Chromium Code Reviews| Index: src/jsregexp.cc |
| =================================================================== |
| --- src/jsregexp.cc (revision 11190) |
| +++ src/jsregexp.cc (working copy) |
| @@ -280,7 +280,8 @@ |
| // from the source pattern. |
| // If compilation fails, an exception is thrown and this function |
| // returns false. |
| -bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii) { |
| +bool RegExpImpl::EnsureCompiledIrregexp( |
| + Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii) { |
| Object* compiled_code = re->DataAt(JSRegExp::code_index(is_ascii)); |
| #ifdef V8_INTERPRETED_REGEXP |
| if (compiled_code->IsByteArray()) return true; |
| @@ -296,7 +297,7 @@ |
| ASSERT(compiled_code->IsSmi()); |
| return true; |
| } |
| - return CompileIrregexp(re, is_ascii); |
| + return CompileIrregexp(re, sample_subject, is_ascii); |
| } |
| @@ -316,7 +317,9 @@ |
| } |
| -bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, bool is_ascii) { |
| +bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, |
| + Handle<String> sample_subject, |
| + bool is_ascii) { |
| // Compile the RegExp. |
| Isolate* isolate = re->GetIsolate(); |
| ZoneScope zone_scope(isolate, DELETE_ON_EXIT); |
| @@ -365,6 +368,7 @@ |
| flags.is_ignore_case(), |
| flags.is_multiline(), |
| pattern, |
| + sample_subject, |
| is_ascii); |
| if (result.error_message != NULL) { |
| // Unable to compile regexp. |
| @@ -435,7 +439,7 @@ |
| // Check the asciiness of the underlying storage. |
| bool is_ascii = subject->IsAsciiRepresentationUnderneath(); |
| - if (!EnsureCompiledIrregexp(regexp, is_ascii)) return -1; |
| + if (!EnsureCompiledIrregexp(regexp, subject, is_ascii)) return -1; |
| #ifdef V8_INTERPRETED_REGEXP |
| // Byte-code regexp needs space allocated for all its registers. |
| @@ -466,7 +470,7 @@ |
| #ifndef V8_INTERPRETED_REGEXP |
| ASSERT(output.length() >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2); |
| do { |
| - EnsureCompiledIrregexp(regexp, is_ascii); |
| + EnsureCompiledIrregexp(regexp, subject, is_ascii); |
| Handle<Code> code(IrregexpNativeCode(*irregexp, is_ascii), isolate); |
| NativeRegExpMacroAssembler::Result res = |
| NativeRegExpMacroAssembler::Match(code, |
| @@ -784,6 +788,53 @@ |
| } |
| +class FrequencyCollator { |
| + public: |
| + FrequencyCollator() : total_samples_(0) { |
| + for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { |
| + frequencies_[i] = CharacterFrequency(i); |
| + } |
| + } |
| + |
| + void CountCharacter(int character) { |
| + int index = (character & RegExpMacroAssembler::kTableMask); |
| + frequencies_[index].Increment(); |
| + total_samples_++; |
| + } |
| + |
| + // Does not measure in percent, but rather per-128 (the table size from the |
| + // regexp macro assembler). |
| + int Frequency(int in_character) { |
| + ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character); |
| + if (total_samples_ < 1) return 1; // Division by zero. |
| + int freq_in_per128 = |
| + (frequencies_[in_character].counter() * 128) / total_samples_; |
| + return freq_in_per128; |
| + } |
| + |
| + private: |
| + class CharacterFrequency { |
| + public: |
| + CharacterFrequency() : counter_(0), character_(-1) { } |
| + explicit CharacterFrequency(int character) |
| + : counter_(0), character_(character) { } |
| + |
| + void Increment() { counter_++; } |
| + int counter() { return counter_; } |
| + int character() { return character_; } |
| + |
| + private: |
| + int counter_; |
| + int character_; |
| + }; |
| + |
| + |
| + private: |
| + CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; |
| + int total_samples_; |
| +}; |
| + |
| + |
| class RegExpCompiler { |
| public: |
| RegExpCompiler(int capture_count, bool ignore_case, bool is_ascii); |
| @@ -819,6 +870,7 @@ |
| inline bool ignore_case() { return ignore_case_; } |
| inline bool ascii() { return ascii_; } |
| + FrequencyCollator* frequency_collator() { return &frequency_collator_; } |
| int current_expansion_factor() { return current_expansion_factor_; } |
| void set_current_expansion_factor(int value) { |
| @@ -837,6 +889,7 @@ |
| bool ascii_; |
| bool reg_exp_too_big_; |
| int current_expansion_factor_; |
| + FrequencyCollator frequency_collator_; |
| }; |
| @@ -865,7 +918,8 @@ |
| ignore_case_(ignore_case), |
| ascii_(ascii), |
| reg_exp_too_big_(false), |
| - current_expansion_factor_(1) { |
| + current_expansion_factor_(1), |
| + frequency_collator_() { |
| accept_ = new EndNode(EndNode::ACCEPT); |
| ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); |
| } |
| @@ -2056,6 +2110,17 @@ |
| } |
| +void ActionNode::FillInBMInfo(int offset, |
| + BoyerMooreLookahead* bm, |
| + bool not_at_start) { |
| + if (type_ == BEGIN_SUBMATCH) { |
| + bm->SetRest(offset); |
| + } else if (type_ != POSITIVE_SUBMATCH_SUCCESS) { |
| + on_success()->FillInBMInfo(offset, bm, not_at_start); |
| + } |
| +} |
| + |
| + |
| int AssertionNode::EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start) { |
| @@ -2072,6 +2137,14 @@ |
| } |
| +void AssertionNode::FillInBMInfo( |
| + int offset, BoyerMooreLookahead* bm, bool not_at_start) { |
| + // Match the behaviour of EatsAtLeast on this node. |
| + if (type() == AT_START && not_at_start) return; |
| + on_success()->FillInBMInfo(offset, bm, not_at_start); |
| +} |
| + |
| + |
| int BackReferenceNode::EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start) { |
| @@ -2504,6 +2577,16 @@ |
| } |
| +void LoopChoiceNode::FillInBMInfo( |
| + int offset, BoyerMooreLookahead* bm, bool nas) { |
| + if (body_can_be_zero_length_) { |
| + bm->SetRest(offset); |
| + return; |
| + } |
| + ChoiceNode::FillInBMInfo(offset, bm, nas); |
| +} |
| + |
| + |
| void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| @@ -3000,6 +3083,30 @@ |
| } |
| +RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
| + RegExpCompiler* compiler) { |
| + if (elms_->length() != 1) return NULL; |
| + TextElement elm = elms_->at(0); |
| + if (elm.type != TextElement::CHAR_CLASS) return NULL; |
| + RegExpCharacterClass* node = elm.data.u_char_class; |
| + ZoneList<CharacterRange>* ranges = node->ranges(); |
| + if (!CharacterRange::IsCanonical(ranges)) { |
| + CharacterRange::Canonicalize(ranges); |
| + } |
| + if (node->is_negated()) { |
| + return ranges->length() == 0 ? on_success() : NULL; |
| + } |
| + if (ranges->length() != 1) return NULL; |
| + uint32_t max_char; |
| + if (compiler->ascii()) { |
| + max_char = String::kMaxAsciiCharCode; |
| + } else { |
| + max_char = String::kMaxUtf16CodeUnit; |
| + } |
| + return ranges->at(0).IsEverything(max_char) ? on_success() : NULL; |
| +} |
| + |
| + |
| // Finds the fixed match length of a sequence of nodes that goes from |
| // this alternative and back to this choice node. If there are variable |
| // length nodes or other complications in the way then return a sentinel |
| @@ -3064,8 +3171,8 @@ |
| int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
| - bool not_at_start) { |
| - int preload_characters = EatsAtLeast(4, 0, not_at_start); |
| + int eats_at_least) { |
| + int preload_characters = Min(4, eats_at_least); |
| if (compiler->macro_assembler()->CanReadUnaligned()) { |
| bool ascii = compiler->ascii(); |
| if (ascii) { |
| @@ -3131,6 +3238,193 @@ |
| }; |
| +BoyerMooreLookahead::BoyerMooreLookahead( |
| + int length, int map_length, RegExpCompiler* compiler) |
| + : length_(length), |
| + map_length_(map_length), |
| + compiler_(compiler) { |
| + ASSERT(IsPowerOf2(map_length)); |
| + if (compiler->ascii()) { |
| + max_char_ = String::kMaxAsciiCharCode; |
| + } else { |
| + max_char_ = String::kMaxUtf16CodeUnit; |
| + } |
| + bitmaps_ = new ZoneList<ZoneList<bool>*>(length); |
| + for (int i = 0; i < length; i++) { |
| + bitmaps_->Add(new ZoneList<bool>(map_length)); |
| + ZoneList<bool>* map = bitmaps_->at(i); |
| + for (int i = 0; i < map_length; i++) { |
| + map->Add(false); |
| + } |
| + } |
| +} |
| + |
| + |
| +// Find the longest range of lookahead that has the fewest number of different |
| +// characters that can occur at a given position. Since we are optimizing two |
| +// different parameters at once this is a tradeoff. |
| +bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { |
| + int biggest_points = 0; |
| + for (int max_number_of_chars = 4; |
| + max_number_of_chars < kTooManyCharacters; |
| + max_number_of_chars *= 2) { |
| + biggest_points = |
| + FindBestInterval(max_number_of_chars, biggest_points, from, to); |
| + } |
| + if (biggest_points == 0) return false; |
| + return true; |
| +} |
| + |
| + |
| +// Find the highest-points range between 0 and length_ where the character |
| +// information is not too vague. 'Too vague' means that there are more than |
| +// max_number_of_chars that can occur at this position. Calculates the number |
| +// of points as the product of width-of-the-range and |
| +// probability-of-finding-one-of-the-characters, where the probability is |
| +// calculated using the frequency distribution of the sample subject string. |
| +int BoyerMooreLookahead::FindBestInterval( |
| + int max_number_of_chars, int old_biggest_points, int* from, int* to) { |
| + int biggest_points = old_biggest_points; |
| + static const int kSize = RegExpMacroAssembler::kTableSize; |
| + for (int i = 0; i < length_; ) { |
| + while (i < length_ && Count(i) > max_number_of_chars) i++; |
| + if (i == length_) break; |
| + int remembered_from = i; |
| + bool union_map[kSize]; |
| + for (int j = 0; j < kSize; j++) union_map[j] = false; |
| + while (i < length_ && Count(i) <= max_number_of_chars) { |
| + ZoneList<bool>* map = bitmaps_->at(i); |
| + for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j); |
| + i++; |
| + } |
| + int frequency = 0; |
| + for (int j = 0; j < kSize; j++) { |
| + if (union_map[j]) { |
| + // Add 1 to the frequency to give a small per-character boost for |
| + // the cases where our sampling is not good enough and many |
| + // characters have a frequency of zero. |
| + frequency += compiler_->frequency_collator()->Frequency(j) + 1; |
| + } |
| + } |
| + // We use the probability of skipping times the distance we are skipping to |
| + // judge the effectiveness of this. Actually we have a cut-off: By |
| + // dividing by 2 we switch off the skipping if the probability of skipping |
| + // is less than 50%. This is because the multibyte mask-and-compare |
| + // skipping in quickcheck is more likely to do well on this case. |
| + bool in_quickcheck_range = ((i - remembered_from < 4) || |
| + (compiler_->ascii() ? remembered_from <= 4 : remembered_from <= 2)); |
| + int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; |
|
ulan
2012/04/02 08:12:24
This shouldn't affect the correctness but:
if I r
Erik Corry
2012/04/02 09:36:22
This code is as intended. I added a few comments.
|
| + int points = (i - remembered_from) * probability; |
| + if (points > biggest_points) { |
| + *from = remembered_from; |
| + *to = i - 1; |
| + biggest_points = points; |
| + } |
| + } |
| + return biggest_points; |
| +} |
| + |
| + |
| +// Take all the characters that will not prevent a successful match if they |
| +// occur occur in the subject string in the range between min_lookahead and |
|
ulan
2012/04/02 08:12:24
'occur' twice.
Erik Corry
2012/04/02 09:36:22
Done.
|
| +// max_lookahead (inclusive) measured from the current position. If the |
| +// character at max_lookahead offset is not one of these characters, then we |
| +// can safely skip forwards by the number of characters in the range. |
| +int BoyerMooreLookahead::GetSkipTable(int min_lookahead, |
| + int max_lookahead, |
| + Handle<ByteArray> boolean_skip_table) { |
| + const int kSize = RegExpMacroAssembler::kTableSize; |
| + |
| + const int kSkipArrayEntry = 0; |
| + const int kDontSkipArrayEntry = 1; |
| + |
| + for (int i = 0; i < kSize; i++) { |
| + boolean_skip_table->set(i, kSkipArrayEntry); |
| + } |
| + int skip = max_lookahead + 1 - min_lookahead; |
| + |
| + for (int i = max_lookahead; i >= min_lookahead; i--) { |
| + ZoneList<bool>* map = bitmaps_->at(i); |
| + for (int j = 0; j < map_length_; j++) { |
| + if (map->at(j)) { |
| + boolean_skip_table->set(j, kDontSkipArrayEntry); |
| + } |
| + } |
| + } |
| + |
| + return skip; |
| +} |
| + |
| + |
| +// See comment above on the implementation of GetSkipTable. |
| +bool BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
| + int min_lookahead = 0; |
| + int max_lookahead = 0; |
| + |
| + if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return false; |
| + |
| + bool found_single_character = false; |
| + bool abandoned_search_for_single_character = false; |
| + int single_character = 0; |
| + for (int i = max_lookahead; i >= min_lookahead; i--) { |
| + ZoneList<bool>* map = bitmaps_->at(i); |
| + for (int j = 0; j < map_length_; j++) { |
| + if (map->at(j)) { |
| + if (found_single_character) { |
| + found_single_character = false; // Found two. |
| + abandoned_search_for_single_character = true; |
| + break; |
| + } else { |
| + found_single_character = true; |
| + single_character = j; |
| + } |
| + } |
| + } |
| + if (abandoned_search_for_single_character) break; |
| + } |
| + |
| + int lookahead_width = max_lookahead + 1 - min_lookahead; |
| + |
| + if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { |
| + // The mask-compare can probably handle this better. |
| + return false; |
| + } |
| + |
| + if (found_single_character) { |
| + Label cont, again; |
| + masm->Bind(&again); |
| + masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
| + if (max_char_ > map_length_) { |
| + ASSERT(map_length_ == RegExpMacroAssembler::kTableSize); |
| + masm->CheckCharacterAfterAnd(single_character, |
| + RegExpMacroAssembler::kTableMask, |
| + &cont); |
| + } else { |
| + masm->CheckCharacter(single_character, &cont); |
| + } |
| + masm->AdvanceCurrentPosition(lookahead_width); |
| + masm->GoTo(&again); |
| + masm->Bind(&cont); |
| + return true; |
| + } |
| + |
| + Handle<ByteArray> boolean_skip_table = |
| + FACTORY->NewByteArray(map_length_, TENURED); |
| + int skip_distance = GetSkipTable( |
| + min_lookahead, max_lookahead, boolean_skip_table); |
| + ASSERT(skip_distance != 0); |
| + |
| + Label cont, again; |
| + masm->Bind(&again); |
| + masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
| + masm->CheckBitInTable(boolean_skip_table, &cont); |
| + masm->AdvanceCurrentPosition(skip_distance); |
| + masm->GoTo(&again); |
| + masm->Bind(&cont); |
| + |
| + return true; |
| +} |
| + |
| /* Code generation for choice nodes. |
| * |
| * We generate quick checks that do a mask and compare to eliminate a |
| @@ -3274,10 +3568,51 @@ |
| int first_normal_choice = greedy_loop ? 1 : 0; |
| - int preload_characters = |
| - CalculatePreloadCharacters(compiler, |
| - current_trace->at_start() == Trace::FALSE); |
| - bool preload_is_current = |
| + bool not_at_start = current_trace->at_start() == Trace::FALSE; |
| + const int kEatsAtLeastNotYetInitialized = -1; |
| + int eats_at_least = kEatsAtLeastNotYetInitialized; |
| + |
| + bool skip_was_emitted = false; |
| + |
| + // More makes code generation slower, less makes V8 benchmark score lower. |
| + const int kMaxLookaheadForBoyerMoore = 8; |
| + |
| + if (!greedy_loop && choice_count == 2) { |
| + GuardedAlternative alt1 = alternatives_->at(1); |
| + if (alt1.guards() == NULL || alt1.guards()->length() == 0) { |
| + RegExpNode* eats_anything_node = alt1.node(); |
| + if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) == |
| + this) { |
| + // At this point we know that we are at a non-greedy loop that will eat |
| + // any character one at a time. Any non-anchored regexp has such a |
| + // loop prepended to it in order to find where it starts. We look for |
| + // a pattern of the form ...abc... where we can look 6 characters ahead |
| + // and step forwards 3 if the character is not one of abc. Abc need |
| + // not be atoms, they can be any reasonably limited character class or |
| + // small alternation. |
| + ASSERT(trace->is_trivial()); // This is the case on LoopChoiceNodes. |
| + eats_at_least = |
| + Min(kMaxLookaheadForBoyerMoore, |
| + EatsAtLeast(kMaxLookaheadForBoyerMoore, 0, not_at_start)); |
| + if (eats_at_least >= 1) { |
| + BoyerMooreLookahead bm(eats_at_least, |
| + RegExpMacroAssembler::kTableSize, |
| + compiler); |
| + GuardedAlternative alt0 = alternatives_->at(0); |
| + alt0.node()->FillInBMInfo(0, &bm, not_at_start); |
| + skip_was_emitted = bm.EmitSkipInstructions(macro_assembler); |
| + } |
| + } |
| + } |
| + } |
| + |
| + if (eats_at_least == kEatsAtLeastNotYetInitialized) { |
| + // Save some time by looking at most one machine word ahead. |
| + eats_at_least = EatsAtLeast(compiler->ascii() ? 4 : 2, 0, not_at_start); |
| + } |
| + int preload_characters = CalculatePreloadCharacters(compiler, eats_at_least); |
| + |
| + bool preload_is_current = !skip_was_emitted && |
| (current_trace->characters_preloaded() == preload_characters); |
| bool preload_has_checked_bounds = preload_is_current; |
| @@ -5432,6 +5767,76 @@ |
| } |
| +void ChoiceNode::FillInBMInfo( |
| + int offset, BoyerMooreLookahead* bm, bool not_at_start) { |
| + ZoneList<GuardedAlternative>* alts = alternatives(); |
| + for (int i = 0; i < alts->length(); i++) { |
| + GuardedAlternative& alt = alts->at(i); |
| + if (alt.guards() != NULL && alt.guards()->length() != 0) { |
| + bm->SetRest(offset); // Give up trying to fill in info. |
| + return; |
| + } |
| + alt.node()->FillInBMInfo(offset, bm, not_at_start); |
| + } |
| +} |
| + |
| + |
| +void TextNode::FillInBMInfo( |
| + int offset, BoyerMooreLookahead* bm, bool not_at_start) { |
| + if (offset >= bm->length()) return; |
| + int max_char = bm->max_char(); |
| + for (int i = 0; i < elements()->length(); i++) { |
| + if (offset >= bm->length()) return; |
| + TextElement text = elements()->at(i); |
| + if (text.type == TextElement::ATOM) { |
| + RegExpAtom* atom = text.data.u_atom; |
| + for (int j = 0; j < atom->length(); j++, offset++) { |
| + if (offset >= bm->length()) return; |
| + uc16 character = atom->data()[j]; |
| + if (bm->compiler()->ignore_case()) { |
| + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| + int length = GetCaseIndependentLetters( |
| + ISOLATE, |
| + character, |
| + bm->max_char() == String::kMaxAsciiCharCode, |
| + chars); |
| + for (int j = 0; j < length; j++) { |
| + bm->Set(offset, chars[j]); |
| + } |
| + } else { |
| + if (character <= max_char) bm->Set(offset, character); |
| + } |
| + } |
| + } else { |
| + ASSERT(text.type == TextElement::CHAR_CLASS); |
| + RegExpCharacterClass* char_class = text.data.u_char_class; |
| + ZoneList<CharacterRange>* ranges = char_class->ranges(); |
| + if (char_class->is_negated()) { |
| + bm->SetAll(offset); |
| + } else { |
| + for (int k = 0; k < ranges->length(); k++) { |
| + CharacterRange& range = ranges->at(k); |
| + if (range.from() > max_char) continue; |
| + int to = Min(max_char, static_cast<int>(range.to())); |
| + if (to - range.from() >= BoyerMooreLookahead::kTooManyCharacters) { |
| + bm->SetAll(offset); |
| + break; |
| + } |
| + for (int m = range.from(); m <= to; m++) { |
| + bm->Set(offset, m); |
| + } |
| + } |
| + } |
| + offset++; |
| + } |
| + } |
| + if (offset >= bm->length()) return; |
| + on_success()->FillInBMInfo(offset, |
| + bm, |
| + true); // Not at start after a text node. |
| +} |
| + |
| + |
| int TextNode::ComputeFirstCharacterSet(int budget) { |
| budget--; |
| if (budget >= 0) { |
| @@ -5589,15 +5994,31 @@ |
| } |
| -RegExpEngine::CompilationResult RegExpEngine::Compile(RegExpCompileData* data, |
| - bool ignore_case, |
| - bool is_multiline, |
| - Handle<String> pattern, |
| - bool is_ascii) { |
| +RegExpEngine::CompilationResult RegExpEngine::Compile( |
| + RegExpCompileData* data, |
| + bool ignore_case, |
| + bool is_multiline, |
| + Handle<String> pattern, |
| + Handle<String> sample_subject, |
| + bool is_ascii) { |
| if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { |
| return IrregexpRegExpTooBig(); |
| } |
| RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii); |
| + |
| + // Sample some characters from the middle of the string. |
| + static const int kSampleSize = 128; |
| + |
| + FlattenString(sample_subject); |
| + int chars_sampled = 0; |
| + int half_way = (sample_subject->length() - kSampleSize) / 2; |
| + for (int i = Max(0, half_way); |
| + i < sample_subject->length(); |
| + i++, chars_sampled++) { |
| + if (chars_sampled > kSampleSize) break; |
|
ulan
2012/04/02 08:12:24
Now we can move this into the for loop condition.
Erik Corry
2012/04/02 09:36:22
Done.
|
| + compiler.frequency_collator()->CountCharacter(sample_subject->Get(i)); |
| + } |
| + |
| // Wrap the body of the regexp in capture #0. |
| RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, |
| 0, |