Index: src/pathops/SkDCubicToQuads.cpp |
diff --git a/src/pathops/SkDCubicToQuads.cpp b/src/pathops/SkDCubicToQuads.cpp |
index a28564d4c2c8b3ff724540d70d0c52a3a00fee05..2d034b69e84e17d8b4156c3f1ee9525120b3ed70 100644 |
--- a/src/pathops/SkDCubicToQuads.cpp |
+++ b/src/pathops/SkDCubicToQuads.cpp |
@@ -19,62 +19,10 @@ If this is a degree-elevated cubic, then both equations will give the same answe |
it's likely not, your best bet is to average them. So, |
P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 |
- |
-SkDCubic defined by: P1/2 - anchor points, C1/C2 control points |
-|x| is the euclidean norm of x |
-mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the |
- control point at C = (3·C2 - P2 + 3·C1 - P1)/4 |
- |
-Algorithm |
- |
-pick an absolute precision (prec) |
-Compute the Tdiv as the root of (cubic) equation |
-sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec |
-if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a |
- quadratic, with a defect less than prec, by the mid-point approximation. |
- Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) |
-0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point |
- approximation |
-Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation |
- |
-confirmed by (maybe stolen from) |
-http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html |
-// maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf |
-// also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf |
- |
*/ |
#include "SkPathOpsCubic.h" |
-#include "SkPathOpsLine.h" |
#include "SkPathOpsQuad.h" |
-#include "SkReduceOrder.h" |
-#include "SkTArray.h" |
-#include "SkTSort.h" |
- |
-#define USE_CUBIC_END_POINTS 1 |
- |
-static double calc_t_div(const SkDCubic& cubic, double precision, double start) { |
- const double adjust = sqrt(3.) / 36; |
- SkDCubic sub; |
- const SkDCubic* cPtr; |
- if (start == 0) { |
- cPtr = &cubic; |
- } else { |
- // OPTIMIZE: special-case half-split ? |
- sub = cubic.subDivide(start, 1); |
- cPtr = ⊂ |
- } |
- const SkDCubic& c = *cPtr; |
- double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; |
- double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; |
- double dist = sqrt(dx * dx + dy * dy); |
- double tDiv3 = precision / (adjust * dist); |
- double t = SkDCubeRoot(tDiv3); |
- if (start > 0) { |
- t = start + (1 - start) * t; |
- } |
- return t; |
-} |
SkDQuad SkDCubic::toQuad() const { |
SkDQuad quad; |
@@ -86,101 +34,3 @@ SkDQuad SkDCubic::toQuad() const { |
quad[2] = fPts[3]; |
return quad; |
} |
- |
-static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) { |
- double tDiv = calc_t_div(cubic, precision, 0); |
- if (tDiv >= 1) { |
- return true; |
- } |
- if (tDiv >= 0.5) { |
- ts->push_back(0.5); |
- return true; |
- } |
- return false; |
-} |
- |
-static void addTs(const SkDCubic& cubic, double precision, double start, double end, |
- SkTArray<double, true>* ts) { |
- double tDiv = calc_t_div(cubic, precision, 0); |
- double parts = ceil(1.0 / tDiv); |
- for (double index = 0; index < parts; ++index) { |
- double newT = start + (index / parts) * (end - start); |
- if (newT > 0 && newT < 1) { |
- ts->push_back(newT); |
- } |
- } |
-} |
- |
-// flavor that returns T values only, deferring computing the quads until they are needed |
-// FIXME: when called from recursive intersect 2, this could take the original cubic |
-// and do a more precise job when calling chop at and sub divide by computing the fractional ts. |
-// it would still take the prechopped cubic for reduce order and find cubic inflections |
-void SkDCubic::toQuadraticTs(double precision, SkTArray<double, true>* ts) const { |
- SkReduceOrder reducer; |
- int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics); |
- if (order < 3) { |
- return; |
- } |
- double inflectT[5]; |
- int inflections = findInflections(inflectT); |
- SkASSERT(inflections <= 2); |
- if (!endsAreExtremaInXOrY()) { |
- inflections += findMaxCurvature(&inflectT[inflections]); |
- SkASSERT(inflections <= 5); |
- } |
- SkTQSort<double>(inflectT, &inflectT[inflections - 1]); |
- // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its |
- // own subroutine? |
- while (inflections && approximately_less_than_zero(inflectT[0])) { |
- memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); |
- } |
- int start = 0; |
- int next = 1; |
- while (next < inflections) { |
- if (!approximately_equal(inflectT[start], inflectT[next])) { |
- ++start; |
- ++next; |
- continue; |
- } |
- memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); |
- } |
- |
- while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { |
- --inflections; |
- } |
- SkDCubicPair pair; |
- if (inflections == 1) { |
- pair = chopAt(inflectT[0]); |
- int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics); |
- if (orderP1 < 2) { |
- --inflections; |
- } else { |
- int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics); |
- if (orderP2 < 2) { |
- --inflections; |
- } |
- } |
- } |
- if (inflections == 0 && add_simple_ts(*this, precision, ts)) { |
- return; |
- } |
- if (inflections == 1) { |
- pair = chopAt(inflectT[0]); |
- addTs(pair.first(), precision, 0, inflectT[0], ts); |
- addTs(pair.second(), precision, inflectT[0], 1, ts); |
- return; |
- } |
- if (inflections > 1) { |
- SkDCubic part = subDivide(0, inflectT[0]); |
- addTs(part, precision, 0, inflectT[0], ts); |
- int last = inflections - 1; |
- for (int idx = 0; idx < last; ++idx) { |
- part = subDivide(inflectT[idx], inflectT[idx + 1]); |
- addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); |
- } |
- part = subDivide(inflectT[last], 1); |
- addTs(part, precision, inflectT[last], 1, ts); |
- return; |
- } |
- addTs(*this, precision, 0, 1, ts); |
-} |