OLD | NEW |
| (Empty) |
1 // Copyright 2011 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/trees/layer_sorter.h" | |
6 | |
7 #include <algorithm> | |
8 #include <deque> | |
9 #include <limits> | |
10 #include <vector> | |
11 | |
12 #include "base/logging.h" | |
13 #include "cc/base/math_util.h" | |
14 #include "cc/layers/render_surface_impl.h" | |
15 #include "ui/gfx/transform.h" | |
16 | |
17 namespace cc { | |
18 | |
19 // This epsilon is used to determine if two layers are too close to each other | |
20 // to be able to tell which is in front of the other. It's a relative epsilon | |
21 // so it is robust to changes in scene scale. This value was chosen by picking | |
22 // a value near machine epsilon and then increasing it until the flickering on | |
23 // the test scene went away. | |
24 const float k_layer_epsilon = 1e-4f; | |
25 | |
26 inline static float PerpProduct(const gfx::Vector2dF& u, | |
27 const gfx::Vector2dF& v) { | |
28 return u.x() * v.y() - u.y() * v.x(); | |
29 } | |
30 | |
31 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect. | |
32 // Returns true and the point of intersection if they do and false otherwise. | |
33 static bool EdgeEdgeTest(const gfx::PointF& a, | |
34 const gfx::PointF& b, | |
35 const gfx::PointF& c, | |
36 const gfx::PointF& d, | |
37 gfx::PointF* r) { | |
38 gfx::Vector2dF u = b - a; | |
39 gfx::Vector2dF v = d - c; | |
40 gfx::Vector2dF w = a - c; | |
41 | |
42 float denom = PerpProduct(u, v); | |
43 | |
44 // If denom == 0 then the edges are parallel. While they could be overlapping | |
45 // we don't bother to check here as the we'll find their intersections from | |
46 // the corner to quad tests. | |
47 if (!denom) | |
48 return false; | |
49 | |
50 float s = PerpProduct(v, w) / denom; | |
51 if (s < 0.f || s > 1.f) | |
52 return false; | |
53 | |
54 float t = PerpProduct(u, w) / denom; | |
55 if (t < 0.f || t > 1.f) | |
56 return false; | |
57 | |
58 u.Scale(s); | |
59 *r = a + u; | |
60 return true; | |
61 } | |
62 | |
63 GraphNode::GraphNode(LayerImpl* layer_impl) | |
64 : layer(layer_impl), | |
65 incoming_edge_weight(0.f) {} | |
66 | |
67 GraphNode::~GraphNode() {} | |
68 | |
69 LayerSorter::LayerSorter() | |
70 : z_range_(0.f) {} | |
71 | |
72 LayerSorter::~LayerSorter() {} | |
73 | |
74 static float CheckFloatingPointNumericAccuracy(float a, float b) { | |
75 float abs_dif = std::abs(b - a); | |
76 float abs_max = std::max(std::abs(b), std::abs(a)); | |
77 // Check to see if we've got a result with a reasonable amount of error. | |
78 return abs_dif / abs_max; | |
79 } | |
80 | |
81 // Checks whether layer "a" draws on top of layer "b". The weight value returned | |
82 // is an indication of the maximum z-depth difference between the layers or zero | |
83 // if the layers are found to be intesecting (some features are in front and | |
84 // some are behind). | |
85 LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a, | |
86 LayerShape* b, | |
87 float z_threshold, | |
88 float* weight) { | |
89 *weight = 0.f; | |
90 | |
91 // Early out if the projected bounds don't overlap. | |
92 if (!a->projected_bounds.Intersects(b->projected_bounds)) | |
93 return NONE; | |
94 | |
95 gfx::PointF aPoints[4] = { a->projected_quad.p1(), | |
96 a->projected_quad.p2(), | |
97 a->projected_quad.p3(), | |
98 a->projected_quad.p4() }; | |
99 gfx::PointF bPoints[4] = { b->projected_quad.p1(), | |
100 b->projected_quad.p2(), | |
101 b->projected_quad.p3(), | |
102 b->projected_quad.p4() }; | |
103 | |
104 // Make a list of points that inside both layer quad projections. | |
105 std::vector<gfx::PointF> overlap_points; | |
106 | |
107 // Check all four corners of one layer against the other layer's quad. | |
108 for (int i = 0; i < 4; ++i) { | |
109 if (a->projected_quad.Contains(bPoints[i])) | |
110 overlap_points.push_back(bPoints[i]); | |
111 if (b->projected_quad.Contains(aPoints[i])) | |
112 overlap_points.push_back(aPoints[i]); | |
113 } | |
114 | |
115 // Check all the edges of one layer for intersection with the other layer's | |
116 // edges. | |
117 gfx::PointF r; | |
118 for (int ea = 0; ea < 4; ++ea) | |
119 for (int eb = 0; eb < 4; ++eb) | |
120 if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4], | |
121 bPoints[eb], bPoints[(eb + 1) % 4], | |
122 &r)) | |
123 overlap_points.push_back(r); | |
124 | |
125 if (overlap_points.empty()) | |
126 return NONE; | |
127 | |
128 // Check the corresponding layer depth value for all overlap points to | |
129 // determine which layer is in front. | |
130 float max_positive = 0.f; | |
131 float max_negative = 0.f; | |
132 | |
133 // This flag tracks the existance of a numerically accurate seperation | |
134 // between two layers. If there is no accurate seperation, the layers | |
135 // cannot be effectively sorted. | |
136 bool accurate = false; | |
137 | |
138 for (size_t o = 0; o < overlap_points.size(); o++) { | |
139 float za = a->LayerZFromProjectedPoint(overlap_points[o]); | |
140 float zb = b->LayerZFromProjectedPoint(overlap_points[o]); | |
141 | |
142 // Here we attempt to avoid numeric issues with layers that are too | |
143 // close together. If we have 2-sided quads that are very close | |
144 // together then we will draw them in document order to avoid | |
145 // flickering. The correct solution is for the content maker to turn | |
146 // on back-face culling or move the quads apart (if they're not two | |
147 // sides of one object). | |
148 if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon) | |
149 accurate = true; | |
150 | |
151 float diff = za - zb; | |
152 if (diff > max_positive) | |
153 max_positive = diff; | |
154 if (diff < max_negative) | |
155 max_negative = diff; | |
156 } | |
157 | |
158 // If we can't tell which should come first, we use document order. | |
159 if (!accurate) | |
160 return A_BEFORE_B; | |
161 | |
162 float max_diff = | |
163 std::abs(max_positive) > std::abs(max_negative) ? | |
164 max_positive : max_negative; | |
165 | |
166 // If the results are inconsistent (and the z difference substantial to rule | |
167 // out numerical errors) then the layers are intersecting. We will still | |
168 // return an order based on the maximum depth difference but with an edge | |
169 // weight of zero these layers will get priority if a graph cycle is present | |
170 // and needs to be broken. | |
171 if (max_positive > z_threshold && max_negative < -z_threshold) | |
172 *weight = 0.f; | |
173 else | |
174 *weight = std::abs(max_diff); | |
175 | |
176 // Maintain relative order if the layers have the same depth at all | |
177 // intersection points. | |
178 if (max_diff <= 0.f) | |
179 return A_BEFORE_B; | |
180 | |
181 return B_BEFORE_A; | |
182 } | |
183 | |
184 LayerShape::LayerShape() {} | |
185 | |
186 LayerShape::LayerShape(float width, | |
187 float height, | |
188 const gfx::Transform& draw_transform) { | |
189 gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height)); | |
190 | |
191 // Compute the projection of the layer quad onto the z = 0 plane. | |
192 | |
193 gfx::PointF clipped_quad[8]; | |
194 int num_vertices_in_clipped_quad; | |
195 MathUtil::MapClippedQuad(draw_transform, | |
196 layer_quad, | |
197 clipped_quad, | |
198 &num_vertices_in_clipped_quad); | |
199 | |
200 if (num_vertices_in_clipped_quad < 3) { | |
201 projected_bounds = gfx::RectF(); | |
202 return; | |
203 } | |
204 | |
205 projected_bounds = | |
206 MathUtil::ComputeEnclosingRectOfVertices(clipped_quad, | |
207 num_vertices_in_clipped_quad); | |
208 | |
209 // NOTE: it will require very significant refactoring and overhead to deal | |
210 // with generalized polygons or multiple quads per layer here. For the sake of | |
211 // layer sorting it is equally correct to take a subsection of the polygon | |
212 // that can be made into a quad. This will only be incorrect in the case of | |
213 // intersecting layers, which are not supported yet anyway. | |
214 projected_quad.set_p1(clipped_quad[0]); | |
215 projected_quad.set_p2(clipped_quad[1]); | |
216 projected_quad.set_p3(clipped_quad[2]); | |
217 if (num_vertices_in_clipped_quad >= 4) { | |
218 projected_quad.set_p4(clipped_quad[3]); | |
219 } else { | |
220 // This will be a degenerate quad that is actually a triangle. | |
221 projected_quad.set_p4(clipped_quad[2]); | |
222 } | |
223 | |
224 // Compute the normal of the layer's plane. | |
225 bool clipped = false; | |
226 gfx::Point3F c1 = | |
227 MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped); | |
228 gfx::Point3F c2 = | |
229 MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped); | |
230 gfx::Point3F c3 = | |
231 MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped); | |
232 // TODO(shawnsingh): Deal with clipping. | |
233 gfx::Vector3dF c12 = c2 - c1; | |
234 gfx::Vector3dF c13 = c3 - c1; | |
235 layer_normal = gfx::CrossProduct(c13, c12); | |
236 | |
237 transform_origin = c1; | |
238 } | |
239 | |
240 LayerShape::~LayerShape() {} | |
241 | |
242 // Returns the Z coordinate of a point on the layer that projects | |
243 // to point p which lies on the z = 0 plane. It does it by computing the | |
244 // intersection of a line starting from p along the Z axis and the plane | |
245 // of the layer. | |
246 float LayerShape::LayerZFromProjectedPoint(const gfx::PointF& p) const { | |
247 gfx::Vector3dF z_axis(0.f, 0.f, 1.f); | |
248 gfx::Vector3dF w = gfx::Point3F(p) - transform_origin; | |
249 | |
250 float d = gfx::DotProduct(layer_normal, z_axis); | |
251 float n = -gfx::DotProduct(layer_normal, w); | |
252 | |
253 // Check if layer is parallel to the z = 0 axis which will make it | |
254 // invisible and hence returning zero is fine. | |
255 if (!d) | |
256 return 0.f; | |
257 | |
258 // The intersection point would be given by: | |
259 // p + (n / d) * u but since we are only interested in the | |
260 // z coordinate and p's z coord is zero, all we need is the value of n/d. | |
261 return n / d; | |
262 } | |
263 | |
264 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first, | |
265 LayerImplList::iterator last) { | |
266 DVLOG(2) << "Creating graph nodes:"; | |
267 float min_z = FLT_MAX; | |
268 float max_z = -FLT_MAX; | |
269 for (LayerImplList::const_iterator it = first; it < last; it++) { | |
270 nodes_.push_back(GraphNode(*it)); | |
271 GraphNode& node = nodes_.at(nodes_.size() - 1); | |
272 RenderSurfaceImpl* render_surface = node.layer->render_surface(); | |
273 if (!node.layer->DrawsContent() && !render_surface) | |
274 continue; | |
275 | |
276 DVLOG(2) << "Layer " << node.layer->id() << | |
277 " (" << node.layer->bounds().width() << | |
278 " x " << node.layer->bounds().height() << ")"; | |
279 | |
280 gfx::Transform draw_transform; | |
281 float layer_width, layer_height; | |
282 if (render_surface) { | |
283 draw_transform = render_surface->draw_transform(); | |
284 layer_width = render_surface->content_rect().width(); | |
285 layer_height = render_surface->content_rect().height(); | |
286 } else { | |
287 draw_transform = node.layer->draw_transform(); | |
288 layer_width = node.layer->content_bounds().width(); | |
289 layer_height = node.layer->content_bounds().height(); | |
290 } | |
291 | |
292 node.shape = LayerShape(layer_width, layer_height, draw_transform); | |
293 | |
294 max_z = std::max(max_z, node.shape.transform_origin.z()); | |
295 min_z = std::min(min_z, node.shape.transform_origin.z()); | |
296 } | |
297 | |
298 z_range_ = std::abs(max_z - min_z); | |
299 } | |
300 | |
301 void LayerSorter::CreateGraphEdges() { | |
302 DVLOG(2) << "Edges:"; | |
303 // Fraction of the total z_range below which z differences | |
304 // are not considered reliable. | |
305 const float z_threshold_factor = 0.01f; | |
306 float z_threshold = z_range_ * z_threshold_factor; | |
307 | |
308 for (size_t na = 0; na < nodes_.size(); na++) { | |
309 GraphNode& node_a = nodes_[na]; | |
310 if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface()) | |
311 continue; | |
312 for (size_t nb = na + 1; nb < nodes_.size(); nb++) { | |
313 GraphNode& node_b = nodes_[nb]; | |
314 if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface()) | |
315 continue; | |
316 float weight = 0.f; | |
317 ABCompareResult overlap_result = CheckOverlap(&node_a.shape, | |
318 &node_b.shape, | |
319 z_threshold, | |
320 &weight); | |
321 GraphNode* start_node = NULL; | |
322 GraphNode* end_node = NULL; | |
323 if (overlap_result == A_BEFORE_B) { | |
324 start_node = &node_a; | |
325 end_node = &node_b; | |
326 } else if (overlap_result == B_BEFORE_A) { | |
327 start_node = &node_b; | |
328 end_node = &node_a; | |
329 } | |
330 | |
331 if (start_node) { | |
332 DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id(); | |
333 edges_.push_back(GraphEdge(start_node, end_node, weight)); | |
334 } | |
335 } | |
336 } | |
337 | |
338 for (size_t i = 0; i < edges_.size(); i++) { | |
339 GraphEdge& edge = edges_[i]; | |
340 active_edges_[&edge] = &edge; | |
341 edge.from->outgoing.push_back(&edge); | |
342 edge.to->incoming.push_back(&edge); | |
343 edge.to->incoming_edge_weight += edge.weight; | |
344 } | |
345 } | |
346 | |
347 // Finds and removes an edge from the list by doing a swap with the | |
348 // last element of the list. | |
349 void LayerSorter::RemoveEdgeFromList(GraphEdge* edge, | |
350 std::vector<GraphEdge*>* list) { | |
351 std::vector<GraphEdge*>::iterator iter = | |
352 std::find(list->begin(), list->end(), edge); | |
353 DCHECK(iter != list->end()); | |
354 list->erase(iter); | |
355 } | |
356 | |
357 // Sorts the given list of layers such that they can be painted in a | |
358 // back-to-front order. Sorting produces correct results for non-intersecting | |
359 // layers that don't have cyclical order dependencies. Cycles and intersections | |
360 // are broken (somewhat) aribtrarily. Sorting of layers is done via a | |
361 // topological sort of a directed graph whose nodes are the layers themselves. | |
362 // An edge from node A to node B signifies that layer A needs to be drawn before | |
363 // layer B. If A and B have no dependency between each other, then we preserve | |
364 // the ordering of those layers as they were in the original list. | |
365 // | |
366 // The draw order between two layers is determined by projecting the two | |
367 // triangles making up each layer quad to the Z = 0 plane, finding points of | |
368 // intersection between the triangles and backprojecting those points to the | |
369 // plane of the layer to determine the corresponding Z coordinate. The layer | |
370 // with the lower Z coordinate (farther from the eye) needs to be rendered | |
371 // first. | |
372 // | |
373 // If the layer projections don't intersect, then no edges (dependencies) are | |
374 // created between them in the graph. HOWEVER, in this case we still need to | |
375 // preserve the ordering of the original list of layers, since that list should | |
376 // already have proper z-index ordering of layers. | |
377 // | |
378 void LayerSorter::Sort(LayerImplList::iterator first, | |
379 LayerImplList::iterator last) { | |
380 DVLOG(2) << "Sorting start ----"; | |
381 CreateGraphNodes(first, last); | |
382 | |
383 CreateGraphEdges(); | |
384 | |
385 std::vector<GraphNode*> sorted_list; | |
386 std::deque<GraphNode*> no_incoming_edge_node_list; | |
387 | |
388 // Find all the nodes that don't have incoming edges. | |
389 for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) { | |
390 if (!la->incoming.size()) | |
391 no_incoming_edge_node_list.push_back(&(*la)); | |
392 } | |
393 | |
394 DVLOG(2) << "Sorted list: "; | |
395 while (active_edges_.size() || no_incoming_edge_node_list.size()) { | |
396 while (no_incoming_edge_node_list.size()) { | |
397 // It is necessary to preserve the existing ordering of layers, when there | |
398 // are no explicit dependencies (because this existing ordering has | |
399 // correct z-index/layout ordering). To preserve this ordering, we process | |
400 // Nodes in the same order that they were added to the list. | |
401 GraphNode* from_node = no_incoming_edge_node_list.front(); | |
402 no_incoming_edge_node_list.pop_front(); | |
403 | |
404 // Add it to the final list. | |
405 sorted_list.push_back(from_node); | |
406 | |
407 DVLOG(2) << from_node->layer->id() << ", "; | |
408 | |
409 // Remove all its outgoing edges from the graph. | |
410 for (size_t i = 0; i < from_node->outgoing.size(); i++) { | |
411 GraphEdge* outgoing_edge = from_node->outgoing[i]; | |
412 | |
413 active_edges_.erase(outgoing_edge); | |
414 RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming); | |
415 outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight; | |
416 | |
417 if (!outgoing_edge->to->incoming.size()) | |
418 no_incoming_edge_node_list.push_back(outgoing_edge->to); | |
419 } | |
420 from_node->outgoing.clear(); | |
421 } | |
422 | |
423 if (!active_edges_.size()) | |
424 break; | |
425 | |
426 // If there are still active edges but the list of nodes without incoming | |
427 // edges is empty then we have run into a cycle. Break the cycle by finding | |
428 // the node with the smallest overall incoming edge weight and use it. This | |
429 // will favor nodes that have zero-weight incoming edges i.e. layers that | |
430 // are being occluded by a layer that intersects them. | |
431 float min_incoming_edge_weight = FLT_MAX; | |
432 GraphNode* next_node = NULL; | |
433 for (size_t i = 0; i < nodes_.size(); i++) { | |
434 if (nodes_[i].incoming.size() && | |
435 nodes_[i].incoming_edge_weight < min_incoming_edge_weight) { | |
436 min_incoming_edge_weight = nodes_[i].incoming_edge_weight; | |
437 next_node = &nodes_[i]; | |
438 } | |
439 } | |
440 DCHECK(next_node); | |
441 // Remove all its incoming edges. | |
442 for (size_t e = 0; e < next_node->incoming.size(); e++) { | |
443 GraphEdge* incoming_edge = next_node->incoming[e]; | |
444 | |
445 active_edges_.erase(incoming_edge); | |
446 RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing); | |
447 } | |
448 next_node->incoming.clear(); | |
449 next_node->incoming_edge_weight = 0.f; | |
450 no_incoming_edge_node_list.push_back(next_node); | |
451 DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " << | |
452 next_node->layer->id() << | |
453 " (weight = " << min_incoming_edge_weight << ")"; | |
454 } | |
455 | |
456 // Note: The original elements of the list are in no danger of having their | |
457 // ref count go to zero here as they are all nodes of the layer hierarchy and | |
458 // are kept alive by their parent nodes. | |
459 int count = 0; | |
460 for (LayerImplList::iterator it = first; it < last; it++) | |
461 *it = sorted_list[count++]->layer; | |
462 | |
463 DVLOG(2) << "Sorting end ----"; | |
464 | |
465 nodes_.clear(); | |
466 edges_.clear(); | |
467 active_edges_.clear(); | |
468 } | |
469 | |
470 } // namespace cc | |
OLD | NEW |