 QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms()); |
86 | 85 |
87 // Make sure CWND is in appropriate range (in case of bad data). | 86 // Make sure CWND is in appropriate range (in case of bad data). |
88 QuicPacketCount new_congestion_window = | 87 QuicByteCount new_congestion_window = bandwidth.ToBytesPerPeriod(rtt_ms); |
89 bandwidth.ToBytesPerPeriod(rtt_ms) / kMaxPacketSize; | 88 congestion_window_ = |
90 congestion_window_ = max( | 89 max(min(new_congestion_window, |
91 min(new_congestion_window, kMaxCongestionWindowForBandwidthResumption), | 90 kMaxCongestionWindowForBandwidthResumption * kMaxSegmentSize), |
92 kMinCongestionWindowForBandwidthResumption); | 91 kMinCongestionWindowForBandwidthResumption * kMaxSegmentSize); |
93 | 92 |
94 // TODO(rjshade): Set appropriate CWND when previous connection was in slow | 93 // TODO(rjshade): Set appropriate CWND when previous connection was in slow |
95 // start at time of estimate. | 94 // start at time of estimate. |
96 return true; | 95 return true; |
97 } | 96 } |
98 | 97 |
99 void TcpCubicSender::SetNumEmulatedConnections(int num_connections) { | 98 void TcpCubicBytesSender::SetNumEmulatedConnections(int num_connections) { |
100 num_connections_ = max(1, num_connections); | 99 num_connections_ = max(1, num_connections); |
101 cubic_.SetNumConnections(num_connections_); | 100 cubic_.SetNumConnections(num_connections_); |
102 } | 101 } |
103 | 102 |
104 float TcpCubicSender::RenoBeta() const { | 103 float TcpCubicBytesSender::RenoBeta() const { |
105 // kNConnectionBeta is the backoff factor after loss for our N-connection | 104 // kNConnectionBeta is the backoff factor after loss for our N-connection |
106 // emulation, which emulates the effective backoff of an ensemble of N | 105 // emulation, which emulates the effective backoff of an ensemble of N |
107 // TCP-Reno connections on a single loss event. The effective multiplier is | 106 // TCP-Reno connections on a single loss event. The effective multiplier is |
108 // computed as: | 107 // computed as: |
109 return (num_connections_ - 1 + kRenoBeta) / num_connections_; | 108 return (num_connections_ - 1 + kRenoBeta) / num_connections_; |
110 } | 109 } |
111 | 110 |
112 void TcpCubicSender::OnCongestionEvent( | 111 void TcpCubicBytesSender::OnCongestionEvent( |
113 bool rtt_updated, | 112 bool rtt_updated, |
114 QuicByteCount bytes_in_flight, | 113 QuicByteCount bytes_in_flight, |
115 const CongestionVector& acked_packets, | 114 const CongestionVector& acked_packets, |
116 const CongestionVector& lost_packets) { | 115 const CongestionVector& lost_packets) { |
117 if (rtt_updated && InSlowStart() && | 116 if (rtt_updated && InSlowStart() && |
118 hybrid_slow_start_.ShouldExitSlowStart(rtt_stats_->latest_rtt(), | 117 hybrid_slow_start_.ShouldExitSlowStart( |
119 rtt_stats_->min_rtt(), | 118 rtt_stats_->latest_rtt(), rtt_stats_->min_rtt(), |
120 congestion_window_)) { | 119 congestion_window_ / kMaxSegmentSize)) { |
121 slowstart_threshold_ = congestion_window_; | 120 slowstart_threshold_ = congestion_window_; |
122 } | 121 } |
123 for (CongestionVector::const_iterator it = lost_packets.begin(); | 122 for (CongestionVector::const_iterator it = lost_packets.begin(); |
124 it != lost_packets.end(); ++it) { | 123 it != lost_packets.end(); ++it) { |
125 OnPacketLost(it->first, bytes_in_flight); | 124 OnPacketLost(it->first, bytes_in_flight); |
126 } | 125 } |
127 for (CongestionVector::const_iterator it = acked_packets.begin(); | 126 for (CongestionVector::const_iterator it = acked_packets.begin(); |
128 it != acked_packets.end(); ++it) { | 127 it != acked_packets.end(); ++it) { |
129 OnPacketAcked(it->first, it->second.bytes_sent, bytes_in_flight); | 128 OnPacketAcked(it->first, it->second.bytes_sent, bytes_in_flight); |
130 } | 129 } |
131 } | 130 } |
132 | 131 |
133 void TcpCubicSender::OnPacketAcked( | 132 void TcpCubicBytesSender::OnPacketAcked( |
134 QuicPacketSequenceNumber acked_sequence_number, | 133 QuicPacketSequenceNumber acked_sequence_number, |
135 QuicByteCount acked_bytes, | 134 QuicByteCount acked_bytes, |
136 QuicByteCount bytes_in_flight) { | 135 QuicByteCount bytes_in_flight) { |
137 largest_acked_sequence_number_ = max(acked_sequence_number, | 136 largest_acked_sequence_number_ = |
138 largest_acked_sequence_number_); | 137 max(acked_sequence_number, largest_acked_sequence_number_); |
139 if (InRecovery()) { | 138 if (InRecovery()) { |
140 // PRR is used when in recovery. | 139 // PRR is used when in recovery. |
141 prr_.OnPacketAcked(acked_bytes); | 140 prr_.OnPacketAcked(acked_bytes); |
142 return; | 141 return; |
143 } | 142 } |
144 MaybeIncreaseCwnd(acked_sequence_number, bytes_in_flight); | 143 MaybeIncreaseCwnd(acked_sequence_number, acked_bytes, bytes_in_flight); |
145 // TODO(ianswett): Should this even be called when not in slow start? | 144 // TODO(ianswett): Should this even be called when not in slow start? |
146 hybrid_slow_start_.OnPacketAcked(acked_sequence_number, InSlowStart()); | 145 hybrid_slow_start_.OnPacketAcked(acked_sequence_number, InSlowStart()); |
147 } | 146 } |
148 | 147 |
149 void TcpCubicSender::OnPacketLost(QuicPacketSequenceNumber sequence_number, | 148 void TcpCubicBytesSender::OnPacketLost(QuicPacketSequenceNumber sequence_number, |
150 QuicByteCount bytes_in_flight) { | 149 QuicByteCount bytes_in_flight) { |
151 // TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets | 150 // TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets |
152 // already sent should be treated as a single loss event, since it's expected. | 151 // already sent should be treated as a single loss event, since it's expected. |
153 if (sequence_number <= largest_sent_at_last_cutback_) { | 152 if (sequence_number <= largest_sent_at_last_cutback_) { |
154 if (last_cutback_exited_slowstart_) { | 153 if (last_cutback_exited_slowstart_) { |
155 ++stats_->slowstart_packets_lost; | 154 ++stats_->slowstart_packets_lost; |
156 } | 155 } |
157 DVLOG(1) << "Ignoring loss for largest_missing:" << sequence_number | 156 DVLOG(1) << "Ignoring loss for largest_missing:" << sequence_number |
158 << " because it was sent prior to the last CWND cutback."; | 157 << " because it was sent prior to the last CWND cutback."; |
159 return; | 158 return; |
160 } | 159 } |
(...skipping 10 matching lines...) Expand all Loading... |
171 } else { | 170 } else { |
172 congestion_window_ = | 171 congestion_window_ = |
173 cubic_.CongestionWindowAfterPacketLoss(congestion_window_); | 172 cubic_.CongestionWindowAfterPacketLoss(congestion_window_); |
174 } | 173 } |
175 slowstart_threshold_ = congestion_window_; | 174 slowstart_threshold_ = congestion_window_; |
176 // Enforce TCP's minimum congestion window of 2*MSS. | 175 // Enforce TCP's minimum congestion window of 2*MSS. |
177 if (congestion_window_ < kMinimumCongestionWindow) { | 176 if (congestion_window_ < kMinimumCongestionWindow) { |
178 congestion_window_ = kMinimumCongestionWindow; | 177 congestion_window_ = kMinimumCongestionWindow; |
179 } | 178 } |
180 largest_sent_at_last_cutback_ = largest_sent_sequence_number_; | 179 largest_sent_at_last_cutback_ = largest_sent_sequence_number_; |
181 // reset packet count from congestion avoidance mode. We start | 180 // Reset packet count from congestion avoidance mode. We start counting again |
182 // counting again when we're out of recovery. | 181 // when we're out of recovery. |
183 num_acked_packets_ = 0; | 182 num_acked_packets_ = 0; |
184 DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_ | 183 DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_ |
185 << " slowstart threshold: " << slowstart_threshold_; | 184 << " slowstart threshold: " << slowstart_threshold_; |
186 } | 185 } |
187 | 186 |
188 bool TcpCubicSender::OnPacketSent(QuicTime /*sent_time*/, | 187 bool TcpCubicBytesSender::OnPacketSent( |
189 QuicByteCount /*bytes_in_flight*/, | 188 QuicTime /*sent_time*/, |
190 QuicPacketSequenceNumber sequence_number, | 189 QuicByteCount /*bytes_in_flight*/, |
191 QuicByteCount bytes, | 190 QuicPacketSequenceNumber sequence_number, |
192 HasRetransmittableData is_retransmittable) { | 191 QuicByteCount bytes, |
| 192 HasRetransmittableData is_retransmittable) { |
193 // Only update bytes_in_flight_ for data packets. | 193 // Only update bytes_in_flight_ for data packets. |
194 if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) { | 194 if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) { |
195 return false; | 195 return false; |
196 } | 196 } |
197 if (InRecovery()) { | 197 if (InRecovery()) { |
198 // PRR is used when in recovery. | 198 // PRR is used when in recovery. |
199 prr_.OnPacketSent(bytes); | 199 prr_.OnPacketSent(bytes); |
200 } | 200 } |
201 DCHECK_LT(largest_sent_sequence_number_, sequence_number); | 201 DCHECK_LT(largest_sent_sequence_number_, sequence_number); |
202 largest_sent_sequence_number_ = sequence_number; | 202 largest_sent_sequence_number_ = sequence_number; |
203 hybrid_slow_start_.OnPacketSent(sequence_number); | 203 hybrid_slow_start_.OnPacketSent(sequence_number); |
204 return true; | 204 return true; |
205 } | 205 } |
206 | 206 |
207 QuicTime::Delta TcpCubicSender::TimeUntilSend( | 207 QuicTime::Delta TcpCubicBytesSender::TimeUntilSend( |
208 QuicTime /* now */, | 208 QuicTime /* now */, |
209 QuicByteCount bytes_in_flight, | 209 QuicByteCount bytes_in_flight, |
210 HasRetransmittableData has_retransmittable_data) const { | 210 HasRetransmittableData has_retransmittable_data) const { |
211 if (has_retransmittable_data == NO_RETRANSMITTABLE_DATA) { | 211 if (has_retransmittable_data == NO_RETRANSMITTABLE_DATA) { |
212 // For TCP we can always send an ACK immediately. | 212 // For TCP we can always send an ACK immediately. |
213 return QuicTime::Delta::Zero(); | 213 return QuicTime::Delta::Zero(); |
214 } | 214 } |
215 if (InRecovery()) { | 215 if (InRecovery()) { |
216 // PRR is used when in recovery. | 216 // PRR is used when in recovery. |
217 return prr_.TimeUntilSend(GetCongestionWindow(), bytes_in_flight, | 217 return prr_.TimeUntilSend(GetCongestionWindow(), bytes_in_flight, |
218 slowstart_threshold_ * kMaxSegmentSize); | 218 slowstart_threshold_); |
219 } | 219 } |
220 if (GetCongestionWindow() > bytes_in_flight) { | 220 if (GetCongestionWindow() > bytes_in_flight) { |
221 return QuicTime::Delta::Zero(); | 221 return QuicTime::Delta::Zero(); |
222 } | 222 } |
223 return QuicTime::Delta::Infinite(); | 223 return QuicTime::Delta::Infinite(); |
224 } | 224 } |
225 | 225 |
226 QuicBandwidth TcpCubicSender::PacingRate() const { | 226 QuicBandwidth TcpCubicBytesSender::PacingRate() const { |
227 // We pace at twice the rate of the underlying sender's bandwidth estimate | 227 // We pace at twice the rate of the underlying sender's bandwidth estimate |
228 // during slow start and 1.25x during congestion avoidance to ensure pacing | 228 // during slow start and 1.25x during congestion avoidance to ensure pacing |
229 // doesn't prevent us from filling the window. | 229 // doesn't prevent us from filling the window. |
230 QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); | 230 QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); |
231 if (srtt.IsZero()) { | 231 if (srtt.IsZero()) { |
232 srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us()); | 232 srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us()); |
233 } | 233 } |
234 const QuicBandwidth bandwidth = | 234 const QuicBandwidth bandwidth = |
235 QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); | 235 QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); |
236 return bandwidth.Scale(InSlowStart() ? 2 : 1.25); | 236 return bandwidth.Scale(InSlowStart() ? 2 : 1.25); |
237 } | 237 } |
238 | 238 |
239 QuicBandwidth TcpCubicSender::BandwidthEstimate() const { | 239 QuicBandwidth TcpCubicBytesSender::BandwidthEstimate() const { |
240 QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); | 240 QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); |
241 if (srtt.IsZero()) { | 241 if (srtt.IsZero()) { |
242 // If we haven't measured an rtt, the bandwidth estimate is unknown. | 242 // If we haven't measured an rtt, the bandwidth estimate is unknown. |
243 return QuicBandwidth::Zero(); | 243 return QuicBandwidth::Zero(); |
244 } | 244 } |
245 return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); | 245 return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); |
246 } | 246 } |
247 | 247 |
248 bool TcpCubicSender::HasReliableBandwidthEstimate() const { | 248 bool TcpCubicBytesSender::HasReliableBandwidthEstimate() const { |
249 return !InSlowStart() && !InRecovery() && | 249 return !InSlowStart() && !InRecovery() && |
250 !rtt_stats_->smoothed_rtt().IsZero();; | 250 !rtt_stats_->smoothed_rtt().IsZero(); |
251 } | 251 } |
252 | 252 |
253 QuicTime::Delta TcpCubicSender::RetransmissionDelay() const { | 253 QuicTime::Delta TcpCubicBytesSender::RetransmissionDelay() const { |
254 if (rtt_stats_->smoothed_rtt().IsZero()) { | 254 if (rtt_stats_->smoothed_rtt().IsZero()) { |
255 return QuicTime::Delta::Zero(); | 255 return QuicTime::Delta::Zero(); |
256 } | 256 } |
257 return rtt_stats_->smoothed_rtt().Add( | 257 return rtt_stats_->smoothed_rtt().Add( |
258 rtt_stats_->mean_deviation().Multiply(4)); | 258 rtt_stats_->mean_deviation().Multiply(4)); |
259 } | 259 } |
260 | 260 |
261 QuicByteCount TcpCubicSender::GetCongestionWindow() const { | 261 QuicByteCount TcpCubicBytesSender::GetCongestionWindow() const { |
262 return congestion_window_ * kMaxSegmentSize; | 262 return congestion_window_; |
263 } | 263 } |
264 | 264 |
265 bool TcpCubicSender::InSlowStart() const { | 265 bool TcpCubicBytesSender::InSlowStart() const { |
266 return congestion_window_ < slowstart_threshold_; | 266 return congestion_window_ < slowstart_threshold_; |
267 } | 267 } |
268 | 268 |
269 QuicByteCount TcpCubicSender::GetSlowStartThreshold() const { | 269 QuicByteCount TcpCubicBytesSender::GetSlowStartThreshold() const { |
270 return slowstart_threshold_ * kMaxSegmentSize; | 270 return slowstart_threshold_; |
271 } | 271 } |
272 | 272 |
273 bool TcpCubicSender::IsCwndLimited(QuicByteCount bytes_in_flight) const { | 273 bool TcpCubicBytesSender::IsCwndLimited(QuicByteCount bytes_in_flight) const { |
274 const QuicByteCount congestion_window_bytes = congestion_window_ * | 274 if (bytes_in_flight >= congestion_window_) { |
275 kMaxSegmentSize; | |
276 if (bytes_in_flight >= congestion_window_bytes) { | |
277 return true; | 275 return true; |
278 } | 276 } |
279 const QuicByteCount max_burst = kMaxBurstLength * kMaxSegmentSize; | 277 const QuicByteCount max_burst = kMaxBurstLength * kMaxSegmentSize; |
280 const QuicByteCount available_bytes = | 278 const QuicByteCount available_bytes = congestion_window_ - bytes_in_flight; |
281 congestion_window_bytes - bytes_in_flight; | 279 const bool slow_start_limited = |
282 const bool slow_start_limited = InSlowStart() && | 280 InSlowStart() && bytes_in_flight > congestion_window_ / 2; |
283 bytes_in_flight > congestion_window_bytes / 2; | |
284 return slow_start_limited || available_bytes <= max_burst; | 281 return slow_start_limited || available_bytes <= max_burst; |
285 } | 282 } |
286 | 283 |
287 bool TcpCubicSender::InRecovery() const { | 284 bool TcpCubicBytesSender::InRecovery() const { |
288 return largest_acked_sequence_number_ <= largest_sent_at_last_cutback_ && | 285 return largest_acked_sequence_number_ <= largest_sent_at_last_cutback_ && |
289 largest_acked_sequence_number_ != 0; | 286 largest_acked_sequence_number_ != 0; |
290 } | 287 } |
291 | 288 |
292 // Called when we receive an ack. Normal TCP tracks how many packets one ack | 289 // Called when we receive an ack. Normal TCP tracks how many packets one ack |
293 // represents, but quic has a separate ack for each packet. | 290 // represents, but quic has a separate ack for each packet. |
294 void TcpCubicSender::MaybeIncreaseCwnd( | 291 void TcpCubicBytesSender::MaybeIncreaseCwnd( |
295 QuicPacketSequenceNumber acked_sequence_number, | 292 QuicPacketSequenceNumber acked_sequence_number, |
| 293 QuicByteCount acked_bytes, |
296 QuicByteCount bytes_in_flight) { | 294 QuicByteCount bytes_in_flight) { |
297 LOG_IF(DFATAL, InRecovery()) << "Never increase the CWND during recovery."; | 295 LOG_IF(DFATAL, InRecovery()) << "Never increase the CWND during recovery."; |
298 if (!IsCwndLimited(bytes_in_flight)) { | 296 if (!IsCwndLimited(bytes_in_flight)) { |
299 // We don't update the congestion window unless we are close to using the | 297 // We don't update the congestion window unless we are close to using the |
300 // window we have available. | 298 // window we have available. |
301 return; | 299 return; |
302 } | 300 } |
303 if (InSlowStart()) { | 301 if (InSlowStart()) { |
304 // TCP slow start, exponential growth, increase by one for each ACK. | 302 // TCP slow start, exponential growth, increase by one for each ACK. |
305 ++congestion_window_; | 303 congestion_window_ += kMaxSegmentSize; |
306 DVLOG(1) << "Slow start; congestion window: " << congestion_window_ | 304 DVLOG(1) << "Slow start; congestion window: " << congestion_window_ |
307 << " slowstart threshold: " << slowstart_threshold_; | 305 << " slowstart threshold: " << slowstart_threshold_; |
308 return; | 306 return; |
309 } | 307 } |
310 // Congestion avoidance | 308 // Congestion avoidance. |
311 if (reno_) { | 309 if (reno_) { |
312 // Classic Reno congestion avoidance. | 310 // Classic Reno congestion avoidance. |
313 ++num_acked_packets_; | 311 ++num_acked_packets_; |
314 // Divide by num_connections to smoothly increase the CWND at a faster | 312 // Divide by num_connections to smoothly increase the CWND at a faster rate |
315 // rate than conventional Reno. | 313 // than conventional Reno. |
316 if (num_acked_packets_ * num_connections_ >= congestion_window_) { | 314 if (num_acked_packets_ * num_connections_ >= |
317 ++congestion_window_; | 315 congestion_window_ / kMaxSegmentSize) { |
| 316 congestion_window_ += kMaxSegmentSize; |
318 num_acked_packets_ = 0; | 317 num_acked_packets_ = 0; |
319 } | 318 } |
320 | 319 |
321 DVLOG(1) << "Reno; congestion window: " << congestion_window_ | 320 DVLOG(1) << "Reno; congestion window: " << congestion_window_ |
322 << " slowstart threshold: " << slowstart_threshold_ | 321 << " slowstart threshold: " << slowstart_threshold_ |
323 << " congestion window count: " << num_acked_packets_; | 322 << " congestion window count: " << num_acked_packets_; |
324 } else { | 323 } else { |
325 congestion_window_ = cubic_.CongestionWindowAfterAck(congestion_window_, | 324 congestion_window_ = cubic_.CongestionWindowAfterAck( |
326 rtt_stats_->min_rtt()); | 325 acked_bytes, congestion_window_, rtt_stats_->min_rtt()); |
327 DVLOG(1) << "Cubic; congestion window: " << congestion_window_ | 326 DVLOG(1) << "Cubic; congestion window: " << congestion_window_ |
328 << " slowstart threshold: " << slowstart_threshold_; | 327 << " slowstart threshold: " << slowstart_threshold_; |
329 } | 328 } |
330 } | 329 } |
331 | 330 |
332 void TcpCubicSender::OnRetransmissionTimeout(bool packets_retransmitted) { | 331 void TcpCubicBytesSender::OnRetransmissionTimeout(bool packets_retransmitted) { |
333 largest_sent_at_last_cutback_ = 0; | 332 largest_sent_at_last_cutback_ = 0; |
334 if (!packets_retransmitted) { | 333 if (!packets_retransmitted) { |
335 return; | 334 return; |
336 } | 335 } |
337 cubic_.Reset(); | 336 cubic_.Reset(); |
338 hybrid_slow_start_.Restart(); | 337 hybrid_slow_start_.Restart(); |
339 slowstart_threshold_ = congestion_window_ / 2; | 338 slowstart_threshold_ = congestion_window_ / 2; |
340 congestion_window_ = kMinimumCongestionWindow; | 339 congestion_window_ = kMinimumCongestionWindow; |
341 } | 340 } |
342 | 341 |
343 CongestionControlType TcpCubicSender::GetCongestionControlType() const { | 342 CongestionControlType TcpCubicBytesSender::GetCongestionControlType() const { |
344 return reno_ ? kReno : kCubic; | 343 return reno_ ? kReno : kCubic; |
345 } | 344 } |
346 | 345 |
347 } // namespace net | 346 } // namespace net |
OLD | NEW |