| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "SkCodec_libbmp.h" | |
| 9 #include "SkCodecPriv.h" | |
| 10 #include "SkColorPriv.h" | |
| 11 #include "SkStream.h" | |
| 12 | |
| 13 /* | |
| 14 * | |
| 15 * Checks if the conversion between the input image and the requested output | |
| 16 * image has been implemented | |
| 17 * | |
| 18 */ | |
| 19 static bool conversion_possible(const SkImageInfo& dst, | |
| 20 const SkImageInfo& src) { | |
| 21 // All of the swizzles convert to kN32 | |
| 22 // TODO: Update this when more swizzles are supported | |
| 23 if (kN32_SkColorType != dst.colorType()) { | |
| 24 return false; | |
| 25 } | |
| 26 // Support the swizzle if the requested alpha type is the same as our guess | |
| 27 // for the input alpha type | |
| 28 if (src.alphaType() == dst.alphaType()) { | |
| 29 return true; | |
| 30 } | |
| 31 // TODO: Support more swizzles, especially premul | |
| 32 return false; | |
| 33 } | |
| 34 | |
| 35 /* | |
| 36 * | |
| 37 * Defines the version and type of the second bitmap header | |
| 38 * | |
| 39 */ | |
| 40 enum BitmapHeaderType { | |
| 41 kInfoV1_BitmapHeaderType, | |
| 42 kInfoV2_BitmapHeaderType, | |
| 43 kInfoV3_BitmapHeaderType, | |
| 44 kInfoV4_BitmapHeaderType, | |
| 45 kInfoV5_BitmapHeaderType, | |
| 46 kOS2V1_BitmapHeaderType, | |
| 47 kOS2VX_BitmapHeaderType, | |
| 48 kUnknown_BitmapHeaderType | |
| 49 }; | |
| 50 | |
| 51 /* | |
| 52 * | |
| 53 * Possible bitmap compression types | |
| 54 * | |
| 55 */ | |
| 56 enum BitmapCompressionMethod { | |
| 57 kNone_BitmapCompressionMethod = 0, | |
| 58 k8BitRLE_BitmapCompressionMethod = 1, | |
| 59 k4BitRLE_BitmapCompressionMethod = 2, | |
| 60 kBitMasks_BitmapCompressionMethod = 3, | |
| 61 kJpeg_BitmapCompressionMethod = 4, | |
| 62 kPng_BitmapCompressionMethod = 5, | |
| 63 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
| 64 kCMYK_BitmapCompressionMethod = 11, | |
| 65 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
| 66 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
| 67 }; | |
| 68 | |
| 69 /* | |
| 70 * | |
| 71 * Checks the start of the stream to see if the image is a bitmap | |
| 72 * | |
| 73 */ | |
| 74 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
| 75 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
| 76 // TODO: ICO files may contain a BMP and need to use this decoder | |
| 77 const char bmpSig[] = { 'B', 'M' }; | |
| 78 char buffer[sizeof(bmpSig)]; | |
| 79 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
| 80 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
| 81 } | |
| 82 | |
| 83 /* | |
| 84 * | |
| 85 * Assumes IsBmp was called and returned true | |
| 86 * Creates a bitmap decoder | |
| 87 * Reads enough of the stream to determine the image format | |
| 88 * | |
| 89 */ | |
| 90 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
| 91 // Header size constants | |
| 92 static const uint32_t kBmpHeaderBytes = 14; | |
| 93 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
| 94 static const uint32_t kBmpOS2V1Bytes = 12; | |
| 95 static const uint32_t kBmpOS2V2Bytes = 64; | |
| 96 static const uint32_t kBmpInfoBaseBytes = 16; | |
| 97 static const uint32_t kBmpInfoV1Bytes = 40; | |
| 98 static const uint32_t kBmpInfoV2Bytes = 52; | |
| 99 static const uint32_t kBmpInfoV3Bytes = 56; | |
| 100 static const uint32_t kBmpInfoV4Bytes = 108; | |
| 101 static const uint32_t kBmpInfoV5Bytes = 124; | |
| 102 static const uint32_t kBmpMaskBytes = 12; | |
| 103 | |
| 104 // Read the first header and the size of the second header | |
| 105 SkAutoTDeleteArray<uint8_t> hBuffer( | |
| 106 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
| 107 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
| 108 kBmpHeaderBytesPlusFour) { | |
| 109 SkDebugf("Error: unable to read first bitmap header.\n"); | |
| 110 return NULL; | |
| 111 } | |
| 112 | |
| 113 // The total bytes in the bmp file | |
| 114 // We only need to use this value for RLE decoding, so we will only check | |
| 115 // that it is valid in the RLE case. | |
| 116 const uint32_t totalBytes = get_int(hBuffer.get(), 2); | |
| 117 | |
| 118 // The offset from the start of the file where the pixel data begins | |
| 119 const uint32_t offset = get_int(hBuffer.get(), 10); | |
| 120 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { | |
| 121 SkDebugf("Error: invalid starting location for pixel data\n"); | |
| 122 return NULL; | |
| 123 } | |
| 124 | |
| 125 // The size of the second (info) header in bytes | |
| 126 // The size is the first field of the second header, so we have already | |
| 127 // read the first four infoBytes. | |
| 128 const uint32_t infoBytes = get_int(hBuffer.get(), 14); | |
| 129 if (infoBytes < kBmpOS2V1Bytes) { | |
| 130 SkDebugf("Error: invalid second header size.\n"); | |
| 131 return NULL; | |
| 132 } | |
| 133 const uint32_t infoBytesRemaining = infoBytes - 4; | |
| 134 hBuffer.free(); | |
| 135 | |
| 136 // Read the second header | |
| 137 SkAutoTDeleteArray<uint8_t> iBuffer( | |
| 138 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
| 139 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { | |
| 140 SkDebugf("Error: unable to read second bitmap header.\n"); | |
| 141 return NULL; | |
| 142 } | |
| 143 | |
| 144 // The number of bits used per pixel in the pixel data | |
| 145 uint16_t bitsPerPixel; | |
| 146 | |
| 147 // The compression method for the pixel data | |
| 148 uint32_t compression = kNone_BitmapCompressionMethod; | |
| 149 | |
| 150 // Number of colors in the color table, defaults to 0 or max (see below) | |
| 151 uint32_t numColors = 0; | |
| 152 | |
| 153 // Bytes per color in the color table, early versions use 3, most use 4 | |
| 154 uint32_t bytesPerColor; | |
| 155 | |
| 156 // The image width and height | |
| 157 int width, height; | |
| 158 | |
| 159 // Determine image information depending on second header format | |
| 160 BitmapHeaderType headerType; | |
| 161 if (infoBytes >= kBmpInfoBaseBytes) { | |
| 162 // Check the version of the header | |
| 163 switch (infoBytes) { | |
| 164 case kBmpInfoV1Bytes: | |
| 165 headerType = kInfoV1_BitmapHeaderType; | |
| 166 break; | |
| 167 case kBmpInfoV2Bytes: | |
| 168 headerType = kInfoV2_BitmapHeaderType; | |
| 169 break; | |
| 170 case kBmpInfoV3Bytes: | |
| 171 headerType = kInfoV3_BitmapHeaderType; | |
| 172 break; | |
| 173 case kBmpInfoV4Bytes: | |
| 174 headerType = kInfoV4_BitmapHeaderType; | |
| 175 break; | |
| 176 case kBmpInfoV5Bytes: | |
| 177 headerType = kInfoV5_BitmapHeaderType; | |
| 178 break; | |
| 179 case 16: | |
| 180 case 20: | |
| 181 case 24: | |
| 182 case 28: | |
| 183 case 32: | |
| 184 case 36: | |
| 185 case 42: | |
| 186 case 46: | |
| 187 case 48: | |
| 188 case 60: | |
| 189 case kBmpOS2V2Bytes: | |
| 190 headerType = kOS2VX_BitmapHeaderType; | |
| 191 break; | |
| 192 default: | |
| 193 // We do not signal an error here because there is the | |
| 194 // possibility of new or undocumented bmp header types. Most | |
| 195 // of the newer versions of bmp headers are similar to and | |
| 196 // build off of the older versions, so we may still be able to | |
| 197 // decode the bmp. | |
| 198 SkDebugf("Warning: unknown bmp header format.\n"); | |
| 199 headerType = kUnknown_BitmapHeaderType; | |
| 200 break; | |
| 201 } | |
| 202 // We check the size of the header before entering the if statement. | |
| 203 // We should not reach this point unless the size is large enough for | |
| 204 // these required fields. | |
| 205 SkASSERT(infoBytesRemaining >= 12); | |
| 206 width = get_int(iBuffer.get(), 0); | |
| 207 height = get_int(iBuffer.get(), 4); | |
| 208 bitsPerPixel = get_short(iBuffer.get(), 10); | |
| 209 | |
| 210 // Some versions do not have these fields, so we check before | |
| 211 // overwriting the default value. | |
| 212 if (infoBytesRemaining >= 16) { | |
| 213 compression = get_int(iBuffer.get(), 12); | |
| 214 if (infoBytesRemaining >= 32) { | |
| 215 numColors = get_int(iBuffer.get(), 28); | |
| 216 } | |
| 217 } | |
| 218 | |
| 219 // All of the headers that reach this point, store color table entries | |
| 220 // using 4 bytes per pixel. | |
| 221 bytesPerColor = 4; | |
| 222 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
| 223 // The OS2V1 is treated separately because it has a unique format | |
| 224 headerType = kOS2V1_BitmapHeaderType; | |
| 225 width = (int) get_short(iBuffer.get(), 0); | |
| 226 height = (int) get_short(iBuffer.get(), 2); | |
| 227 bitsPerPixel = get_short(iBuffer.get(), 6); | |
| 228 bytesPerColor = 3; | |
| 229 } else { | |
| 230 // There are no valid bmp headers | |
| 231 SkDebugf("Error: second bitmap header size is invalid.\n"); | |
| 232 return NULL; | |
| 233 } | |
| 234 | |
| 235 // Check for valid dimensions from header | |
| 236 RowOrder rowOrder = kBottomUp_RowOrder; | |
| 237 if (height < 0) { | |
| 238 height = -height; | |
| 239 rowOrder = kTopDown_RowOrder; | |
| 240 } | |
| 241 static const int kBmpMaxDim = 1 << 16; | |
| 242 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { | |
| 243 // TODO: Decide if we want to support really large bmps. | |
| 244 SkDebugf("Error: invalid bitmap dimensions.\n"); | |
| 245 return NULL; | |
| 246 } | |
| 247 | |
| 248 // Create mask struct | |
| 249 SkMasks::InputMasks inputMasks; | |
| 250 memset(&inputMasks, 0, 4*sizeof(uint32_t)); | |
| 251 | |
| 252 // Determine the input compression format and set bit masks if necessary | |
| 253 uint32_t maskBytes = 0; | |
| 254 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
| 255 switch (compression) { | |
| 256 case kNone_BitmapCompressionMethod: | |
| 257 inputFormat = kStandard_BitmapInputFormat; | |
| 258 break; | |
| 259 case k8BitRLE_BitmapCompressionMethod: | |
| 260 if (bitsPerPixel != 8) { | |
| 261 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
| 262 bitsPerPixel = 8; | |
| 263 } | |
| 264 inputFormat = kRLE_BitmapInputFormat; | |
| 265 break; | |
| 266 case k4BitRLE_BitmapCompressionMethod: | |
| 267 if (bitsPerPixel != 4) { | |
| 268 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
| 269 bitsPerPixel = 4; | |
| 270 } | |
| 271 inputFormat = kRLE_BitmapInputFormat; | |
| 272 break; | |
| 273 case kAlphaBitMasks_BitmapCompressionMethod: | |
| 274 case kBitMasks_BitmapCompressionMethod: | |
| 275 // Load the masks | |
| 276 inputFormat = kBitMask_BitmapInputFormat; | |
| 277 switch (headerType) { | |
| 278 case kInfoV1_BitmapHeaderType: { | |
| 279 // The V1 header stores the bit masks after the header | |
| 280 SkAutoTDeleteArray<uint8_t> mBuffer( | |
| 281 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
| 282 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
| 283 kBmpMaskBytes) { | |
| 284 SkDebugf("Error: unable to read bit inputMasks.\n"); | |
| 285 return NULL; | |
| 286 } | |
| 287 maskBytes = kBmpMaskBytes; | |
| 288 inputMasks.red = get_int(mBuffer.get(), 0); | |
| 289 inputMasks.green = get_int(mBuffer.get(), 4); | |
| 290 inputMasks.blue = get_int(mBuffer.get(), 8); | |
| 291 break; | |
| 292 } | |
| 293 case kInfoV2_BitmapHeaderType: | |
| 294 case kInfoV3_BitmapHeaderType: | |
| 295 case kInfoV4_BitmapHeaderType: | |
| 296 case kInfoV5_BitmapHeaderType: | |
| 297 // Header types are matched based on size. If the header | |
| 298 // is V2+, we are guaranteed to be able to read at least | |
| 299 // this size. | |
| 300 SkASSERT(infoBytesRemaining >= 48); | |
| 301 inputMasks.red = get_int(iBuffer.get(), 36); | |
| 302 inputMasks.green = get_int(iBuffer.get(), 40); | |
| 303 inputMasks.blue = get_int(iBuffer.get(), 44); | |
| 304 break; | |
| 305 case kOS2VX_BitmapHeaderType: | |
| 306 // TODO: Decide if we intend to support this. | |
| 307 // It is unsupported in the previous version and | |
| 308 // in chromium. I have not come across a test case | |
| 309 // that uses this format. | |
| 310 SkDebugf("Error: huffman format unsupported.\n"); | |
| 311 return NULL; | |
| 312 default: | |
| 313 SkDebugf("Error: invalid bmp bit masks header.\n"); | |
| 314 return NULL; | |
| 315 } | |
| 316 break; | |
| 317 case kJpeg_BitmapCompressionMethod: | |
| 318 if (24 == bitsPerPixel) { | |
| 319 inputFormat = kRLE_BitmapInputFormat; | |
| 320 break; | |
| 321 } | |
| 322 // Fall through | |
| 323 case kPng_BitmapCompressionMethod: | |
| 324 // TODO: Decide if we intend to support this. | |
| 325 // It is unsupported in the previous version and | |
| 326 // in chromium. I think it is used mostly for printers. | |
| 327 SkDebugf("Error: compression format not supported.\n"); | |
| 328 return NULL; | |
| 329 case kCMYK_BitmapCompressionMethod: | |
| 330 case kCMYK8BitRLE_BitmapCompressionMethod: | |
| 331 case kCMYK4BitRLE_BitmapCompressionMethod: | |
| 332 // TODO: Same as above. | |
| 333 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); | |
| 334 return NULL; | |
| 335 default: | |
| 336 SkDebugf("Error: invalid format for bitmap decoding.\n"); | |
| 337 return NULL; | |
| 338 } | |
| 339 | |
| 340 // Most versions of bmps should be rendered as opaque. Either they do | |
| 341 // not have an alpha channel, or they expect the alpha channel to be | |
| 342 // ignored. V4+ bmp files introduce an alpha mask and allow the creator | |
| 343 // of the image to use the alpha channels. However, many of these images | |
| 344 // leave the alpha channel blank and expect to be rendered as opaque. For | |
| 345 // this reason, we set the alpha type to kUnknown for V4+ bmps and figure | |
| 346 // out the alpha type during the decode. | |
| 347 SkAlphaType alphaType = kOpaque_SkAlphaType; | |
| 348 if (kInfoV4_BitmapHeaderType == headerType || | |
| 349 kInfoV5_BitmapHeaderType == headerType) { | |
| 350 // Header types are matched based on size. If the header is | |
| 351 // V4+, we are guaranteed to be able to read at least this size. | |
| 352 SkASSERT(infoBytesRemaining > 52); | |
| 353 inputMasks.alpha = get_int(iBuffer.get(), 48); | |
| 354 if (inputMasks.alpha != 0) { | |
| 355 alphaType = kUnpremul_SkAlphaType; | |
| 356 } | |
| 357 } | |
| 358 iBuffer.free(); | |
| 359 | |
| 360 // Check for valid bits per pixel input | |
| 361 switch (bitsPerPixel) { | |
| 362 // In addition to more standard pixel compression formats, bmp supports | |
| 363 // the use of bit masks to determine pixel components. The standard | |
| 364 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
| 365 // which does not map well to any Skia color formats. For this reason, | |
| 366 // we will always enable mask mode with 16 bits per pixel. | |
| 367 case 16: | |
| 368 if (kBitMask_BitmapInputFormat != inputFormat) { | |
| 369 inputMasks.red = 0x7C00; | |
| 370 inputMasks.green = 0x03E0; | |
| 371 inputMasks.blue = 0x001F; | |
| 372 inputFormat = kBitMask_BitmapInputFormat; | |
| 373 } | |
| 374 break; | |
| 375 case 1: | |
| 376 case 2: | |
| 377 case 4: | |
| 378 case 8: | |
| 379 case 24: | |
| 380 case 32: | |
| 381 break; | |
| 382 default: | |
| 383 SkDebugf("Error: invalid input value for bits per pixel.\n"); | |
| 384 return NULL; | |
| 385 } | |
| 386 | |
| 387 // Check that input bit masks are valid and create the masks object | |
| 388 SkAutoTDelete<SkMasks> | |
| 389 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); | |
| 390 if (NULL == masks) { | |
| 391 SkDebugf("Error: invalid input masks.\n"); | |
| 392 return NULL; | |
| 393 } | |
| 394 | |
| 395 // Process the color table | |
| 396 uint32_t colorBytes = 0; | |
| 397 SkPMColor* colorTable = NULL; | |
| 398 if (bitsPerPixel < 16) { | |
| 399 // Verify the number of colors for the color table | |
| 400 const uint32_t maxColors = 1 << bitsPerPixel; | |
| 401 // Zero is a default for maxColors | |
| 402 // Also set numColors to maxColors when input is too large | |
| 403 if (numColors <= 0 || numColors > maxColors) { | |
| 404 numColors = maxColors; | |
| 405 } | |
| 406 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
| 407 | |
| 408 // Construct the color table | |
| 409 colorBytes = numColors * bytesPerColor; | |
| 410 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
| 411 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
| 412 SkDebugf("Error: unable to read color table.\n"); | |
| 413 return NULL; | |
| 414 } | |
| 415 | |
| 416 // Fill in the color table (colors are stored unpremultiplied) | |
| 417 uint32_t i = 0; | |
| 418 for (; i < numColors; i++) { | |
| 419 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
| 420 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
| 421 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
| 422 uint8_t alpha = 0xFF; | |
| 423 if (kOpaque_SkAlphaType != alphaType) { | |
| 424 alpha = (inputMasks.alpha >> 24) & | |
| 425 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
| 426 } | |
| 427 // Store the unpremultiplied color | |
| 428 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); | |
| 429 } | |
| 430 | |
| 431 // To avoid segmentation faults on bad pixel data, fill the end of the | |
| 432 // color table with black. This is the same the behavior as the | |
| 433 // chromium decoder. | |
| 434 for (; i < maxColors; i++) { | |
| 435 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
| 436 } | |
| 437 } | |
| 438 | |
| 439 // Ensure that the stream now points to the start of the pixel array | |
| 440 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
| 441 | |
| 442 // Check that we have not read past the pixel array offset | |
| 443 if(bytesRead > offset) { | |
| 444 // This may occur on OS 2.1 and other old versions where the color | |
| 445 // table defaults to max size, and the bmp tries to use a smaller color | |
| 446 // table. This is invalid, and our decision is to indicate an error, | |
| 447 // rather than try to guess the intended size of the color table and | |
| 448 // rewind the stream to display the image. | |
| 449 SkDebugf("Error: pixel data offset less than header size.\n"); | |
| 450 return NULL; | |
| 451 } | |
| 452 | |
| 453 // Skip to the start of the pixel array | |
| 454 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | |
| 455 SkDebugf("Error: unable to skip to image data.\n"); | |
| 456 return NULL; | |
| 457 } | |
| 458 | |
| 459 // Remaining bytes is only used for RLE | |
| 460 const int remainingBytes = totalBytes - offset; | |
| 461 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { | |
| 462 SkDebugf("Error: RLE requires valid input size.\n"); | |
| 463 return NULL; | |
| 464 } | |
| 465 | |
| 466 // Return the codec | |
| 467 // We will use ImageInfo to store width, height, and alpha type. We will | |
| 468 // choose kN32_SkColorType as the input color type because that is the | |
| 469 // expected choice for a destination color type. In reality, the input | |
| 470 // color type has many possible formats. | |
| 471 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
| 472 kN32_SkColorType, alphaType); | |
| 473 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
| 474 inputFormat, masks.detach(), colorTable, | |
| 475 rowOrder, remainingBytes)); | |
| 476 } | |
| 477 | |
| 478 /* | |
| 479 * | |
| 480 * Creates an instance of the decoder | |
| 481 * Called only by NewFromStream | |
| 482 * | |
| 483 */ | |
| 484 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
| 485 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
| 486 SkMasks* masks, SkPMColor* colorTable, | |
| 487 RowOrder rowOrder, | |
| 488 const uint32_t remainingBytes) | |
| 489 : INHERITED(info, stream) | |
| 490 , fBitsPerPixel(bitsPerPixel) | |
| 491 , fInputFormat(inputFormat) | |
| 492 , fMasks(masks) | |
| 493 , fColorTable(colorTable) | |
| 494 , fRowOrder(rowOrder) | |
| 495 , fRemainingBytes(remainingBytes) | |
| 496 {} | |
| 497 | |
| 498 /* | |
| 499 * | |
| 500 * Initiates the bitmap decode | |
| 501 * | |
| 502 */ | |
| 503 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
| 504 void* dst, size_t dstRowBytes, | |
| 505 SkPMColor*, int*) { | |
| 506 if (!this->rewindIfNeeded()) { | |
| 507 return kCouldNotRewind; | |
| 508 } | |
| 509 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { | |
| 510 SkDebugf("Error: scaling not supported.\n"); | |
| 511 return kInvalidScale; | |
| 512 } | |
| 513 if (!conversion_possible(dstInfo, this->getOriginalInfo())) { | |
| 514 SkDebugf("Error: cannot convert input type to output type.\n"); | |
| 515 return kInvalidConversion; | |
| 516 } | |
| 517 | |
| 518 switch (fInputFormat) { | |
| 519 case kBitMask_BitmapInputFormat: | |
| 520 return decodeMask(dstInfo, dst, dstRowBytes); | |
| 521 case kRLE_BitmapInputFormat: | |
| 522 return decodeRLE(dstInfo, dst, dstRowBytes); | |
| 523 case kStandard_BitmapInputFormat: | |
| 524 return decode(dstInfo, dst, dstRowBytes); | |
| 525 default: | |
| 526 SkASSERT(false); | |
| 527 return kInvalidInput; | |
| 528 } | |
| 529 } | |
| 530 | |
| 531 /* | |
| 532 * | |
| 533 * Performs the bitmap decoding for bit masks input format | |
| 534 * | |
| 535 */ | |
| 536 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, | |
| 537 void* dst, size_t dstRowBytes) { | |
| 538 // Set constant values | |
| 539 const int width = dstInfo.width(); | |
| 540 const int height = dstInfo.height(); | |
| 541 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
| 542 | |
| 543 // Allocate space for a row buffer and a source for the swizzler | |
| 544 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
| 545 | |
| 546 // Get the destination start row and delta | |
| 547 SkPMColor* dstRow; | |
| 548 int delta; | |
| 549 if (kTopDown_RowOrder == fRowOrder) { | |
| 550 dstRow = (SkPMColor*) dst; | |
| 551 delta = (int) dstRowBytes; | |
| 552 } else { | |
| 553 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); | |
| 554 delta = -((int) dstRowBytes); | |
| 555 } | |
| 556 | |
| 557 // Create the swizzler | |
| 558 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( | |
| 559 dstInfo, fMasks, fBitsPerPixel); | |
| 560 | |
| 561 // Iterate over rows of the image | |
| 562 bool transparent = true; | |
| 563 for (int y = 0; y < height; y++) { | |
| 564 // Read a row of the input | |
| 565 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
| 566 SkDebugf("Warning: incomplete input stream.\n"); | |
| 567 return kIncompleteInput; | |
| 568 } | |
| 569 | |
| 570 // Decode the row in destination format | |
| 571 SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get()); | |
| 572 transparent &= SkSwizzler::IsTransparent(r); | |
| 573 | |
| 574 // Move to the next row | |
| 575 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); | |
| 576 } | |
| 577 | |
| 578 // Some fully transparent bmp images are intended to be opaque. Here, we | |
| 579 // correct for this possibility. | |
| 580 dstRow = (SkPMColor*) dst; | |
| 581 if (transparent) { | |
| 582 for (int y = 0; y < height; y++) { | |
| 583 for (int x = 0; x < width; x++) { | |
| 584 dstRow[x] |= 0xFF000000; | |
| 585 } | |
| 586 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
| 587 } | |
| 588 } | |
| 589 | |
| 590 // Finished decoding the entire image | |
| 591 return kSuccess; | |
| 592 } | |
| 593 | |
| 594 /* | |
| 595 * | |
| 596 * Set an RLE pixel using the color table | |
| 597 * | |
| 598 */ | |
| 599 void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, int height, | |
| 600 uint32_t x, uint32_t y, uint8_t index) { | |
| 601 if (kBottomUp_RowOrder == fRowOrder) { | |
| 602 y = height - y - 1; | |
| 603 } | |
| 604 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | |
| 605 dstRow[x] = fColorTable.get()[index]; | |
| 606 } | |
| 607 | |
| 608 /* | |
| 609 * | |
| 610 * Performs the bitmap decoding for RLE input format | |
| 611 * RLE decoding is performed all at once, rather than a one row at a time | |
| 612 * | |
| 613 */ | |
| 614 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
| 615 void* dst, size_t dstRowBytes) { | |
| 616 // Set RLE flags | |
| 617 static const uint8_t RLE_ESCAPE = 0; | |
| 618 static const uint8_t RLE_EOL = 0; | |
| 619 static const uint8_t RLE_EOF = 1; | |
| 620 static const uint8_t RLE_DELTA = 2; | |
| 621 | |
| 622 // Set constant values | |
| 623 const int width = dstInfo.width(); | |
| 624 const int height = dstInfo.height(); | |
| 625 | |
| 626 // Input buffer parameters | |
| 627 uint32_t currByte = 0; | |
| 628 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | |
| 629 size_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | |
| 630 if ((uint32_t) totalBytes < fRemainingBytes) { | |
| 631 SkDebugf("Warning: incomplete RLE file.\n"); | |
| 632 } else if (totalBytes <= 0) { | |
| 633 SkDebugf("Error: could not read RLE image data.\n"); | |
| 634 return kInvalidInput; | |
| 635 } | |
| 636 | |
| 637 // Destination parameters | |
| 638 int x = 0; | |
| 639 int y = 0; | |
| 640 // If the code skips pixels, remaining pixels are transparent or black | |
| 641 // TODO: Skip this if memory was already zeroed. | |
| 642 memset(dst, 0, dstRowBytes * height); | |
| 643 SkPMColor* dstPtr = (SkPMColor*) dst; | |
| 644 | |
| 645 while (true) { | |
| 646 // Every entry takes at least two bytes | |
| 647 if ((int) totalBytes - currByte < 2) { | |
| 648 SkDebugf("Warning: incomplete RLE input.\n"); | |
| 649 return kIncompleteInput; | |
| 650 } | |
| 651 | |
| 652 // Read the next two bytes. These bytes have different meanings | |
| 653 // depending on their values. In the first interpretation, the first | |
| 654 // byte is an escape flag and the second byte indicates what special | |
| 655 // task to perform. | |
| 656 const uint8_t flag = buffer.get()[currByte++]; | |
| 657 const uint8_t task = buffer.get()[currByte++]; | |
| 658 | |
| 659 // If we have reached a row that is beyond the image size, and the RLE | |
| 660 // code does not indicate end of file, abort and signal a warning. | |
| 661 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { | |
| 662 SkDebugf("Warning: invalid RLE input.\n"); | |
| 663 return kIncompleteInput; | |
| 664 } | |
| 665 | |
| 666 // Perform decoding | |
| 667 if (RLE_ESCAPE == flag) { | |
| 668 switch (task) { | |
| 669 case RLE_EOL: | |
| 670 x = 0; | |
| 671 y++; | |
| 672 break; | |
| 673 case RLE_EOF: | |
| 674 return kSuccess; | |
| 675 case RLE_DELTA: { | |
| 676 // Two bytes are needed to specify delta | |
| 677 if ((int) totalBytes - currByte < 2) { | |
| 678 SkDebugf("Warning: incomplete RLE input\n"); | |
| 679 return kIncompleteInput; | |
| 680 } | |
| 681 // Modify x and y | |
| 682 const uint8_t dx = buffer.get()[currByte++]; | |
| 683 const uint8_t dy = buffer.get()[currByte++]; | |
| 684 x += dx; | |
| 685 y += dy; | |
| 686 if (x > width || y > height) { | |
| 687 SkDebugf("Warning: invalid RLE input.\n"); | |
| 688 return kIncompleteInput; | |
| 689 } | |
| 690 break; | |
| 691 } | |
| 692 default: { | |
| 693 // If task does not match any of the above signals, it | |
| 694 // indicates that we have a sequence of non-RLE pixels. | |
| 695 // Furthermore, the value of task is equal to the number | |
| 696 // of pixels to interpret. | |
| 697 uint8_t numPixels = task; | |
| 698 const size_t rowBytes = compute_row_bytes(numPixels, | |
| 699 fBitsPerPixel); | |
| 700 // Abort if setting numPixels moves us off the edge of the | |
| 701 // image. Also abort if there are not enough bytes | |
| 702 // remaining in the stream to set numPixels. | |
| 703 if (x + numPixels > width || | |
| 704 (int) totalBytes - currByte < SkAlign2(rowBytes)) { | |
| 705 SkDebugf("Warning: invalid RLE input.\n"); | |
| 706 return kIncompleteInput; | |
| 707 } | |
| 708 // Set numPixels number of pixels | |
| 709 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
| 710 dstPtr, y * dstRowBytes); | |
| 711 while (numPixels > 0) { | |
| 712 switch(fBitsPerPixel) { | |
| 713 case 4: { | |
| 714 SkASSERT(currByte < totalBytes); | |
| 715 uint8_t val = buffer.get()[currByte++]; | |
| 716 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
| 717 val >> 4); | |
| 718 numPixels--; | |
| 719 if (numPixels != 0) { | |
| 720 setRLEPixel(dstPtr, dstRowBytes, height, | |
| 721 x++, y, val & 0xF); | |
| 722 numPixels--; | |
| 723 } | |
| 724 break; | |
| 725 } | |
| 726 case 8: | |
| 727 SkASSERT(currByte < totalBytes); | |
| 728 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
| 729 buffer.get()[currByte++]); | |
| 730 numPixels--; | |
| 731 break; | |
| 732 case 24: { | |
| 733 SkASSERT(currByte + 2 < totalBytes); | |
| 734 uint8_t blue = buffer.get()[currByte++]; | |
| 735 uint8_t green = buffer.get()[currByte++]; | |
| 736 uint8_t red = buffer.get()[currByte++]; | |
| 737 SkPMColor color = SkPackARGB32NoCheck( | |
| 738 0xFF, red, green, blue); | |
| 739 dstRow[x++] = color; | |
| 740 numPixels--; | |
| 741 } | |
| 742 default: | |
| 743 SkASSERT(false); | |
| 744 return kInvalidInput; | |
| 745 } | |
| 746 } | |
| 747 // Skip a byte if necessary to maintain alignment | |
| 748 if (!SkIsAlign2(rowBytes)) { | |
| 749 currByte++; | |
| 750 } | |
| 751 break; | |
| 752 } | |
| 753 } | |
| 754 } else { | |
| 755 // If the first byte read is not a flag, it indicates the number of | |
| 756 // pixels to set in RLE mode. | |
| 757 const uint8_t numPixels = flag; | |
| 758 const int endX = SkTMin<int>(x + numPixels, width); | |
| 759 | |
| 760 if (24 == fBitsPerPixel) { | |
| 761 // In RLE24, the second byte read is part of the pixel color. | |
| 762 // There are two more required bytes to finish encoding the | |
| 763 // color. | |
| 764 if ((int) totalBytes - currByte < 2) { | |
| 765 SkDebugf("Warning: incomplete RLE input\n"); | |
| 766 return kIncompleteInput; | |
| 767 } | |
| 768 | |
| 769 // Fill the pixels up to endX with the specified color | |
| 770 uint8_t blue = task; | |
| 771 uint8_t green = buffer.get()[currByte++]; | |
| 772 uint8_t red = buffer.get()[currByte++]; | |
| 773 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
| 774 SkPMColor* dstRow = | |
| 775 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
| 776 while (x < endX) { | |
| 777 dstRow[x++] = color; | |
| 778 } | |
| 779 } else { | |
| 780 // In RLE8 or RLE4, the second byte read gives the index in the | |
| 781 // color table to look up the pixel color. | |
| 782 // RLE8 has one color index that gets repeated | |
| 783 // RLE4 has two color indexes in the upper and lower 4 bits of | |
| 784 // the bytes, which are alternated | |
| 785 uint8_t indices[2] = { task, task }; | |
| 786 if (4 == fBitsPerPixel) { | |
| 787 indices[0] >>= 4; | |
| 788 indices[1] &= 0xf; | |
| 789 } | |
| 790 | |
| 791 // Set the indicated number of pixels | |
| 792 for (int which = 0; x < endX; x++) { | |
| 793 setRLEPixel(dstPtr, dstRowBytes, height, x, y, | |
| 794 indices[which]); | |
| 795 which = !which; | |
| 796 } | |
| 797 } | |
| 798 } | |
| 799 } | |
| 800 } | |
| 801 | |
| 802 /* | |
| 803 * | |
| 804 * Performs the bitmap decoding for standard input format | |
| 805 * | |
| 806 */ | |
| 807 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
| 808 void* dst, size_t dstRowBytes) { | |
| 809 // Set constant values | |
| 810 const int width = dstInfo.width(); | |
| 811 const int height = dstInfo.height(); | |
| 812 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
| 813 const uint32_t alphaMask = fMasks->getAlphaMask(); | |
| 814 | |
| 815 // Get swizzler configuration | |
| 816 SkSwizzler::SrcConfig config; | |
| 817 switch (fBitsPerPixel) { | |
| 818 case 1: | |
| 819 config = SkSwizzler::kIndex1; | |
| 820 break; | |
| 821 case 2: | |
| 822 config = SkSwizzler::kIndex2; | |
| 823 break; | |
| 824 case 4: | |
| 825 config = SkSwizzler::kIndex4; | |
| 826 break; | |
| 827 case 8: | |
| 828 config = SkSwizzler::kIndex; | |
| 829 break; | |
| 830 case 24: | |
| 831 config = SkSwizzler::kBGR; | |
| 832 break; | |
| 833 case 32: | |
| 834 if (0 == alphaMask) { | |
| 835 config = SkSwizzler::kBGRX; | |
| 836 } else { | |
| 837 config = SkSwizzler::kBGRA; | |
| 838 } | |
| 839 break; | |
| 840 default: | |
| 841 SkASSERT(false); | |
| 842 return kInvalidInput; | |
| 843 } | |
| 844 | |
| 845 // Create swizzler | |
| 846 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | |
| 847 dstInfo, dst, dstRowBytes, false); | |
| 848 | |
| 849 // Allocate space for a row buffer and a source for the swizzler | |
| 850 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
| 851 | |
| 852 // Iterate over rows of the image | |
| 853 // FIXME: bool transparent = true; | |
| 854 for (int y = 0; y < height; y++) { | |
| 855 // Read a row of the input | |
| 856 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
| 857 SkDebugf("Warning: incomplete input stream.\n"); | |
| 858 return kIncompleteInput; | |
| 859 } | |
| 860 | |
| 861 // Decode the row in destination format | |
| 862 uint32_t row; | |
| 863 if (kTopDown_RowOrder == fRowOrder) { | |
| 864 row = y; | |
| 865 } else { | |
| 866 row = height - 1 - y; | |
| 867 } | |
| 868 | |
| 869 swizzler->next(srcBuffer.get(), row); | |
| 870 // FIXME: SkSwizzler::ResultAlpha r = | |
| 871 // swizzler->next(srcBuffer.get(), row); | |
| 872 // FIXME: transparent &= SkSwizzler::IsTransparent(r); | |
| 873 } | |
| 874 | |
| 875 // FIXME: This code exists to match the behavior in the chromium decoder | |
| 876 // and to follow the bmp specification as it relates to alpha masks. It is | |
| 877 // commented out because we have yet to discover a test image that provides | |
| 878 // an alpha mask and uses this decode mode. | |
| 879 | |
| 880 // Now we adjust the output image with some additional behavior that | |
| 881 // SkSwizzler does not support. Firstly, all bmp images that contain | |
| 882 // alpha are masked by the alpha mask. Secondly, many fully transparent | |
| 883 // bmp images are intended to be opaque. Here, we make those corrections. | |
| 884 // Modifying alpha is safe because colors are stored unpremultiplied. | |
| 885 /* | |
| 886 SkPMColor* dstRow = (SkPMColor*) dst; | |
| 887 if (SkSwizzler::kBGRA == config) { | |
| 888 for (int y = 0; y < height; y++) { | |
| 889 for (int x = 0; x < width; x++) { | |
| 890 if (transparent) { | |
| 891 dstRow[x] |= 0xFF000000; | |
| 892 } else { | |
| 893 dstRow[x] &= alphaMask; | |
| 894 } | |
| 895 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
| 896 } | |
| 897 } | |
| 898 } | |
| 899 */ | |
| 900 | |
| 901 // Finished decoding the entire image | |
| 902 return kSuccess; | |
| 903 } | |
| OLD | NEW |