Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(117)

Unified Diff: src/pathops/SkQuarticRoot.cpp

Issue 1002693002: pathops version two (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: fix arm 64 inspired coincident handling Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkQuarticRoot.h ('k') | src/pathops/SkReduceOrder.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkQuarticRoot.cpp
diff --git a/src/pathops/SkQuarticRoot.cpp b/src/pathops/SkQuarticRoot.cpp
deleted file mode 100644
index f9a7bf517990bc8cd9fdb72b3b8db1be9daa5fdf..0000000000000000000000000000000000000000
--- a/src/pathops/SkQuarticRoot.cpp
+++ /dev/null
@@ -1,168 +0,0 @@
-// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
-/*
- * Roots3And4.c
- *
- * Utility functions to find cubic and quartic roots,
- * coefficients are passed like this:
- *
- * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
- *
- * The functions return the number of non-complex roots and
- * put the values into the s array.
- *
- * Author: Jochen Schwarze (schwarze@isa.de)
- *
- * Jan 26, 1990 Version for Graphics Gems
- * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic
- * (reported by Mark Podlipec),
- * Old-style function definitions,
- * IsZero() as a macro
- * Nov 23, 1990 Some systems do not declare acos() and cbrt() in
- * <math.h>, though the functions exist in the library.
- * If large coefficients are used, EQN_EPS should be
- * reduced considerably (e.g. to 1E-30), results will be
- * correct but multiple roots might be reported more
- * than once.
- */
-
-#include "SkPathOpsCubic.h"
-#include "SkPathOpsQuad.h"
-#include "SkQuarticRoot.h"
-
-int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
- const double t0, const bool oneHint, double roots[4]) {
-#ifdef SK_DEBUG
- // create a string mathematica understands
- // GDB set print repe 15 # if repeated digits is a bother
- // set print elements 400 # if line doesn't fit
- char str[1024];
- sk_bzero(str, sizeof(str));
- SK_SNPRINTF(str, sizeof(str),
- "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
- t4, t3, t2, t1, t0);
- SkPathOpsDebug::MathematicaIze(str, sizeof(str));
-#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
- SkDebugf("%s\n", str);
-#endif
-#endif
- if (approximately_zero_when_compared_to(t4, t0) // 0 is one root
- && approximately_zero_when_compared_to(t4, t1)
- && approximately_zero_when_compared_to(t4, t2)) {
- if (approximately_zero_when_compared_to(t3, t0)
- && approximately_zero_when_compared_to(t3, t1)
- && approximately_zero_when_compared_to(t3, t2)) {
- return SkDQuad::RootsReal(t2, t1, t0, roots);
- }
- if (approximately_zero_when_compared_to(t4, t3)) {
- return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
- }
- }
- if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1)) // 0 is one root
- // && approximately_zero_when_compared_to(t0, t2)
- && approximately_zero_when_compared_to(t0, t3)
- && approximately_zero_when_compared_to(t0, t4)) {
- int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
- for (int i = 0; i < num; ++i) {
- if (approximately_zero(roots[i])) {
- return num;
- }
- }
- roots[num++] = 0;
- return num;
- }
- if (oneHint) {
- SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0) ||
- approximately_zero_when_compared_to(t4 + t3 + t2 + t1 + t0, // 1 is one root
- SkTMax(fabs(t4), SkTMax(fabs(t3), SkTMax(fabs(t2), SkTMax(fabs(t1), fabs(t0)))))));
- // note that -C == A + B + D + E
- int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
- for (int i = 0; i < num; ++i) {
- if (approximately_equal(roots[i], 1)) {
- return num;
- }
- }
- roots[num++] = 1;
- return num;
- }
- return -1;
-}
-
-int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
- const double D, const double E, double s[4]) {
- double u, v;
- /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
- const double invA = 1 / A;
- const double a = B * invA;
- const double b = C * invA;
- const double c = D * invA;
- const double d = E * invA;
- /* substitute x = y - a/4 to eliminate cubic term:
- x^4 + px^2 + qx + r = 0 */
- const double a2 = a * a;
- const double p = -3 * a2 / 8 + b;
- const double q = a2 * a / 8 - a * b / 2 + c;
- const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
- int num;
- double largest = SkTMax(fabs(p), fabs(q));
- if (approximately_zero_when_compared_to(r, largest)) {
- /* no absolute term: y(y^3 + py + q) = 0 */
- num = SkDCubic::RootsReal(1, 0, p, q, s);
- s[num++] = 0;
- } else {
- /* solve the resolvent cubic ... */
- double cubicRoots[3];
- int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
- int index;
- /* ... and take one real solution ... */
- double z;
- num = 0;
- int num2 = 0;
- for (index = firstCubicRoot; index < roots; ++index) {
- z = cubicRoots[index];
- /* ... to build two quadric equations */
- u = z * z - r;
- v = 2 * z - p;
- if (approximately_zero_squared(u)) {
- u = 0;
- } else if (u > 0) {
- u = sqrt(u);
- } else {
- continue;
- }
- if (approximately_zero_squared(v)) {
- v = 0;
- } else if (v > 0) {
- v = sqrt(v);
- } else {
- continue;
- }
- num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s);
- num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num);
- if (!((num | num2) & 1)) {
- break; // prefer solutions without single quad roots
- }
- }
- num += num2;
- if (!num) {
- return 0; // no valid cubic root
- }
- }
- /* resubstitute */
- const double sub = a / 4;
- for (int i = 0; i < num; ++i) {
- s[i] -= sub;
- }
- // eliminate duplicates
- for (int i = 0; i < num - 1; ++i) {
- for (int j = i + 1; j < num; ) {
- if (AlmostDequalUlps(s[i], s[j])) {
- if (j < --num) {
- s[j] = s[num];
- }
- } else {
- ++j;
- }
- }
- }
- return num;
-}
« no previous file with comments | « src/pathops/SkQuarticRoot.h ('k') | src/pathops/SkReduceOrder.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698