| Index: src/pathops/SkPathOpsQuad.cpp
|
| diff --git a/src/pathops/SkPathOpsQuad.cpp b/src/pathops/SkPathOpsQuad.cpp
|
| index c1d068af345701e64c5251007d172d29e83fbeb3..4913c9f9f3fcb028c108073de8842aa096091e19 100644
|
| --- a/src/pathops/SkPathOpsQuad.cpp
|
| +++ b/src/pathops/SkPathOpsQuad.cpp
|
| @@ -8,7 +8,61 @@
|
| #include "SkLineParameters.h"
|
| #include "SkPathOpsCubic.h"
|
| #include "SkPathOpsQuad.h"
|
| -#include "SkPathOpsTriangle.h"
|
| +
|
| +/* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */
|
| +// Do a quick reject by rotating all points relative to a line formed by
|
| +// a pair of one quad's points. If the 2nd quad's points
|
| +// are on the line or on the opposite side from the 1st quad's 'odd man', the
|
| +// curves at most intersect at the endpoints.
|
| +/* if returning true, check contains true if quad's hull collapsed, making the cubic linear
|
| + if returning false, check contains true if the the quad pair have only the end point in common
|
| +*/
|
| +bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const {
|
| + bool linear = true;
|
| + for (int oddMan = 0; oddMan < kPointCount; ++oddMan) {
|
| + const SkDPoint* endPt[2];
|
| + this->otherPts(oddMan, endPt);
|
| + double origX = endPt[0]->fX;
|
| + double origY = endPt[0]->fY;
|
| + double adj = endPt[1]->fX - origX;
|
| + double opp = endPt[1]->fY - origY;
|
| + double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
|
| + if (approximately_zero(sign)) {
|
| + continue;
|
| + }
|
| + linear = false;
|
| + bool foundOutlier = false;
|
| + for (int n = 0; n < kPointCount; ++n) {
|
| + double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
|
| + if (test * sign > 0 && !precisely_zero(test)) {
|
| + foundOutlier = true;
|
| + break;
|
| + }
|
| + }
|
| + if (!foundOutlier) {
|
| + return false;
|
| + }
|
| + }
|
| + *isLinear = linear;
|
| + return true;
|
| +}
|
| +
|
| +/* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan)
|
| +oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m
|
| + 0 1 1 1 0 1
|
| + 2 2 2 0 2
|
| + 1 1 0 -1 -1 0
|
| + 2 3 2 0 2
|
| + 2 1 3 1 0 1
|
| + 2 0 -2 -1 0
|
| +*/
|
| +void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const {
|
| + for (int opp = 1; opp < kPointCount; ++opp) {
|
| + int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan
|
| + end &= ~(end >> 2); // if the value went negative, set it to zero
|
| + endPt[opp - 1] = &fPts[end];
|
| + }
|
| +}
|
|
|
| // from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
|
| // (currently only used by testing)
|
| @@ -43,10 +97,6 @@ double SkDQuad::nearestT(const SkDPoint& pt) const {
|
| return d0 < d2 ? 0 : 1;
|
| }
|
|
|
| -bool SkDQuad::pointInHull(const SkDPoint& pt) const {
|
| - return ((const SkDTriangle&) fPts).contains(pt);
|
| -}
|
| -
|
| SkDPoint SkDQuad::top(double startT, double endT) const {
|
| SkDQuad sub = subDivide(startT, endT);
|
| SkDPoint topPt = sub[0];
|
| @@ -140,7 +190,12 @@ bool SkDQuad::isLinear(int startIndex, int endIndex) const {
|
| // FIXME: maybe it's possible to avoid this and compare non-normalized
|
| lineParameters.normalize();
|
| double distance = lineParameters.controlPtDistance(*this);
|
| - return approximately_zero(distance);
|
| + double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY),
|
| + fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
|
| + double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY),
|
| + fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
|
| + largest = SkTMax(largest, -tiniest);
|
| + return approximately_zero_when_compared_to(distance, largest);
|
| }
|
|
|
| SkDCubic SkDQuad::toCubic() const {
|
| @@ -240,13 +295,6 @@ void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
|
| SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
|
| SkASSERT(t1 != t2);
|
| SkDPoint b;
|
| -#if 0
|
| - // this approach assumes that the control point computed directly is accurate enough
|
| - double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
|
| - double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
|
| - b.fX = 2 * dx - (a.fX + c.fX) / 2;
|
| - b.fY = 2 * dy - (a.fY + c.fY) / 2;
|
| -#else
|
| SkDQuad sub = subDivide(t1, t2);
|
| SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
|
| SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
|
| @@ -258,7 +306,6 @@ SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, dou
|
| SkASSERT(i.used() <= 2);
|
| b = SkDPoint::Mid(b0[1], b1[1]);
|
| }
|
| -#endif
|
| if (t1 == 0 || t2 == 0) {
|
| align(0, &b);
|
| }
|
|
|