OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkCodec_libbmp.h" | 8 #include "SkCodec_libbmp.h" |
9 #include "SkCodecPriv.h" | 9 #include "SkCodecPriv.h" |
10 #include "SkColorPriv.h" | 10 #include "SkColorPriv.h" |
11 #include "SkStream.h" | 11 #include "SkStream.h" |
12 | 12 |
13 /* | 13 /* |
14 * | 14 * |
15 * Checks if the conversion between the input image and the requested output | 15 * Checks if the conversion between the input image and the requested output |
16 * image has been implemented | 16 * image has been implemented |
17 * | 17 * |
18 */ | 18 */ |
19 static bool conversion_possible(const SkImageInfo& dst, | 19 static bool conversion_possible(const SkImageInfo& dst, |
20 const SkImageInfo& src) { | 20 const SkImageInfo& src) { |
21 // All of the swizzles convert to kN32 | 21 // Ensure that the profile type is unchanged |
22 // TODO: Update this when more swizzles are supported | 22 if (dst.profileType() != src.profileType()) { |
23 if (kN32_SkColorType != dst.colorType()) { | |
24 return false; | 23 return false; |
25 } | 24 } |
26 // Support the swizzle if the requested alpha type is the same as our guess | 25 |
27 // for the input alpha type | 26 // Check for supported color and alpha types |
28 if (src.alphaType() == dst.alphaType()) { | 27 switch (dst.colorType()) { |
29 return true; | 28 case kN32_SkColorType: |
29 return src.alphaType() == dst.alphaType() || | |
30 (kPremul_SkAlphaType == dst.alphaType() && | |
31 kUnpremul_SkAlphaType == src.alphaType()); | |
32 case kRGB_565_SkColorType: | |
33 return src.alphaType() == dst.alphaType() && | |
34 kOpaque_SkAlphaType == dst.alphaType(); | |
35 default: | |
36 return false; | |
30 } | 37 } |
31 // TODO: Support more swizzles, especially premul | |
32 return false; | |
33 } | 38 } |
34 | 39 |
35 /* | 40 /* |
36 * | 41 * |
37 * Defines the version and type of the second bitmap header | 42 * Defines the version and type of the second bitmap header |
38 * | 43 * |
39 */ | 44 */ |
40 enum BitmapHeaderType { | 45 enum BitmapHeaderType { |
41 kInfoV1_BitmapHeaderType, | 46 kInfoV1_BitmapHeaderType, |
42 kInfoV2_BitmapHeaderType, | 47 kInfoV2_BitmapHeaderType, |
(...skipping 197 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
240 } | 245 } |
241 static const int kBmpMaxDim = 1 << 16; | 246 static const int kBmpMaxDim = 1 << 16; |
242 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { | 247 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { |
243 // TODO: Decide if we want to support really large bmps. | 248 // TODO: Decide if we want to support really large bmps. |
244 SkDebugf("Error: invalid bitmap dimensions.\n"); | 249 SkDebugf("Error: invalid bitmap dimensions.\n"); |
245 return NULL; | 250 return NULL; |
246 } | 251 } |
247 | 252 |
248 // Create mask struct | 253 // Create mask struct |
249 SkMasks::InputMasks inputMasks; | 254 SkMasks::InputMasks inputMasks; |
250 memset(&inputMasks, 0, 4*sizeof(uint32_t)); | 255 memset(&inputMasks, 0, sizeof(SkMasks::InputMasks)); |
251 | 256 |
252 // Determine the input compression format and set bit masks if necessary | 257 // Determine the input compression format and set bit masks if necessary |
253 uint32_t maskBytes = 0; | 258 uint32_t maskBytes = 0; |
254 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | 259 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
255 switch (compression) { | 260 switch (compression) { |
256 case kNone_BitmapCompressionMethod: | 261 case kNone_BitmapCompressionMethod: |
257 inputFormat = kStandard_BitmapInputFormat; | 262 inputFormat = kStandard_BitmapInputFormat; |
258 break; | 263 break; |
259 case k8BitRLE_BitmapCompressionMethod: | 264 case k8BitRLE_BitmapCompressionMethod: |
260 if (bitsPerPixel != 8) { | 265 if (bitsPerPixel != 8) { |
(...skipping 124 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
385 } | 390 } |
386 | 391 |
387 // Check that input bit masks are valid and create the masks object | 392 // Check that input bit masks are valid and create the masks object |
388 SkAutoTDelete<SkMasks> | 393 SkAutoTDelete<SkMasks> |
389 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); | 394 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); |
390 if (NULL == masks) { | 395 if (NULL == masks) { |
391 SkDebugf("Error: invalid input masks.\n"); | 396 SkDebugf("Error: invalid input masks.\n"); |
392 return NULL; | 397 return NULL; |
393 } | 398 } |
394 | 399 |
395 // Process the color table | 400 // Check for a valid number of total bytes when in RLE mode |
396 uint32_t colorBytes = 0; | 401 if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) { |
397 SkPMColor* colorTable = NULL; | 402 SkDebugf("Error: RLE requires valid input size.\n"); |
398 if (bitsPerPixel < 16) { | |
399 // Verify the number of colors for the color table | |
400 const uint32_t maxColors = 1 << bitsPerPixel; | |
401 // Zero is a default for maxColors | |
402 // Also set numColors to maxColors when input is too large | |
403 if (numColors <= 0 || numColors > maxColors) { | |
404 numColors = maxColors; | |
405 } | |
406 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
407 | |
408 // Construct the color table | |
409 colorBytes = numColors * bytesPerColor; | |
410 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
411 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
412 SkDebugf("Error: unable to read color table.\n"); | |
413 return NULL; | |
414 } | |
415 | |
416 // Fill in the color table (colors are stored unpremultiplied) | |
417 uint32_t i = 0; | |
418 for (; i < numColors; i++) { | |
419 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
420 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
421 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
422 uint8_t alpha = 0xFF; | |
423 if (kOpaque_SkAlphaType != alphaType) { | |
424 alpha = (inputMasks.alpha >> 24) & | |
425 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
426 } | |
427 // Store the unpremultiplied color | |
428 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); | |
429 } | |
430 | |
431 // To avoid segmentation faults on bad pixel data, fill the end of the | |
432 // color table with black. This is the same the behavior as the | |
433 // chromium decoder. | |
434 for (; i < maxColors; i++) { | |
435 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
436 } | |
437 } | |
438 | |
439 // Ensure that the stream now points to the start of the pixel array | |
440 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
441 | |
442 // Check that we have not read past the pixel array offset | |
443 if(bytesRead > offset) { | |
444 // This may occur on OS 2.1 and other old versions where the color | |
445 // table defaults to max size, and the bmp tries to use a smaller color | |
446 // table. This is invalid, and our decision is to indicate an error, | |
447 // rather than try to guess the intended size of the color table and | |
448 // rewind the stream to display the image. | |
449 SkDebugf("Error: pixel data offset less than header size.\n"); | |
450 return NULL; | 403 return NULL; |
451 } | 404 } |
405 const size_t RLEBytes = totalBytes - offset; | |
452 | 406 |
453 // Skip to the start of the pixel array | 407 // Calculate the number of bytes read so far |
454 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | 408 const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes; |
455 SkDebugf("Error: unable to skip to image data.\n"); | 409 if (offset < bytesRead) { |
456 return NULL; | 410 SkDebugf("Error: pixel data offset less than header size.\n"); |
457 } | |
458 | |
459 // Remaining bytes is only used for RLE | |
460 const int remainingBytes = totalBytes - offset; | |
461 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { | |
462 SkDebugf("Error: RLE requires valid input size.\n"); | |
463 return NULL; | 411 return NULL; |
464 } | 412 } |
465 | 413 |
466 // Return the codec | 414 // Return the codec |
467 // We will use ImageInfo to store width, height, and alpha type. We will | 415 // We will use ImageInfo to store width, height, and alpha type. We will |
468 // choose kN32_SkColorType as the input color type because that is the | 416 // set color type to kN32_SkColorType because that should be the default |
469 // expected choice for a destination color type. In reality, the input | 417 // output. |
470 // color type has many possible formats. | |
471 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | 418 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
472 kN32_SkColorType, alphaType); | 419 kN32_SkColorType, alphaType); |
473 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | 420 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
474 inputFormat, masks.detach(), colorTable, | 421 inputFormat, masks.detach(), numColors, |
475 rowOrder, remainingBytes)); | 422 bytesPerColor, offset - bytesRead, |
423 rowOrder, RLEBytes)); | |
476 } | 424 } |
477 | 425 |
478 /* | 426 /* |
479 * | 427 * |
480 * Creates an instance of the decoder | 428 * Creates an instance of the decoder |
481 * Called only by NewFromStream | 429 * Called only by NewFromStream |
482 * | 430 * |
483 */ | 431 */ |
484 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | 432 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
485 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | 433 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
486 SkMasks* masks, SkPMColor* colorTable, | 434 SkMasks* masks, uint32_t numColors, |
487 RowOrder rowOrder, | 435 uint32_t bytesPerColor, uint32_t offset, |
488 const uint32_t remainingBytes) | 436 RowOrder rowOrder, size_t RLEBytes) |
489 : INHERITED(info, stream) | 437 : INHERITED(info, stream) |
490 , fBitsPerPixel(bitsPerPixel) | 438 , fBitsPerPixel(bitsPerPixel) |
491 , fInputFormat(inputFormat) | 439 , fInputFormat(inputFormat) |
492 , fMasks(masks) | 440 , fMasks(masks) |
493 , fColorTable(colorTable) | 441 , fColorTable(NULL) |
442 , fNumColors(numColors) | |
443 , fBytesPerColor(bytesPerColor) | |
444 , fOffset(offset) | |
494 , fRowOrder(rowOrder) | 445 , fRowOrder(rowOrder) |
495 , fRemainingBytes(remainingBytes) | 446 , fRLEBytes(RLEBytes) |
496 {} | 447 {} |
497 | 448 |
498 /* | 449 /* |
499 * | 450 * |
500 * Initiates the bitmap decode | 451 * Initiates the bitmap decode |
501 * | 452 * |
502 */ | 453 */ |
503 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | 454 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
504 void* dst, size_t dstRowBytes, | 455 void* dst, size_t dstRowBytes, |
505 const Options&, | 456 const Options&, |
506 SkPMColor*, int*) { | 457 SkPMColor*, int*) { |
458 // Check for proper input and output formats | |
507 if (!this->rewindIfNeeded()) { | 459 if (!this->rewindIfNeeded()) { |
508 return kCouldNotRewind; | 460 return kCouldNotRewind; |
509 } | 461 } |
510 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { | 462 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { |
511 SkDebugf("Error: scaling not supported.\n"); | 463 SkDebugf("Error: scaling not supported.\n"); |
512 return kInvalidScale; | 464 return kInvalidScale; |
513 } | 465 } |
514 if (!conversion_possible(dstInfo, this->getOriginalInfo())) { | 466 if (!conversion_possible(dstInfo, this->getOriginalInfo())) { |
515 SkDebugf("Error: cannot convert input type to output type.\n"); | 467 SkDebugf("Error: cannot convert input type to output type.\n"); |
516 return kInvalidConversion; | 468 return kInvalidConversion; |
517 } | 469 } |
518 | 470 |
471 // Create the color table if necessary and prepare the stream for decode | |
472 if (!createColorTable(dstInfo.alphaType())) { | |
473 SkDebugf("Error: could not create color table.\n"); | |
474 return kInvalidInput; | |
475 } | |
476 | |
477 // Perform the decode | |
519 switch (fInputFormat) { | 478 switch (fInputFormat) { |
520 case kBitMask_BitmapInputFormat: | 479 case kBitMask_BitmapInputFormat: |
521 return decodeMask(dstInfo, dst, dstRowBytes); | 480 return decodeMask(dstInfo, dst, dstRowBytes); |
522 case kRLE_BitmapInputFormat: | 481 case kRLE_BitmapInputFormat: |
523 return decodeRLE(dstInfo, dst, dstRowBytes); | 482 return decodeRLE(dstInfo, dst, dstRowBytes); |
524 case kStandard_BitmapInputFormat: | 483 case kStandard_BitmapInputFormat: |
525 return decode(dstInfo, dst, dstRowBytes); | 484 return decode(dstInfo, dst, dstRowBytes); |
526 default: | 485 default: |
527 SkASSERT(false); | 486 SkASSERT(false); |
528 return kInvalidInput; | 487 return kInvalidInput; |
529 } | 488 } |
530 } | 489 } |
531 | 490 |
532 /* | 491 /* |
533 * | 492 * |
493 * Process the color table for the bmp input | |
494 * | |
495 */ | |
496 bool SkBmpCodec::createColorTable(SkAlphaType alphaType) { | |
497 | |
498 // Allocate memory for color table | |
499 uint32_t colorBytes = 0; | |
500 const uint32_t maxColors = fBitsPerPixel <= 8 ? 1 << fBitsPerPixel : 0; | |
501 SkPMColor colorTable[maxColors]; | |
scroggo
2015/03/18 18:05:15
I thought this wasn't allowed, but it worked on my
| |
502 if (fBitsPerPixel <= 8) { | |
503 // Zero is a default for maxColors | |
504 // Also set fNumColors to maxColors when it is too large | |
505 if (fNumColors == 0 || fNumColors >= maxColors) { | |
506 fNumColors = maxColors; | |
507 } | |
508 | |
509 // Read the color table from the stream | |
510 colorBytes = fNumColors * fBytesPerColor; | |
511 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
512 if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { | |
513 SkDebugf("Error: unable to read color table.\n"); | |
514 return NULL; | |
515 } | |
516 | |
517 // Choose the proper packing function | |
518 SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); | |
519 switch (alphaType) { | |
520 case kOpaque_SkAlphaType: | |
521 case kUnpremul_SkAlphaType: | |
522 packARGB = &SkPackARGB32NoCheck; | |
523 break; | |
524 case kPremul_SkAlphaType: | |
525 packARGB = &SkPreMultiplyARGB; | |
526 break; | |
527 default: | |
528 // This should not be reached because conversion possible | |
529 // should fail if the alpha type is not one of the above | |
530 // values. | |
531 SkASSERT(false); | |
532 packARGB = NULL; | |
533 break; | |
534 } | |
535 | |
536 // Fill in the color table | |
537 uint32_t i = 0; | |
538 for (; i < fNumColors; i++) { | |
539 uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); | |
540 uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); | |
541 uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); | |
542 uint8_t alpha = kOpaque_SkAlphaType == alphaType ? 0xFF : | |
543 (fMasks->getAlphaMask() >> 24) & | |
544 get_byte(cBuffer.get(), i*fBytesPerColor + 3); | |
545 colorTable[i] = packARGB(alpha, red, green, blue); | |
546 } | |
547 | |
548 // To avoid segmentation faults on bad pixel data, fill the end of the | |
549 // color table with black. This is the same the behavior as the | |
550 // chromium decoder. | |
551 for (; i < maxColors; i++) { | |
552 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
553 } | |
554 } | |
555 | |
556 // Check that we have not read past the pixel array offset | |
557 if(fOffset < colorBytes) { | |
558 // This may occur on OS 2.1 and other old versions where the color | |
559 // table defaults to max size, and the bmp tries to use a smaller color | |
560 // table. This is invalid, and our decision is to indicate an error, | |
561 // rather than try to guess the intended size of the color table. | |
562 SkDebugf("Error: pixel data offset less than color table size.\n"); | |
563 return NULL; | |
564 } | |
565 | |
566 // After reading the color table, skip to the start of the pixel array | |
567 if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { | |
568 SkDebugf("Error: unable to skip to image data.\n"); | |
569 return false; | |
570 } | |
571 | |
572 // Set the color table and return true on success | |
573 fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); | |
574 return true; | |
575 } | |
576 | |
577 /* | |
578 * | |
534 * Performs the bitmap decoding for bit masks input format | 579 * Performs the bitmap decoding for bit masks input format |
535 * | 580 * |
536 */ | 581 */ |
537 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, | 582 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
538 void* dst, size_t dstRowBytes) { | 583 void* dst, size_t dstRowBytes) { |
539 // Set constant values | 584 // Set constant values |
540 const int width = dstInfo.width(); | 585 const int width = dstInfo.width(); |
541 const int height = dstInfo.height(); | 586 const int height = dstInfo.height(); |
542 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | 587 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
543 | 588 |
544 // Allocate space for a row buffer and a source for the swizzler | 589 // Allocate a buffer large enough to hold the full image |
545 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | 590 SkAutoTDeleteArray<uint8_t> |
546 | 591 srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes)); |
547 // Get the destination start row and delta | 592 uint8_t* srcRow = srcBuffer.get(); |
548 SkPMColor* dstRow; | |
549 int delta; | |
550 if (kTopDown_RowOrder == fRowOrder) { | |
551 dstRow = (SkPMColor*) dst; | |
552 delta = (int) dstRowBytes; | |
553 } else { | |
554 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); | |
555 delta = -((int) dstRowBytes); | |
556 } | |
557 | 593 |
558 // Create the swizzler | 594 // Create the swizzler |
559 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( | 595 SkAutoTDelete<SkMaskSwizzler> maskSwizzler( |
560 dstInfo, fMasks, fBitsPerPixel); | 596 SkMaskSwizzler::CreateMaskSwizzler(dstInfo, dst, dstRowBytes, |
597 fMasks, fBitsPerPixel)); | |
561 | 598 |
562 // Iterate over rows of the image | 599 // Iterate over rows of the image |
563 bool transparent = true; | 600 bool transparent = true; |
564 for (int y = 0; y < height; y++) { | 601 for (int y = 0; y < height; y++) { |
565 // Read a row of the input | 602 // Read a row of the input |
566 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | 603 if (stream()->read(srcRow, rowBytes) != rowBytes) { |
567 SkDebugf("Warning: incomplete input stream.\n"); | 604 SkDebugf("Warning: incomplete input stream.\n"); |
568 return kIncompleteInput; | 605 return kIncompleteInput; |
569 } | 606 } |
570 | 607 |
571 // Decode the row in destination format | 608 // Decode the row in destination format |
572 SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get()); | 609 int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
610 SkSwizzler::ResultAlpha r = maskSwizzler->next(srcRow, row); | |
573 transparent &= SkSwizzler::IsTransparent(r); | 611 transparent &= SkSwizzler::IsTransparent(r); |
574 | 612 |
575 // Move to the next row | 613 // Move to the next row |
576 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); | 614 srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
577 } | 615 } |
578 | 616 |
579 // Some fully transparent bmp images are intended to be opaque. Here, we | 617 // Some fully transparent bmp images are intended to be opaque. Here, we |
580 // correct for this possibility. | 618 // correct for this possibility. |
581 dstRow = (SkPMColor*) dst; | |
582 if (transparent) { | 619 if (transparent) { |
620 const SkImageInfo& opaqueInfo = | |
621 dstInfo.makeAlphaType(kOpaque_SkAlphaType); | |
622 SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler( | |
623 SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, dst, dstRowBytes, | |
624 fMasks, fBitsPerPixel)); | |
625 srcRow = srcBuffer.get(); | |
583 for (int y = 0; y < height; y++) { | 626 for (int y = 0; y < height; y++) { |
584 for (int x = 0; x < width; x++) { | 627 // Decode the row in opaque format |
585 dstRow[x] |= 0xFF000000; | 628 int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
586 } | 629 opaqueSwizzler->next(srcRow, row); |
587 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | 630 |
631 // Move to the next row | |
632 srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); | |
588 } | 633 } |
589 } | 634 } |
590 | 635 |
591 // Finished decoding the entire image | 636 // Finished decoding the entire image |
592 return kSuccess; | 637 return kSuccess; |
593 } | 638 } |
594 | 639 |
595 /* | 640 /* |
596 * | 641 * |
597 * Set an RLE pixel using the color table | 642 * Set an RLE pixel using the color table |
598 * | 643 * |
599 */ | 644 */ |
600 void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, int height, | 645 void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, |
601 uint32_t x, uint32_t y, uint8_t index) { | 646 const SkImageInfo& dstInfo, uint32_t x, uint32_t y, |
647 uint8_t index) { | |
648 // Set the row | |
649 int height = dstInfo.height(); | |
650 int row; | |
602 if (kBottomUp_RowOrder == fRowOrder) { | 651 if (kBottomUp_RowOrder == fRowOrder) { |
603 y = height - y - 1; | 652 row = height - y - 1; |
653 } else { | |
654 row = y; | |
604 } | 655 } |
605 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | 656 |
606 dstRow[x] = fColorTable.get()[index]; | 657 // Set the pixel based on destination color type |
658 switch (dstInfo.colorType()) { | |
659 case kN32_SkColorType: { | |
660 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, | |
661 row * (int) dstRowBytes); | |
662 dstRow[x] = fColorTable->operator[](index); | |
663 break; | |
664 } | |
665 case kRGB_565_SkColorType: { | |
666 uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, | |
667 row * (int) dstRowBytes); | |
668 dstRow[x] = SkPixel32ToPixel16(fColorTable->operator[](index)); | |
669 break; | |
670 } | |
671 default: | |
672 // This case should not be reached. We should catch an invalid | |
673 // color type when we check that the conversion is possible. | |
674 SkASSERT(false); | |
675 break; | |
676 } | |
607 } | 677 } |
608 | 678 |
609 /* | 679 /* |
680 * | |
681 * Set an RLE pixel from R, G, B values | |
682 * | |
683 */ | |
684 void SkBmpCodec::setRLE24Pixel(SkPMColor* dst, size_t dstRowBytes, | |
685 const SkImageInfo& dstInfo, uint32_t x, | |
686 uint32_t y, uint8_t red, uint8_t green, | |
687 uint8_t blue) { | |
688 // Set the row | |
689 int height = dstInfo.height(); | |
690 int row; | |
691 if (kBottomUp_RowOrder == fRowOrder) { | |
692 row = height - y - 1; | |
693 } else { | |
694 row = y; | |
695 } | |
696 | |
697 // Set the pixel based on destination color type | |
698 switch (dstInfo.colorType()) { | |
699 case kN32_SkColorType: { | |
700 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, | |
701 row * (int) dstRowBytes); | |
702 dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
703 break; | |
704 } | |
705 case kRGB_565_SkColorType: { | |
706 uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, | |
707 row * (int) dstRowBytes); | |
708 dstRow[x] = SkPack888ToRGB16(red, green, blue); | |
709 break; | |
710 } | |
711 default: | |
712 // This case should not be reached. We should catch an invalid | |
713 // color type when we check that the conversion is possible. | |
714 SkASSERT(false); | |
715 break; | |
716 } | |
717 } | |
718 | |
719 /* | |
610 * | 720 * |
611 * Performs the bitmap decoding for RLE input format | 721 * Performs the bitmap decoding for RLE input format |
612 * RLE decoding is performed all at once, rather than a one row at a time | 722 * RLE decoding is performed all at once, rather than a one row at a time |
613 * | 723 * |
614 */ | 724 */ |
615 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | 725 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
616 void* dst, size_t dstRowBytes) { | 726 void* dst, size_t dstRowBytes) { |
617 // Set RLE flags | 727 // Set RLE flags |
618 static const uint8_t RLE_ESCAPE = 0; | 728 static const uint8_t RLE_ESCAPE = 0; |
619 static const uint8_t RLE_EOL = 0; | 729 static const uint8_t RLE_EOL = 0; |
620 static const uint8_t RLE_EOF = 1; | 730 static const uint8_t RLE_EOF = 1; |
621 static const uint8_t RLE_DELTA = 2; | 731 static const uint8_t RLE_DELTA = 2; |
622 | 732 |
623 // Set constant values | 733 // Set constant values |
624 const int width = dstInfo.width(); | 734 const int width = dstInfo.width(); |
625 const int height = dstInfo.height(); | 735 const int height = dstInfo.height(); |
626 | 736 |
627 // Input buffer parameters | 737 // Input buffer parameters |
628 uint32_t currByte = 0; | 738 uint32_t currByte = 0; |
629 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | 739 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); |
630 size_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | 740 size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); |
631 if ((uint32_t) totalBytes < fRemainingBytes) { | 741 if (totalBytes < fRLEBytes) { |
632 SkDebugf("Warning: incomplete RLE file.\n"); | 742 SkDebugf("Warning: incomplete RLE file.\n"); |
633 } else if (totalBytes <= 0) { | 743 } else if (totalBytes <= 0) { |
634 SkDebugf("Error: could not read RLE image data.\n"); | 744 SkDebugf("Error: could not read RLE image data.\n"); |
635 return kInvalidInput; | 745 return kInvalidInput; |
636 } | 746 } |
637 | 747 |
638 // Destination parameters | 748 // Destination parameters |
639 int x = 0; | 749 int x = 0; |
640 int y = 0; | 750 int y = 0; |
641 // If the code skips pixels, remaining pixels are transparent or black | 751 // If the code skips pixels, remaining pixels are transparent or black |
(...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
700 fBitsPerPixel); | 810 fBitsPerPixel); |
701 // Abort if setting numPixels moves us off the edge of the | 811 // Abort if setting numPixels moves us off the edge of the |
702 // image. Also abort if there are not enough bytes | 812 // image. Also abort if there are not enough bytes |
703 // remaining in the stream to set numPixels. | 813 // remaining in the stream to set numPixels. |
704 if (x + numPixels > width || | 814 if (x + numPixels > width || |
705 (int) totalBytes - currByte < SkAlign2(rowBytes)) { | 815 (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
706 SkDebugf("Warning: invalid RLE input.\n"); | 816 SkDebugf("Warning: invalid RLE input.\n"); |
707 return kIncompleteInput; | 817 return kIncompleteInput; |
708 } | 818 } |
709 // Set numPixels number of pixels | 819 // Set numPixels number of pixels |
710 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
711 dstPtr, y * dstRowBytes); | |
712 while (numPixels > 0) { | 820 while (numPixels > 0) { |
713 switch(fBitsPerPixel) { | 821 switch(fBitsPerPixel) { |
714 case 4: { | 822 case 4: { |
715 SkASSERT(currByte < totalBytes); | 823 SkASSERT(currByte < totalBytes); |
716 uint8_t val = buffer.get()[currByte++]; | 824 uint8_t val = buffer.get()[currByte++]; |
717 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | 825 setRLEPixel(dstPtr, dstRowBytes, dstInfo, x++, |
718 val >> 4); | 826 y, val >> 4); |
719 numPixels--; | 827 numPixels--; |
720 if (numPixels != 0) { | 828 if (numPixels != 0) { |
721 setRLEPixel(dstPtr, dstRowBytes, height, | 829 setRLEPixel(dstPtr, dstRowBytes, dstInfo, |
722 x++, y, val & 0xF); | 830 x++, y, val & 0xF); |
723 numPixels--; | 831 numPixels--; |
724 } | 832 } |
725 break; | 833 break; |
726 } | 834 } |
727 case 8: | 835 case 8: |
728 SkASSERT(currByte < totalBytes); | 836 SkASSERT(currByte < totalBytes); |
729 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | 837 setRLEPixel(dstPtr, dstRowBytes, dstInfo, x++, |
730 buffer.get()[currByte++]); | 838 y, buffer.get()[currByte++]); |
731 numPixels--; | 839 numPixels--; |
732 break; | 840 break; |
733 case 24: { | 841 case 24: { |
734 SkASSERT(currByte + 2 < totalBytes); | 842 SkASSERT(currByte + 2 < totalBytes); |
735 uint8_t blue = buffer.get()[currByte++]; | 843 uint8_t blue = buffer.get()[currByte++]; |
736 uint8_t green = buffer.get()[currByte++]; | 844 uint8_t green = buffer.get()[currByte++]; |
737 uint8_t red = buffer.get()[currByte++]; | 845 uint8_t red = buffer.get()[currByte++]; |
738 SkPMColor color = SkPackARGB32NoCheck( | 846 setRLE24Pixel(dstPtr, dstRowBytes, dstInfo, |
739 0xFF, red, green, blue); | 847 x++, y, red, green, blue); |
740 dstRow[x++] = color; | |
741 numPixels--; | 848 numPixels--; |
742 } | 849 } |
743 default: | 850 default: |
744 SkASSERT(false); | 851 SkASSERT(false); |
745 return kInvalidInput; | 852 return kInvalidInput; |
746 } | 853 } |
747 } | 854 } |
748 // Skip a byte if necessary to maintain alignment | 855 // Skip a byte if necessary to maintain alignment |
749 if (!SkIsAlign2(rowBytes)) { | 856 if (!SkIsAlign2(rowBytes)) { |
750 currByte++; | 857 currByte++; |
(...skipping 13 matching lines...) Expand all Loading... | |
764 // color. | 871 // color. |
765 if ((int) totalBytes - currByte < 2) { | 872 if ((int) totalBytes - currByte < 2) { |
766 SkDebugf("Warning: incomplete RLE input\n"); | 873 SkDebugf("Warning: incomplete RLE input\n"); |
767 return kIncompleteInput; | 874 return kIncompleteInput; |
768 } | 875 } |
769 | 876 |
770 // Fill the pixels up to endX with the specified color | 877 // Fill the pixels up to endX with the specified color |
771 uint8_t blue = task; | 878 uint8_t blue = task; |
772 uint8_t green = buffer.get()[currByte++]; | 879 uint8_t green = buffer.get()[currByte++]; |
773 uint8_t red = buffer.get()[currByte++]; | 880 uint8_t red = buffer.get()[currByte++]; |
774 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
775 SkPMColor* dstRow = | |
776 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
777 while (x < endX) { | 881 while (x < endX) { |
778 dstRow[x++] = color; | 882 setRLE24Pixel(dstPtr, dstRowBytes, dstInfo, x++, y, red, |
883 green, blue); | |
779 } | 884 } |
780 } else { | 885 } else { |
781 // In RLE8 or RLE4, the second byte read gives the index in the | 886 // In RLE8 or RLE4, the second byte read gives the index in the |
782 // color table to look up the pixel color. | 887 // color table to look up the pixel color. |
783 // RLE8 has one color index that gets repeated | 888 // RLE8 has one color index that gets repeated |
784 // RLE4 has two color indexes in the upper and lower 4 bits of | 889 // RLE4 has two color indexes in the upper and lower 4 bits of |
785 // the bytes, which are alternated | 890 // the bytes, which are alternated |
786 uint8_t indices[2] = { task, task }; | 891 uint8_t indices[2] = { task, task }; |
787 if (4 == fBitsPerPixel) { | 892 if (4 == fBitsPerPixel) { |
788 indices[0] >>= 4; | 893 indices[0] >>= 4; |
789 indices[1] &= 0xf; | 894 indices[1] &= 0xf; |
790 } | 895 } |
791 | 896 |
792 // Set the indicated number of pixels | 897 // Set the indicated number of pixels |
793 for (int which = 0; x < endX; x++) { | 898 for (int which = 0; x < endX; x++) { |
794 setRLEPixel(dstPtr, dstRowBytes, height, x, y, | 899 setRLEPixel(dstPtr, dstRowBytes, dstInfo, x, y, |
795 indices[which]); | 900 indices[which]); |
796 which = !which; | 901 which = !which; |
797 } | 902 } |
798 } | 903 } |
799 } | 904 } |
800 } | 905 } |
801 } | 906 } |
802 | 907 |
803 /* | 908 /* |
804 * | 909 * |
805 * Performs the bitmap decoding for standard input format | 910 * Performs the bitmap decoding for standard input format |
806 * | 911 * |
807 */ | 912 */ |
808 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | 913 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
809 void* dst, size_t dstRowBytes) { | 914 void* dst, size_t dstRowBytes) { |
810 // Set constant values | 915 // Set constant values |
811 const int width = dstInfo.width(); | 916 const int width = dstInfo.width(); |
812 const int height = dstInfo.height(); | 917 const int height = dstInfo.height(); |
813 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | 918 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
814 const uint32_t alphaMask = fMasks->getAlphaMask(); | |
815 | 919 |
816 // Get swizzler configuration | 920 // Get swizzler configuration |
817 SkSwizzler::SrcConfig config; | 921 SkSwizzler::SrcConfig config; |
818 switch (fBitsPerPixel) { | 922 switch (fBitsPerPixel) { |
819 case 1: | 923 case 1: |
820 config = SkSwizzler::kIndex1; | 924 config = SkSwizzler::kIndex1; |
821 break; | 925 break; |
822 case 2: | 926 case 2: |
823 config = SkSwizzler::kIndex2; | 927 config = SkSwizzler::kIndex2; |
824 break; | 928 break; |
825 case 4: | 929 case 4: |
826 config = SkSwizzler::kIndex4; | 930 config = SkSwizzler::kIndex4; |
827 break; | 931 break; |
828 case 8: | 932 case 8: |
829 config = SkSwizzler::kIndex; | 933 config = SkSwizzler::kIndex; |
830 break; | 934 break; |
831 case 24: | 935 case 24: |
832 config = SkSwizzler::kBGR; | 936 config = SkSwizzler::kBGR; |
833 break; | 937 break; |
834 case 32: | 938 case 32: |
835 if (0 == alphaMask) { | 939 if (kOpaque_SkAlphaType == dstInfo.alphaType()) { |
836 config = SkSwizzler::kBGRX; | 940 config = SkSwizzler::kBGRX; |
837 } else { | 941 } else { |
838 config = SkSwizzler::kBGRA; | 942 config = SkSwizzler::kBGRA; |
839 } | 943 } |
840 break; | 944 break; |
841 default: | 945 default: |
842 SkASSERT(false); | 946 SkASSERT(false); |
843 return kInvalidInput; | 947 return kInvalidInput; |
844 } | 948 } |
845 | 949 |
846 // Create swizzler | 950 // Create swizzler |
847 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | 951 SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config, |
848 dstInfo, dst, dstRowBytes, SkImageGenerator::kNo_ZeroInitialized); | 952 fColorTable->readColors(), dstInfo, dst, dstRowBytes, |
953 SkImageGenerator::kNo_ZeroInitialized)); | |
849 | 954 |
850 // Allocate space for a row buffer and a source for the swizzler | 955 // Allocate space for a row buffer and a source for the swizzler |
851 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | 956 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
852 | 957 |
853 // Iterate over rows of the image | 958 // Iterate over rows of the image |
854 // FIXME: bool transparent = true; | 959 // FIXME: bool transparent = true; |
855 for (int y = 0; y < height; y++) { | 960 for (int y = 0; y < height; y++) { |
856 // Read a row of the input | 961 // Read a row of the input |
857 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | 962 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
858 SkDebugf("Warning: incomplete input stream.\n"); | 963 SkDebugf("Warning: incomplete input stream.\n"); |
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
895 } | 1000 } |
896 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | 1001 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
897 } | 1002 } |
898 } | 1003 } |
899 } | 1004 } |
900 */ | 1005 */ |
901 | 1006 |
902 // Finished decoding the entire image | 1007 // Finished decoding the entire image |
903 return kSuccess; | 1008 return kSuccess; |
904 } | 1009 } |
OLD | NEW |