Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(128)

Side by Side Diff: net/quic/congestion_control/cubic_bytes.cc

Issue 1014433002: Land Recent QUIC Changes until 03/09/2015. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@replaces_Perspective_enun_88006458
Patch Set: Rebase - added NET_EXPORT_PRIVATE to fix compiler error Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "net/quic/congestion_control/cubic.h" 5 #include "net/quic/congestion_control/cubic_bytes.h"
6 6
7 #include <algorithm> 7 #include <algorithm>
8 #include <cmath> 8 #include <cmath>
9 9
10 #include "base/basictypes.h" 10 #include "base/basictypes.h"
11 #include "base/logging.h" 11 #include "base/logging.h"
12 #include "base/time/time.h"
13 #include "net/quic/quic_flags.h"
14 #include "net/quic/quic_protocol.h" 12 #include "net/quic/quic_protocol.h"
15 13
16 using std::max; 14 using std::max;
17 15
18 namespace net { 16 namespace net {
19 17
20 namespace { 18 namespace {
21 19
22 // Constants based on TCP defaults. 20 // Constants based on TCP defaults.
23 // The following constants are in 2^10 fractions of a second instead of ms to 21 // The following constants are in 2^10 fractions of a second instead of ms to
24 // allow a 10 shift right to divide. 22 // allow a 10 shift right to divide.
25 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3) 23 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
26 // where 0.100 is 100 ms which is the scaling 24 // where 0.100 is 100 ms which is the scaling
27 // round trip time. 25 // round trip time.
28 const int kCubeCongestionWindowScale = 410; 26 const int kCubeCongestionWindowScale = 410;
27 // The cube factor for packets in bytes.
29 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) / 28 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) /
30 kCubeCongestionWindowScale; 29 kCubeCongestionWindowScale / kDefaultTCPMSS;
31 30
32 const uint32 kDefaultNumConnections = 2; 31 const uint32 kDefaultNumConnections = 2;
33 const float kBeta = 0.7f; // Default Cubic backoff factor. 32 const float kBeta = 0.7f; // Default Cubic backoff factor.
34 // Additional backoff factor when loss occurs in the concave part of the Cubic 33 // Additional backoff factor when loss occurs in the concave part of the Cubic
35 // curve. This additional backoff factor is expected to give up bandwidth to 34 // curve. This additional backoff factor is expected to give up bandwidth to
36 // new concurrent flows and speed up convergence. 35 // new concurrent flows and speed up convergence.
37 const float kBetaLastMax = 0.85f; 36 const float kBetaLastMax = 0.85f;
38 37
39 } // namespace 38 } // namespace
40 39
41 Cubic::Cubic(const QuicClock* clock) 40 CubicBytes::CubicBytes(const QuicClock* clock)
42 : clock_(clock), 41 : clock_(clock),
43 num_connections_(kDefaultNumConnections), 42 num_connections_(kDefaultNumConnections),
44 epoch_(QuicTime::Zero()), 43 epoch_(QuicTime::Zero()),
45 last_update_time_(QuicTime::Zero()) { 44 last_update_time_(QuicTime::Zero()) {
46 Reset(); 45 Reset();
47 } 46 }
48 47
49 void Cubic::SetNumConnections(int num_connections) { 48 void CubicBytes::SetNumConnections(int num_connections) {
50 num_connections_ = num_connections; 49 num_connections_ = num_connections;
51 } 50 }
52 51
53 float Cubic::Alpha() const { 52 float CubicBytes::Alpha() const {
54 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that 53 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
55 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper. 54 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
56 // We derive the equivalent alpha for an N-connection emulation as: 55 // We derive the equivalent alpha for an N-connection emulation as:
57 const float beta = Beta(); 56 const float beta = Beta();
58 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta); 57 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta);
59 } 58 }
60 59
61 float Cubic::Beta() const { 60 float CubicBytes::Beta() const {
62 // kNConnectionBeta is the backoff factor after loss for our N-connection 61 // kNConnectionBeta is the backoff factor after loss for our N-connection
63 // emulation, which emulates the effective backoff of an ensemble of N 62 // emulation, which emulates the effective backoff of an ensemble of N
64 // TCP-Reno connections on a single loss event. The effective multiplier is 63 // TCP-Reno connections on a single loss event. The effective multiplier is
65 // computed as: 64 // computed as:
66 return (num_connections_ - 1 + kBeta) / num_connections_; 65 return (num_connections_ - 1 + kBeta) / num_connections_;
67 } 66 }
68 67
69 void Cubic::Reset() { 68 void CubicBytes::Reset() {
70 epoch_ = QuicTime::Zero(); // Reset time. 69 epoch_ = QuicTime::Zero(); // Reset time.
71 last_update_time_ = QuicTime::Zero(); // Reset time. 70 last_update_time_ = QuicTime::Zero(); // Reset time.
72 last_congestion_window_ = 0; 71 last_congestion_window_ = 0;
73 last_max_congestion_window_ = 0; 72 last_max_congestion_window_ = 0;
74 acked_packets_count_ = 0; 73 acked_bytes_count_ = 0;
75 estimated_tcp_congestion_window_ = 0; 74 estimated_tcp_congestion_window_ = 0;
76 origin_point_congestion_window_ = 0; 75 origin_point_congestion_window_ = 0;
77 time_to_origin_point_ = 0; 76 time_to_origin_point_ = 0;
78 last_target_congestion_window_ = 0; 77 last_target_congestion_window_ = 0;
79 } 78 }
80 79
81 QuicPacketCount Cubic::CongestionWindowAfterPacketLoss( 80 QuicByteCount CubicBytes::CongestionWindowAfterPacketLoss(
82 QuicPacketCount current_congestion_window) { 81 QuicByteCount current_congestion_window) {
83 if (current_congestion_window < last_max_congestion_window_) { 82 if (current_congestion_window < last_max_congestion_window_) {
84 // We never reached the old max, so assume we are competing with another 83 // We never reached the old max, so assume we are competing with another
85 // flow. Use our extra back off factor to allow the other flow to go up. 84 // flow. Use our extra back off factor to allow the other flow to go up.
86 last_max_congestion_window_ = 85 last_max_congestion_window_ =
87 static_cast<int>(kBetaLastMax * current_congestion_window); 86 static_cast<int>(kBetaLastMax * current_congestion_window);
88 } else { 87 } else {
89 last_max_congestion_window_ = current_congestion_window; 88 last_max_congestion_window_ = current_congestion_window;
90 } 89 }
91 epoch_ = QuicTime::Zero(); // Reset time. 90 epoch_ = QuicTime::Zero(); // Reset time.
92 return static_cast<int>(current_congestion_window * Beta()); 91 return static_cast<int>(current_congestion_window * Beta());
93 } 92 }
94 93
95 QuicPacketCount Cubic::CongestionWindowAfterAck( 94 QuicByteCount CubicBytes::CongestionWindowAfterAck(
96 QuicPacketCount current_congestion_window, 95 QuicByteCount acked_bytes,
96 QuicByteCount current_congestion_window,
97 QuicTime::Delta delay_min) { 97 QuicTime::Delta delay_min) {
98 acked_packets_count_ += 1; // Packets acked. 98 acked_bytes_count_ += acked_bytes;
99 QuicTime current_time = clock_->ApproximateNow(); 99 QuicTime current_time = clock_->ApproximateNow();
100 100
101 // Cubic is "independent" of RTT, the update is limited by the time elapsed. 101 // Cubic is "independent" of RTT, the update is limited by the time elapsed.
102 if (last_congestion_window_ == current_congestion_window && 102 if (last_congestion_window_ == current_congestion_window &&
103 (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) { 103 (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
104 return max(last_target_congestion_window_, 104 return max(last_target_congestion_window_,
105 estimated_tcp_congestion_window_); 105 estimated_tcp_congestion_window_);
106 } 106 }
107 last_congestion_window_ = current_congestion_window; 107 last_congestion_window_ = current_congestion_window;
108 last_update_time_ = current_time; 108 last_update_time_ = current_time;
109 109
110 if (!epoch_.IsInitialized()) { 110 if (!epoch_.IsInitialized()) {
111 // First ACK after a loss event. 111 // First ACK after a loss event.
112 DVLOG(1) << "Start of epoch"; 112 DVLOG(1) << "Start of epoch";
113 epoch_ = current_time; // Start of epoch. 113 epoch_ = current_time; // Start of epoch.
114 acked_packets_count_ = 1; // Reset count. 114 acked_bytes_count_ = acked_bytes; // Reset count.
115 // Reset estimated_tcp_congestion_window_ to be in sync with cubic. 115 // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
116 estimated_tcp_congestion_window_ = current_congestion_window; 116 estimated_tcp_congestion_window_ = current_congestion_window;
117 if (last_max_congestion_window_ <= current_congestion_window) { 117 if (last_max_congestion_window_ <= current_congestion_window) {
118 time_to_origin_point_ = 0; 118 time_to_origin_point_ = 0;
119 origin_point_congestion_window_ = current_congestion_window; 119 origin_point_congestion_window_ = current_congestion_window;
120 } else { 120 } else {
121 time_to_origin_point_ = 121 time_to_origin_point_ =
122 static_cast<uint32>(cbrt(kCubeFactor * (last_max_congestion_window_ - 122 static_cast<uint32>(cbrt(kCubeFactor * (last_max_congestion_window_ -
123 current_congestion_window))); 123 current_congestion_window)));
124 origin_point_congestion_window_ = 124 origin_point_congestion_window_ = last_max_congestion_window_;
125 last_max_congestion_window_;
126 } 125 }
127 } 126 }
128 // Change the time unit from microseconds to 2^10 fractions per second. Take 127 // Change the time unit from microseconds to 2^10 fractions per second. Take
129 // the round trip time in account. This is done to allow us to use shift as a 128 // the round trip time in account. This is done to allow us to use shift as a
130 // divide operator. 129 // divide operator.
131 int64 elapsed_time = 130 int64 elapsed_time =
132 (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) / 131 (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
133 base::Time::kMicrosecondsPerSecond; 132 kNumMicrosPerSecond;
134 133
135 int64 offset = time_to_origin_point_ - elapsed_time; 134 int64 offset = time_to_origin_point_ - elapsed_time;
136 QuicPacketCount delta_congestion_window = (kCubeCongestionWindowScale 135 QuicByteCount delta_congestion_window =
137 * offset * offset * offset) >> kCubeScale; 136 ((kCubeCongestionWindowScale * offset * offset * offset) >> kCubeScale) *
137 kDefaultTCPMSS;
138 138
139 QuicPacketCount target_congestion_window = 139 QuicByteCount target_congestion_window =
140 origin_point_congestion_window_ - delta_congestion_window; 140 origin_point_congestion_window_ - delta_congestion_window;
141 141
142 DCHECK_LT(0u, estimated_tcp_congestion_window_); 142 DCHECK_LT(0u, estimated_tcp_congestion_window_);
143 // With dynamic beta/alpha based on number of active streams, it is possible 143 // Increase the window by Alpha * 1 MSS of bytes every time we ack an
144 // for the required_ack_count to become much lower than acked_packets_count_ 144 // estimated tcp window of bytes.
145 // suddenly, leading to more than one iteration through the following loop. 145 estimated_tcp_congestion_window_ += acked_bytes_count_ *
146 while (true) { 146 (Alpha() * kDefaultTCPMSS) /
147 // Update estimated TCP congestion_window. 147 estimated_tcp_congestion_window_;
148 QuicPacketCount required_ack_count = static_cast<QuicPacketCount>( 148 acked_bytes_count_ = 0;
149 estimated_tcp_congestion_window_ / Alpha());
150 if (acked_packets_count_ < required_ack_count) {
151 break;
152 }
153 acked_packets_count_ -= required_ack_count;
154 estimated_tcp_congestion_window_++;
155 }
156 149
157 // We have a new cubic congestion window. 150 // We have a new cubic congestion window.
158 last_target_congestion_window_ = target_congestion_window; 151 last_target_congestion_window_ = target_congestion_window;
159 152
160 // Compute target congestion_window based on cubic target and estimated TCP 153 // Compute target congestion_window based on cubic target and estimated TCP
161 // congestion_window, use highest (fastest). 154 // congestion_window, use highest (fastest).
162 if (target_congestion_window < estimated_tcp_congestion_window_) { 155 if (target_congestion_window < estimated_tcp_congestion_window_) {
163 target_congestion_window = estimated_tcp_congestion_window_; 156 target_congestion_window = estimated_tcp_congestion_window_;
164 } 157 }
165 158
166 DVLOG(1) << "Target congestion_window: " << target_congestion_window; 159 DVLOG(1) << "Target congestion_window: " << target_congestion_window;
167 return target_congestion_window; 160 return target_congestion_window;
168 } 161 }
169 162
170 } // namespace net 163 } // namespace net
OLDNEW
« no previous file with comments | « net/quic/congestion_control/cubic_bytes.h ('k') | net/quic/congestion_control/cubic_bytes_test.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698