OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc.
All rights reserved. | |
3 * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies) | |
4 * Copyright (C) 2007 Alp Toker <alp@atoker.com> | |
5 * Copyright (C) 2008 Eric Seidel <eric@webkit.org> | |
6 * Copyright (C) 2008 Dirk Schulze <krit@webkit.org> | |
7 * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved. | |
8 * Copyright (C) 2012, 2013 Intel Corporation. All rights reserved. | |
9 * Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved. | |
10 * | |
11 * Redistribution and use in source and binary forms, with or without | |
12 * modification, are permitted provided that the following conditions | |
13 * are met: | |
14 * | |
15 * 1. Redistributions of source code must retain the above copyright | |
16 * notice, this list of conditions and the following disclaimer. | |
17 * 2. Redistributions in binary form must reproduce the above copyright | |
18 * notice, this list of conditions and the following disclaimer in the | |
19 * documentation and/or other materials provided with the distribution. | |
20 * | |
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY | |
22 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE | |
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, | |
26 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
27 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
28 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR | |
30 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF | |
31 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
32 * SUCH DAMAGE. | |
33 */ | |
34 | |
35 #include "sky/engine/config.h" | |
36 #include "sky/engine/core/html/canvas/CanvasPathMethods.h" | |
37 | |
38 #include "sky/engine/bindings/exception_state.h" | |
39 #include "sky/engine/core/dom/ExceptionCode.h" | |
40 #include "sky/engine/platform/geometry/FloatRect.h" | |
41 #include "sky/engine/platform/transforms/AffineTransform.h" | |
42 #include "sky/engine/wtf/MathExtras.h" | |
43 | |
44 namespace blink { | |
45 | |
46 void CanvasPathMethods::closePath() | |
47 { | |
48 if (m_path.isEmpty()) | |
49 return; | |
50 | |
51 FloatRect boundRect = m_path.boundingRect(); | |
52 if (boundRect.width() || boundRect.height()) | |
53 m_path.closeSubpath(); | |
54 } | |
55 | |
56 void CanvasPathMethods::moveTo(float x, float y) | |
57 { | |
58 if (!std::isfinite(x) || !std::isfinite(y)) | |
59 return; | |
60 if (!isTransformInvertible()) | |
61 return; | |
62 m_path.moveTo(FloatPoint(x, y)); | |
63 } | |
64 | |
65 void CanvasPathMethods::lineTo(float x, float y) | |
66 { | |
67 if (!std::isfinite(x) || !std::isfinite(y)) | |
68 return; | |
69 if (!isTransformInvertible()) | |
70 return; | |
71 | |
72 FloatPoint p1 = FloatPoint(x, y); | |
73 if (!m_path.hasCurrentPoint()) | |
74 m_path.moveTo(p1); | |
75 else if (p1 != m_path.currentPoint()) | |
76 m_path.addLineTo(p1); | |
77 } | |
78 | |
79 void CanvasPathMethods::quadraticCurveTo(float cpx, float cpy, float x, float y) | |
80 { | |
81 if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std:
:isfinite(y)) | |
82 return; | |
83 if (!isTransformInvertible()) | |
84 return; | |
85 if (!m_path.hasCurrentPoint()) | |
86 m_path.moveTo(FloatPoint(cpx, cpy)); | |
87 | |
88 FloatPoint p1 = FloatPoint(x, y); | |
89 FloatPoint cp = FloatPoint(cpx, cpy); | |
90 if (p1 != m_path.currentPoint() || p1 != cp) | |
91 m_path.addQuadCurveTo(cp, p1); | |
92 } | |
93 | |
94 void CanvasPathMethods::bezierCurveTo(float cp1x, float cp1y, float cp2x, float
cp2y, float x, float y) | |
95 { | |
96 if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) ||
!std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y)) | |
97 return; | |
98 if (!isTransformInvertible()) | |
99 return; | |
100 if (!m_path.hasCurrentPoint()) | |
101 m_path.moveTo(FloatPoint(cp1x, cp1y)); | |
102 | |
103 FloatPoint p1 = FloatPoint(x, y); | |
104 FloatPoint cp1 = FloatPoint(cp1x, cp1y); | |
105 FloatPoint cp2 = FloatPoint(cp2x, cp2y); | |
106 if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2) | |
107 m_path.addBezierCurveTo(cp1, cp2, p1); | |
108 } | |
109 | |
110 void CanvasPathMethods::arcTo(float x1, float y1, float x2, float y2, float r, E
xceptionState& exceptionState) | |
111 { | |
112 if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::
isfinite(y2) || !std::isfinite(r)) | |
113 return; | |
114 | |
115 if (r < 0) { | |
116 exceptionState.ThrowDOMException(IndexSizeError, "The radius provided ("
+ String::number(r) + ") is negative."); | |
117 return; | |
118 } | |
119 | |
120 if (!isTransformInvertible()) | |
121 return; | |
122 | |
123 FloatPoint p1 = FloatPoint(x1, y1); | |
124 FloatPoint p2 = FloatPoint(x2, y2); | |
125 | |
126 if (!m_path.hasCurrentPoint()) | |
127 m_path.moveTo(p1); | |
128 else if (p1 == m_path.currentPoint() || p1 == p2 || !r) | |
129 lineTo(x1, y1); | |
130 else | |
131 m_path.addArcTo(p1, p2, r); | |
132 } | |
133 | |
134 namespace { | |
135 | |
136 float adjustEndAngle(float startAngle, float endAngle, bool anticlockwise) | |
137 { | |
138 float newEndAngle = endAngle; | |
139 /* http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-el
ement.html#dom-context-2d-arc | |
140 * If the anticlockwise argument is false and endAngle-startAngle is equal t
o or greater than 2pi, or, | |
141 * if the anticlockwise argument is true and startAngle-endAngle is equal to
or greater than 2pi, | |
142 * then the arc is the whole circumference of this ellipse, and the point at
startAngle along this circle's circumference, | |
143 * measured in radians clockwise from the ellipse's semi-major axis, acts as
both the start point and the end point. | |
144 */ | |
145 if (!anticlockwise && endAngle - startAngle >= twoPiFloat) | |
146 newEndAngle = startAngle + twoPiFloat; | |
147 else if (anticlockwise && startAngle - endAngle >= twoPiFloat) | |
148 newEndAngle = startAngle - twoPiFloat; | |
149 | |
150 /* | |
151 * Otherwise, the arc is the path along the circumference of this ellipse fr
om the start point to the end point, | |
152 * going anti-clockwise if the anticlockwise argument is true, and clockwise
otherwise. | |
153 * Since the points are on the ellipse, as opposed to being simply angles fr
om zero, | |
154 * the arc can never cover an angle greater than 2pi radians. | |
155 */ | |
156 /* NOTE: When startAngle = 0, endAngle = 2Pi and anticlockwise = true, the s
pec does not indicate clearly. | |
157 * We draw the entire circle, because some web sites use arc(x, y, r, 0, 2*M
ath.PI, true) to draw circle. | |
158 * We preserve backward-compatibility. | |
159 */ | |
160 else if (!anticlockwise && startAngle > endAngle) | |
161 newEndAngle = startAngle + (twoPiFloat - fmodf(startAngle - endAngle, tw
oPiFloat)); | |
162 else if (anticlockwise && startAngle < endAngle) | |
163 newEndAngle = startAngle - (twoPiFloat - fmodf(endAngle - startAngle, tw
oPiFloat)); | |
164 | |
165 ASSERT(ellipseIsRenderable(startAngle, newEndAngle)); | |
166 return newEndAngle; | |
167 } | |
168 | |
169 inline void lineToFloatPoint(CanvasPathMethods* path, const FloatPoint& p) | |
170 { | |
171 path->lineTo(p.x(), p.y()); | |
172 } | |
173 | |
174 inline FloatPoint getPointOnEllipse(float radiusX, float radiusY, float theta) | |
175 { | |
176 return FloatPoint(radiusX * cosf(theta), radiusY * sinf(theta)); | |
177 } | |
178 | |
179 void canonicalizeAngle(float* startAngle, float* endAngle) | |
180 { | |
181 // Make 0 <= startAngle < 2*PI | |
182 float newStartAngle = *startAngle; | |
183 if (newStartAngle < 0) | |
184 newStartAngle = twoPiFloat + fmodf(newStartAngle, -twoPiFloat); | |
185 else | |
186 newStartAngle = fmodf(newStartAngle, twoPiFloat); | |
187 | |
188 float delta = newStartAngle - *startAngle; | |
189 *startAngle = newStartAngle; | |
190 *endAngle = *endAngle + delta; | |
191 ASSERT(newStartAngle >= 0 && newStartAngle < twoPiFloat); | |
192 } | |
193 | |
194 /* | |
195 * degenerateEllipse() handles a degenerated ellipse using several lines. | |
196 * | |
197 * Let's see a following example: line to ellipse to line. | |
198 * _--^\ | |
199 * ( ) | |
200 * -----( ) | |
201 * ) | |
202 * /-------- | |
203 * | |
204 * If radiusX becomes zero, the ellipse of the example is degenerated. | |
205 * _ | |
206 * // P | |
207 * // | |
208 * -----// | |
209 * / | |
210 * /-------- | |
211 * | |
212 * To draw the above example, need to get P that is a local maximum point. | |
213 * Angles for P are 0.5Pi and 1.5Pi in the ellipse coordinates. | |
214 * | |
215 * If radiusY becomes zero, the result is as follows. | |
216 * -----__ | |
217 * --_ | |
218 * ---------- | |
219 * ``P | |
220 * Angles for P are 0 and Pi in the ellipse coordinates. | |
221 * | |
222 * To handle both cases, degenerateEllipse() lines to start angle, local maximum
points(every 0.5Pi), and end angle. | |
223 * NOTE: Before ellipse() calls this function, adjustEndAngle() is called, so en
dAngle - startAngle must be equal to or less than 2Pi. | |
224 */ | |
225 void degenerateEllipse(CanvasPathMethods* path, float x, float y, float radiusX,
float radiusY, float rotation, float startAngle, float endAngle, bool anticlock
wise) | |
226 { | |
227 ASSERT(ellipseIsRenderable(startAngle, endAngle)); | |
228 ASSERT(startAngle >= 0 && startAngle < twoPiFloat); | |
229 ASSERT((anticlockwise && (startAngle - endAngle) >= 0) || (!anticlockwise &&
(endAngle - startAngle) >= 0)); | |
230 | |
231 FloatPoint center(x, y); | |
232 AffineTransform rotationMatrix; | |
233 rotationMatrix.rotateRadians(rotation); | |
234 // First, if the object's path has any subpaths, then the method must add a
straight line from the last point in the subpath to the start point of the arc. | |
235 lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(ra
diusX, radiusY, startAngle))); | |
236 if ((!radiusX && !radiusY) || startAngle == endAngle) | |
237 return; | |
238 | |
239 if (!anticlockwise) { | |
240 // startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat is th
e one of (0, 0.5Pi, Pi, 1.5Pi, 2Pi) | |
241 // that is the closest to startAngle on the clockwise direction. | |
242 for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOv
erTwoFloat; angle < endAngle; angle += piOverTwoFloat) | |
243 lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEl
lipse(radiusX, radiusY, angle))); | |
244 } else { | |
245 for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle
> endAngle; angle -= piOverTwoFloat) | |
246 lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEl
lipse(radiusX, radiusY, angle))); | |
247 } | |
248 | |
249 lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(ra
diusX, radiusY, endAngle))); | |
250 } | |
251 | |
252 } // namespace | |
253 | |
254 void CanvasPathMethods::arc(float x, float y, float radius, float startAngle, fl
oat endAngle, bool anticlockwise, ExceptionState& exceptionState) | |
255 { | |
256 if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std
::isfinite(startAngle) || !std::isfinite(endAngle)) | |
257 return; | |
258 | |
259 if (radius < 0) { | |
260 exceptionState.ThrowDOMException(IndexSizeError, "The radius provided ("
+ String::number(radius) + ") is negative."); | |
261 return; | |
262 } | |
263 | |
264 if (!isTransformInvertible()) | |
265 return; | |
266 | |
267 if (!radius || startAngle == endAngle) { | |
268 // The arc is empty but we still need to draw the connecting line. | |
269 lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle)); | |
270 return; | |
271 } | |
272 | |
273 canonicalizeAngle(&startAngle, &endAngle); | |
274 float adjustedEndAngle = adjustEndAngle(startAngle, endAngle, anticlockwise)
; | |
275 m_path.addArc(FloatPoint(x, y), radius, startAngle, adjustedEndAngle, anticl
ockwise); | |
276 } | |
277 | |
278 void CanvasPathMethods::ellipse(float x, float y, float radiusX, float radiusY,
float rotation, float startAngle, float endAngle, bool anticlockwise, ExceptionS
tate& exceptionState) | |
279 { | |
280 if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !st
d::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) |
| !std::isfinite(endAngle)) | |
281 return; | |
282 | |
283 if (radiusX < 0) { | |
284 exceptionState.ThrowDOMException(IndexSizeError, "The major-axis radius
provided (" + String::number(radiusX) + ") is negative."); | |
285 return; | |
286 } | |
287 if (radiusY < 0) { | |
288 exceptionState.ThrowDOMException(IndexSizeError, "The minor-axis radius
provided (" + String::number(radiusY) + ") is negative."); | |
289 return; | |
290 } | |
291 | |
292 if (!isTransformInvertible()) | |
293 return; | |
294 | |
295 canonicalizeAngle(&startAngle, &endAngle); | |
296 float adjustedEndAngle = adjustEndAngle(startAngle, endAngle, anticlockwise)
; | |
297 if (!radiusX || !radiusY || startAngle == adjustedEndAngle) { | |
298 // The ellipse is empty but we still need to draw the connecting line to
start point. | |
299 degenerateEllipse(this, x, y, radiusX, radiusY, rotation, startAngle, ad
justedEndAngle, anticlockwise); | |
300 return; | |
301 } | |
302 | |
303 m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle,
adjustedEndAngle, anticlockwise); | |
304 } | |
305 | |
306 void CanvasPathMethods::rect(float x, float y, float width, float height) | |
307 { | |
308 if (!isTransformInvertible()) | |
309 return; | |
310 | |
311 if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std:
:isfinite(height)) | |
312 return; | |
313 | |
314 if (!width && !height) { | |
315 m_path.moveTo(FloatPoint(x, y)); | |
316 return; | |
317 } | |
318 | |
319 m_path.addRect(FloatRect(x, y, width, height)); | |
320 } | |
321 } | |
OLD | NEW |