| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "SkPathOpsLine.h" | 7 #include "SkPathOpsLine.h" |
| 8 | 8 |
| 9 SkDLine SkDLine::subDivide(double t1, double t2) const { | |
| 10 SkDVector delta = tangent(); | |
| 11 SkDLine dst = {{{ | |
| 12 fPts[0].fX - t1 * delta.fX, fPts[0].fY - t1 * delta.fY}, { | |
| 13 fPts[0].fX - t2 * delta.fX, fPts[0].fY - t2 * delta.fY}}}; | |
| 14 return dst; | |
| 15 } | |
| 16 | |
| 17 // may have this below somewhere else already: | 9 // may have this below somewhere else already: |
| 18 // copying here because I thought it was clever | 10 // copying here because I thought it was clever |
| 19 | 11 |
| 20 // Copyright 2001, softSurfer (www.softsurfer.com) | 12 // Copyright 2001, softSurfer (www.softsurfer.com) |
| 21 // This code may be freely used and modified for any purpose | 13 // This code may be freely used and modified for any purpose |
| 22 // providing that this copyright notice is included with it. | 14 // providing that this copyright notice is included with it. |
| 23 // SoftSurfer makes no warranty for this code, and cannot be held | 15 // SoftSurfer makes no warranty for this code, and cannot be held |
| 24 // liable for any real or imagined damage resulting from its use. | 16 // liable for any real or imagined damage resulting from its use. |
| 25 // Users of this code must verify correctness for their application. | 17 // Users of this code must verify correctness for their application. |
| 26 | 18 |
| 27 // Assume that a class is already given for the object: | 19 // Assume that a class is already given for the object: |
| 28 // Point with coordinates {float x, y;} | 20 // Point with coordinates {float x, y;} |
| 29 //=================================================================== | 21 //=================================================================== |
| 30 | 22 |
| 23 // (only used by testing) |
| 31 // isLeft(): tests if a point is Left|On|Right of an infinite line. | 24 // isLeft(): tests if a point is Left|On|Right of an infinite line. |
| 32 // Input: three points P0, P1, and P2 | 25 // Input: three points P0, P1, and P2 |
| 33 // Return: >0 for P2 left of the line through P0 and P1 | 26 // Return: >0 for P2 left of the line through P0 and P1 |
| 34 // =0 for P2 on the line | 27 // =0 for P2 on the line |
| 35 // <0 for P2 right of the line | 28 // <0 for P2 right of the line |
| 36 // See: the January 2001 Algorithm on Area of Triangles | 29 // See: the January 2001 Algorithm on Area of Triangles |
| 37 // return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y))
; | 30 // return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y))
; |
| 38 double SkDLine::isLeft(const SkDPoint& pt) const { | 31 double SkDLine::isLeft(const SkDPoint& pt) const { |
| 39 SkDVector p0 = fPts[1] - fPts[0]; | 32 SkDVector p0 = fPts[1] - fPts[0]; |
| 40 SkDVector p2 = pt - fPts[0]; | 33 SkDVector p2 = pt - fPts[0]; |
| (...skipping 62 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 103 double t = numer / denom; | 96 double t = numer / denom; |
| 104 SkDPoint realPt = ptAtT(t); | 97 SkDPoint realPt = ptAtT(t); |
| 105 double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against
distSq instead ? | 98 double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against
distSq instead ? |
| 106 // find the ordinal in the original line with the largest unsigned exponent | 99 // find the ordinal in the original line with the largest unsigned exponent |
| 107 double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); | 100 double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); |
| 108 double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); | 101 double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX),
fPts[1].fY); |
| 109 largest = SkTMax(largest, -tiniest); | 102 largest = SkTMax(largest, -tiniest); |
| 110 return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS
tolerance? | 103 return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS
tolerance? |
| 111 } | 104 } |
| 112 | 105 |
| 113 // Returns true if a ray from (0,0) to (x1,y1) is coincident with a ray (0,0) to
(x2,y2) | |
| 114 // OPTIMIZE: a specialty routine could speed this up -- may not be called very o
ften though | |
| 115 bool SkDLine::NearRay(double x1, double y1, double x2, double y2) { | |
| 116 double denom1 = x1 * x1 + y1 * y1; | |
| 117 double denom2 = x2 * x2 + y2 * y2; | |
| 118 SkDLine line = {{{0, 0}, {x1, y1}}}; | |
| 119 SkDPoint pt = {x2, y2}; | |
| 120 if (denom2 > denom1) { | |
| 121 SkTSwap(line[1], pt); | |
| 122 } | |
| 123 return line.nearRay(pt); | |
| 124 } | |
| 125 | |
| 126 double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, doubl
e y) { | 106 double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, doubl
e y) { |
| 127 if (xy.fY == y) { | 107 if (xy.fY == y) { |
| 128 if (xy.fX == left) { | 108 if (xy.fX == left) { |
| 129 return 0; | 109 return 0; |
| 130 } | 110 } |
| 131 if (xy.fX == right) { | 111 if (xy.fX == right) { |
| 132 return 1; | 112 return 1; |
| 133 } | 113 } |
| 134 } | 114 } |
| 135 return -1; | 115 return -1; |
| (...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 185 double distSq = distU.fX * distU.fX + distU.fY * distU.fY; | 165 double distSq = distU.fX * distU.fX + distU.fY * distU.fY; |
| 186 double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq i
nstead ? | 166 double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq i
nstead ? |
| 187 double tiniest = SkTMin(SkTMin(x, top), bottom); | 167 double tiniest = SkTMin(SkTMin(x, top), bottom); |
| 188 double largest = SkTMax(SkTMax(x, top), bottom); | 168 double largest = SkTMax(SkTMax(x, top), bottom); |
| 189 largest = SkTMax(largest, -tiniest); | 169 largest = SkTMax(largest, -tiniest); |
| 190 if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS
tolerance? | 170 if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS
tolerance? |
| 191 return -1; | 171 return -1; |
| 192 } | 172 } |
| 193 return t; | 173 return t; |
| 194 } | 174 } |
| OLD | NEW |