Chromium Code Reviews| Index: src/arm/ic-arm.cc |
| =================================================================== |
| --- src/arm/ic-arm.cc (revision 4136) |
| +++ src/arm/ic-arm.cc (working copy) |
| @@ -42,7 +42,6 @@ |
| #define __ ACCESS_MASM(masm) |
| - |
| // Helper function used from LoadIC/CallIC GenerateNormal. |
| static void GenerateDictionaryLoad(MacroAssembler* masm, |
| Label* miss, |
| @@ -557,7 +556,7 @@ |
| // -- sp[0] : key |
| // -- sp[4] : receiver |
| // ----------------------------------- |
| - Label slow, fast; |
| + Label slow, fast, check_pixel_array; |
| // Get the key and receiver object from the stack. |
| __ ldm(ia, sp, r0.bit() | r1.bit()); |
| @@ -595,6 +594,19 @@ |
| __ cmp(r0, Operand(r3)); |
| __ b(lo, &fast); |
| + // Check whether the elements is a pixel array. |
| + __ bind(&check_pixel_array); |
| + __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); |
| + __ cmp(r3, ip); |
| + __ b(ne, &slow); |
| + __ ldr(ip, FieldMemOperand(r1, PixelArray::kLengthOffset)); |
| + __ cmp(r0, ip); |
| + __ b(hs, &slow); |
| + __ ldr(ip, FieldMemOperand(r1, PixelArray::kExternalPointerOffset)); |
| + __ ldrb(r0, MemOperand(ip, r0)); |
| + __ mov(r0, Operand(r0, LSL, kSmiTagSize)); // Tag result as smi. |
| + __ Ret(); |
| + |
| // Slow case: Push extra copies of the arguments (2). |
| __ bind(&slow); |
| __ IncrementCounter(&Counters::keyed_load_generic_slow, 1, r0, r1); |
| @@ -625,10 +637,284 @@ |
| } |
| +// Convert unsigned integer with specified number of leading zeroes in binary |
| +// representation to IEEE 754 double. |
| +// Integer to convert is passed in register hiword. |
| +// Resulting double is returned in registers hiword:loword. |
| +// This functions does not work correctly for 0. |
| +static void GenerateUInt2Double(MacroAssembler* masm, |
| + Register hiword, |
| + Register loword, |
| + Register scratch, |
| + int leading_zeroes) { |
| + const int meaningfull_bits = kBitsPerInt - leading_zeroes - 1; |
|
Mads Ager (chromium)
2010/03/23 11:46:54
meaningfull -> meaningful
|
| + const int biased_exponent = HeapNumber::kExponentBias + meaningfull_bits; |
| + |
| + const int mantissa_shift_for_hi_word = |
| + meaningfull_bits - HeapNumber::kMantissaBitsInTopWord; |
| + |
| + const int mantissa_shift_for_lo_word = |
| + kBitsPerInt - mantissa_shift_for_hi_word; |
| + |
| + __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift)); |
| + if (mantissa_shift_for_hi_word > 0) { |
| + __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word)); |
| + __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word)); |
| + } else { |
| + __ mov(loword, Operand(0)); |
| + __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word)); |
| + } |
| + |
| + // If least significant bit of biased exponent was not 1 it was corrupted |
| + // by most significant bit of mantissa so we should fix that. |
| + if (!(biased_exponent & 1)) { |
| + __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift)); |
| + } |
| +} |
| + |
| + |
| void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm, |
| ExternalArrayType array_type) { |
| - // TODO(476): port specialized code. |
| - GenerateGeneric(masm); |
| + // ---------- S t a t e -------------- |
| + // -- lr : return address |
| + // -- sp[0] : key |
| + // -- sp[4] : receiver |
| + // ----------------------------------- |
| + Label slow, failed_allocation; |
| + |
| + // Get the key and receiver object from the stack. |
| + __ ldm(ia, sp, r0.bit() | r1.bit()); |
| + |
| + // r0: key |
| + // r1: receiver object |
| + |
| + // Check that the object isn't a smi |
| + __ BranchOnSmi(r1, &slow); |
| + |
| + // Check that the key is a smi. |
| + __ BranchOnNotSmi(r0, &slow); |
| + |
| + // Check that the object is a JS object. Load map into r2 |
|
Mads Ager (chromium)
2010/03/23 11:46:54
End comment with period.
|
| + __ CompareObjectType(r1, r2, r3, FIRST_JS_OBJECT_TYPE); |
| + __ b(lt, &slow); |
| + |
| + // Check that the receiver does not require access checks. We need |
| + // to check this explicitly since this generic stub does not perform |
| + // map checks. |
| + __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); |
| + __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); |
| + __ b(ne, &slow); |
| + |
| + // Check that the elements array is the appropriate type of |
| + // ExternalArray. |
| + // r0: index (as a smi) |
| + // r1: JSObject |
| + __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| + __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| + __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); |
| + __ cmp(r2, ip); |
| + __ b(ne, &slow); |
| + |
| + // Check that the index is in range. |
| + |
|
Mads Ager (chromium)
2010/03/23 11:46:54
Remove empty line?
|
| + __ ldr(ip, FieldMemOperand(r1, ExternalArray::kLengthOffset)); |
| + __ cmp(r1, Operand(r0, ASR, kSmiTagSize)); |
| + // Unsigned comparison catches both negative and too-large values. |
| + __ b(lo, &slow); |
| + |
| + // r0: index (smi) |
| + // r1: elements array |
| + __ ldr(r1, FieldMemOperand(r1, ExternalArray::kExternalPointerOffset)); |
| + // r1: base pointer of external storage |
| + |
| + // We are not untagging smi key and instead work with it |
| + // as if it was premultiplied by 2. |
| + ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); |
| + |
| + switch (array_type) { |
| + case kExternalByteArray: |
| + __ ldrsb(r0, MemOperand(r1, r0, LSR, 1)); |
| + break; |
| + case kExternalUnsignedByteArray: |
| + __ ldrb(r0, MemOperand(r1, r0, LSR, 1)); |
| + break; |
| + case kExternalShortArray: |
| + __ ldrsh(r0, MemOperand(r1, r0, LSL, 0)); |
| + break; |
| + case kExternalUnsignedShortArray: |
| + __ ldrh(r0, MemOperand(r1, r0, LSL, 0)); |
| + break; |
| + case kExternalIntArray: |
| + case kExternalUnsignedIntArray: |
| + __ ldr(r0, MemOperand(r1, r0, LSL, 1)); |
| + break; |
| + case kExternalFloatArray: |
| + if (CpuFeatures::IsSupported(VFP3)) { |
| + CpuFeatures::Scope scope(VFP3); |
| + __ add(r0, r1, Operand(r0, LSL, 1)); |
| + __ vldr(s0, r0, 0); |
| + } else { |
| + __ ldr(r0, MemOperand(r1, r0, LSL, 1)); |
| + } |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + break; |
| + } |
| + |
| + // For integer array types: |
| + // r0: value |
| + // For floating-point array type |
| + // s0: value (if VFP3 is supported) |
| + // r0: value (if VFP3 is not supported) |
| + |
| + if (array_type == kExternalIntArray) { |
| + // For the Int and UnsignedInt array types, we need to see whether |
| + // the value can be represented in a Smi. If not, we need to convert |
| + // it to a HeapNumber. |
| + Label box_int; |
| + __ cmp(r0, Operand(0xC0000000)); |
| + __ b(mi, &box_int); |
| + __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| + __ Ret(); |
| + |
| + __ bind(&box_int); |
| + |
| + __ mov(r1, r0); |
| + // Allocate a HeapNumber for the int and perform int-to-double |
| + // conversion. |
| + __ AllocateHeapNumber(r0, r3, r4, &slow); |
| + |
| + if (CpuFeatures::IsSupported(VFP3)) { |
| + CpuFeatures::Scope scope(VFP3); |
| + __ vmov(s0, r1); |
| + __ vcvt_f64_s32(d0, s0); |
| + __ sub(r1, r0, Operand(kHeapObjectTag)); |
| + __ vstr(d0, r1, HeapNumber::kValueOffset); |
| + __ Ret(); |
| + } else { |
| + WriteInt32ToHeapNumberStub stub(r1, r0, r3); |
| + __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
|
Mads Ager (chromium)
2010/03/23 11:46:54
Please use "__ TailCallStub(&stub);"
|
| + } |
| + } else if (array_type == kExternalUnsignedIntArray) { |
| + // The test is different for unsigned int values. Since we need |
| + // the value to be in the range of a positive smi, we can't |
| + // handle either of the top two bits being set in the value. |
| + if (CpuFeatures::IsSupported(VFP3)) { |
| + CpuFeatures::Scope scope(VFP3); |
| + Label box_int, done; |
| + __ tst(r0, Operand(0xC0000000)); |
| + __ b(ne, &box_int); |
| + |
| + __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| + __ Ret(); |
| + |
| + __ bind(&box_int); |
| + __ vmov(s0, r0); |
| + __ AllocateHeapNumber(r0, r1, r2, &slow); |
| + |
| + __ vcvt_f64_u32(d0, s0); |
| + __ sub(r1, r0, Operand(kHeapObjectTag)); |
| + __ vstr(d0, r1, HeapNumber::kValueOffset); |
| + __ Ret(); |
| + } else { |
| + // Check whether unsigned integer fits into smi. |
| + Label box_int_0, box_int_1, done; |
| + __ tst(r0, Operand(0x80000000)); |
| + __ b(ne, &box_int_0); |
| + __ tst(r0, Operand(0x40000000)); |
| + __ b(ne, &box_int_1); |
| + |
| + // Tag integer as smi and return it. |
| + __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| + __ Ret(); |
| + |
| + __ bind(&box_int_0); |
| + // Integer does not have leading zeros. |
| + GenerateUInt2Double(masm, r0, r1, r2, 0); |
| + __ b(&done); |
| + |
| + __ bind(&box_int_1); |
| + // Integer has one leading zero. |
| + GenerateUInt2Double(masm, r0, r1, r2, 1); |
| + |
| + __ bind(&done); |
| + // Integer was converted to double in registers r0:r1. |
| + // Wrap it into a HeapNumber. |
| + __ AllocateHeapNumber(r2, r3, r5, &slow); |
| + |
| + __ str(r0, FieldMemOperand(r2, HeapNumber::kExponentOffset)); |
| + __ str(r1, FieldMemOperand(r2, HeapNumber::kMantissaOffset)); |
| + |
| + __ mov(r0, r2); |
| + |
| + __ Ret(); |
| + } |
| + } else if (array_type == kExternalFloatArray) { |
| + // For the floating-point array type, we need to always allocate a |
| + // HeapNumber. |
| + if (CpuFeatures::IsSupported(VFP3)) { |
| + CpuFeatures::Scope scope(VFP3); |
| + __ AllocateHeapNumber(r0, r1, r2, &slow); |
| + __ vcvt_f64_f32(d0, s0); |
| + __ sub(r1, r0, Operand(kHeapObjectTag)); |
| + __ vstr(d0, r1, HeapNumber::kValueOffset); |
| + __ Ret(); |
| + } else { |
| + __ AllocateHeapNumber(r3, r1, r2, &slow); |
| + // VFP is not available, do manual single to double conversion. |
| + |
| + // r0: floating point value (binary32) |
| + |
| + // Extract mantissa to r1. |
| + __ and_(r1, r0, Operand(kBinary32MantissaMask)); |
| + |
| + // Extract exponent to r2. |
| + __ mov(r2, Operand(r0, LSR, kBinary32MantissaBits)); |
| + __ and_(r2, r2, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); |
| + |
| + Label exponent_rebiased; |
| + __ teq(r2, Operand(0x00)); |
| + __ b(eq, &exponent_rebiased); |
| + |
| + __ teq(r2, Operand(0xff)); |
| + __ mov(r2, Operand(0x7ff), LeaveCC, eq); |
| + __ b(eq, &exponent_rebiased); |
| + |
| + // Rebias exponent. |
| + __ add(r2, |
| + r2, |
| + Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); |
| + |
| + __ bind(&exponent_rebiased); |
| + __ and_(r0, r0, Operand(kBinary32SignMask)); |
| + __ orr(r0, r0, Operand(r2, LSL, HeapNumber::kMantissaBitsInTopWord)); |
| + |
| + // Shift mantissa. |
| + static const int kMantissaShiftForHiWord = |
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
| + |
| + static const int kMantissaShiftForLoWord = |
| + kBitsPerInt - kMantissaShiftForHiWord; |
| + |
| + __ orr(r0, r0, Operand(r1, LSR, kMantissaShiftForHiWord)); |
| + __ mov(r1, Operand(r1, LSL, kMantissaShiftForLoWord)); |
| + |
| + __ str(r0, FieldMemOperand(r3, HeapNumber::kExponentOffset)); |
| + __ str(r1, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); |
| + __ mov(r0, r3); |
| + __ Ret(); |
| + } |
| + |
| + } else { |
| + __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| + __ Ret(); |
| + } |
| + |
| + // Slow case: Load name and receiver from stack and jump to runtime. |
| + __ bind(&slow); |
| + __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r0, r1); |
| + GenerateRuntimeGetProperty(masm); |
| } |
| @@ -709,7 +995,7 @@ |
| // -- sp[0] : key |
| // -- sp[1] : receiver |
| // ----------------------------------- |
| - Label slow, fast, array, extra, exit; |
| + Label slow, fast, array, extra, exit, check_pixel_array; |
| // Get the key and the object from the stack. |
| __ ldm(ia, sp, r1.bit() | r3.bit()); // r1 = key, r3 = receiver |
| @@ -742,7 +1028,7 @@ |
| __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(r2, ip); |
| - __ b(ne, &slow); |
| + __ b(ne, &check_pixel_array); |
| // Untag the key (for checking against untagged length in the fixed array). |
| __ mov(r1, Operand(r1, ASR, kSmiTagSize)); |
| // Compute address to store into and check array bounds. |
| @@ -757,6 +1043,37 @@ |
| __ bind(&slow); |
| GenerateRuntimeSetProperty(masm); |
| + // Check whether the elements is a pixel array. |
| + // r0: value |
| + // r1: index (as a smi), zero-extended. |
| + // r3: elements array |
| + __ bind(&check_pixel_array); |
| + __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); |
| + __ cmp(r2, ip); |
| + __ b(ne, &slow); |
| + // Check that the value is a smi. If a conversion is needed call into the |
| + // runtime to convert and clamp. |
| + __ BranchOnNotSmi(r0, &slow); |
| + __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // Untag the key. |
| + __ ldr(ip, FieldMemOperand(r3, PixelArray::kLengthOffset)); |
| + __ cmp(r1, Operand(ip)); |
| + __ b(hs, &slow); |
| + __ mov(r4, r0); // Save the value. |
| + __ mov(r0, Operand(r0, ASR, kSmiTagSize)); // Untag the value. |
| + { // Clamp the value to [0..255]. |
| + Label done; |
| + __ tst(r0, Operand(0xFFFFFF00)); |
| + __ b(eq, &done); |
| + __ mov(r0, Operand(0), LeaveCC, mi); // 0 if negative. |
| + __ mov(r0, Operand(255), LeaveCC, pl); // 255 if positive. |
| + __ bind(&done); |
| + } |
| + __ ldr(r2, FieldMemOperand(r3, PixelArray::kExternalPointerOffset)); |
| + __ strb(r0, MemOperand(r2, r1)); |
| + __ mov(r0, Operand(r4)); // Return the original value. |
| + __ Ret(); |
| + |
| + |
| // Extra capacity case: Check if there is extra capacity to |
| // perform the store and update the length. Used for adding one |
| // element to the array by writing to array[array.length]. |
| @@ -819,10 +1136,374 @@ |
| } |
| +// Convert int passed in register ival to IEE 754 single precision |
| +// floating point value and store it into register fval. |
| +// If VFP3 is available use it for conversion. |
| +static void ConvertIntToFloat(MacroAssembler* masm, |
| + Register ival, |
| + Register fval, |
| + Register scratch1, |
| + Register scratch2) { |
| + if (CpuFeatures::IsSupported(VFP3)) { |
| + CpuFeatures::Scope scope(VFP3); |
| + __ vmov(s0, ival); |
| + __ vcvt_f32_s32(s0, s0); |
| + __ vmov(fval, s0); |
| + } else { |
| + Label not_special, done; |
| + // Move sign bit from source to destination. This works because the sign |
| + // bit in the exponent word of the double has the same position and polarity |
| + // as the 2's complement sign bit in a Smi. |
| + ASSERT(kBinary32SignMask == 0x80000000u); |
| + |
| + __ and_(fval, ival, Operand(kBinary32SignMask), SetCC); |
| + // Negate value if it is negative. |
| + __ rsb(ival, ival, Operand(0), LeaveCC, ne); |
| + |
| + // We have -1, 0 or 1, which we treat specially. |
| + __ cmp(ival, Operand(1)); |
| + __ b(gt, ¬_special); |
| + |
| + // For 1 or -1 we need to or in the 0 exponent (biased). |
| + static const uint32_t exponent_word_for_1 = |
| + kBinary32ExponentBias << kBinary32ExponentShift; |
| + |
| + __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq); |
| + __ b(&done); |
| + |
| + __ bind(¬_special); |
| + // Count leading zeros. |
| + // Gets the wrong answer for 0, but we already checked for that case above. |
| + Register zeros = scratch2; |
| + __ CountLeadingZeros(ival, scratch1, zeros); |
| + |
| + // Compute exponent and or it into the exponent register. |
| + __ rsb(scratch1, |
| + zeros, |
| + Operand((kBitsPerInt - 1) + kBinary32ExponentBias)); |
| + |
| + __ orr(fval, |
| + fval, |
| + Operand(scratch1, LSL, kBinary32ExponentShift)); |
| + |
| + // Shift up the source chopping the top bit off. |
| + __ add(zeros, zeros, Operand(1)); |
| + // This wouldn't work for 1 and -1 as the shift would be 32 which means 0. |
| + __ mov(ival, Operand(ival, LSL, zeros)); |
| + // And the top (top 20 bits). |
| + __ orr(fval, |
| + fval, |
| + Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits)); |
| + |
| + __ bind(&done); |
| + } |
| +} |
| + |
| + |
| +static bool IsElementTypeSigned(ExternalArrayType array_type) { |
| + switch (array_type) { |
| + case kExternalByteArray: |
| + case kExternalShortArray: |
| + case kExternalIntArray: |
| + return true; |
| + |
| + case kExternalUnsignedByteArray: |
| + case kExternalUnsignedShortArray: |
| + case kExternalUnsignedIntArray: |
| + return false; |
| + |
| + default: |
| + UNREACHABLE(); |
| + return false; |
| + } |
| +} |
| + |
| + |
| void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm, |
| ExternalArrayType array_type) { |
| - // TODO(476): port specialized code. |
| - GenerateGeneric(masm); |
| + // ---------- S t a t e -------------- |
| + // -- r0 : value |
| + // -- lr : return address |
| + // -- sp[0] : key |
| + // -- sp[1] : receiver |
| + // ----------------------------------- |
| + Label slow, check_heap_number; |
| + |
| + // Get the key and the object from the stack. |
| + __ ldm(ia, sp, r1.bit() | r2.bit()); // r1 = key, r2 = receiver |
| + |
| + // Check that the object isn't a smi. |
| + __ BranchOnSmi(r2, &slow); |
| + |
| + // Check that the object is a JS object. Load map into r3 |
| + __ CompareObjectType(r2, r3, r4, FIRST_JS_OBJECT_TYPE); |
| + __ b(le, &slow); |
| + |
| + // Check that the receiver does not require access checks. We need |
| + // to do this because this generic stub does not perform map checks. |
| + __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset)); |
| + __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded)); |
| + __ b(ne, &slow); |
| + |
| + // Check that the key is a smi. |
| + __ BranchOnNotSmi(r1, &slow); |
| + |
| + // Check that the elements array is the appropriate type of |
| + // ExternalArray. |
| + // r0: value |
| + // r1: index (smi) |
| + // r2: object |
| + __ ldr(r2, FieldMemOperand(r2, JSObject::kElementsOffset)); |
| + __ ldr(r3, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| + __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); |
| + __ cmp(r3, ip); |
| + __ b(ne, &slow); |
| + |
| + // Check that the index is in range. |
| + __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // Untag the index. |
| + __ ldr(ip, FieldMemOperand(r2, ExternalArray::kLengthOffset)); |
| + __ cmp(r1, ip); |
| + // Unsigned comparison catches both negative and too-large values. |
| + __ b(hs, &slow); |
| + |
| + // Handle both smis and HeapNumbers in the fast path. Go to the |
| + // runtime for all other kinds of values. |
| + // r0: value |
| + // r1: index (integer) |
| + // r2: array |
| + __ BranchOnNotSmi(r0, &check_heap_number); |
| + __ mov(r3, Operand(r0, ASR, kSmiTagSize)); // Untag the value. |
| + __ ldr(r2, FieldMemOperand(r2, ExternalArray::kExternalPointerOffset)); |
| + |
| + // r1: index (integer) |
| + // r2: base pointer of external storage |
| + // r3: value (integer) |
| + switch (array_type) { |
| + case kExternalByteArray: |
| + case kExternalUnsignedByteArray: |
| + __ strb(r3, MemOperand(r2, r1, LSL, 0)); |
| + break; |
| + case kExternalShortArray: |
| + case kExternalUnsignedShortArray: |
| + __ strh(r3, MemOperand(r2, r1, LSL, 1)); |
| + break; |
| + case kExternalIntArray: |
| + case kExternalUnsignedIntArray: |
| + __ str(r3, MemOperand(r2, r1, LSL, 2)); |
| + break; |
| + case kExternalFloatArray: |
| + // Need to perform int-to-float conversion. |
| + ConvertIntToFloat(masm, r3, r4, r5, r6); |
| + __ str(r4, MemOperand(r2, r1, LSL, 2)); |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + break; |
| + } |
| + |
| + // r0: value |
| + __ Ret(); |
| + |
| + |
| + // r0: value |
| + // r1: index (integer) |
| + // r2: external array object |
| + __ bind(&check_heap_number); |
| + __ CompareObjectType(r0, r3, r4, HEAP_NUMBER_TYPE); |
| + __ b(ne, &slow); |
| + |
| + __ ldr(r2, FieldMemOperand(r2, ExternalArray::kExternalPointerOffset)); |
| + |
| + // The WebGL specification leaves the behavior of storing NaN and |
| + // +/-Infinity into integer arrays basically undefined. For more |
| + // reproducible behavior, convert these to zero. |
| + if (CpuFeatures::IsSupported(VFP3)) { |
| + CpuFeatures::Scope scope(VFP3); |
| + |
| + // vldr requires offset to be a multiple of 4 so we can not |
| + // include -kHeapObjectTag into it. |
| + __ sub(r3, r0, Operand(kHeapObjectTag)); |
| + __ vldr(d0, r3, HeapNumber::kValueOffset); |
| + |
| + if (array_type == kExternalFloatArray) { |
| + __ vcvt_f32_f64(s0, d0); |
| + __ vmov(r3, s0); |
| + __ str(r3, MemOperand(r2, r1, LSL, 2)); |
| + } else { |
| + Label done; |
| + |
| + // Need to perform float-to-int conversion. |
| + // Test for NaN. |
| + __ vcmp(d0, d0); |
| + // Move vector status bits to normal status bits. |
| + __ vmrs(v8::internal::pc); |
| + __ mov(r3, Operand(0), LeaveCC, vs); // NaN converts to 0 |
| + __ b(vs, &done); |
| + |
| + // Test whether exponent equal to 0x7FF (infinity or NaN) |
| + __ vmov(r4, r3, d0); |
| + __ mov(r5, Operand(0x7FF00000)); |
| + __ and_(r3, r3, Operand(r5)); |
| + __ teq(r3, Operand(r5)); |
| + __ mov(r3, Operand(0), LeaveCC, eq); |
| + |
| + // Not infinity or NaN simply convert to int |
| + if (IsElementTypeSigned(array_type)) { |
| + __ vcvt_s32_f64(s0, d0, ne); |
| + } else { |
| + __ vcvt_u32_f64(s0, d0, ne); |
| + } |
| + |
| + __ vmov(r3, s0, ne); |
| + |
| + __ bind(&done); |
| + switch (array_type) { |
| + case kExternalByteArray: |
| + case kExternalUnsignedByteArray: |
| + __ strb(r3, MemOperand(r2, r1, LSL, 0)); |
| + break; |
| + case kExternalShortArray: |
| + case kExternalUnsignedShortArray: |
| + __ strh(r3, MemOperand(r2, r1, LSL, 1)); |
| + break; |
| + case kExternalIntArray: |
| + case kExternalUnsignedIntArray: |
| + __ str(r3, MemOperand(r2, r1, LSL, 2)); |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + break; |
| + } |
| + } |
| + |
| + // r0: original value |
| + __ Ret(); |
| + } else { |
| + // VFP3 is not available do manual conversions |
| + __ ldr(r3, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| + __ ldr(r4, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| + |
| + if (array_type == kExternalFloatArray) { |
| + Label done, nan_or_infinity_or_zero; |
| + static const int kMantissaInHiWordShift = |
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
| + |
| + static const int kMantissaInLoWordShift = |
| + kBitsPerInt - kMantissaInHiWordShift; |
| + |
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs |
| + // and infinities. All these should be converted to 0. |
| + __ mov(r5, Operand(HeapNumber::kExponentMask)); |
| + __ and_(r6, r3, Operand(r5), SetCC); |
| + __ b(eq, &nan_or_infinity_or_zero); |
| + |
| + __ teq(r6, Operand(r5)); |
| + __ mov(r6, Operand(kBinary32ExponentMask), LeaveCC, eq); |
| + __ b(eq, &nan_or_infinity_or_zero); |
| + |
| + // Rebias exponent. |
| + __ mov(r6, Operand(r6, LSR, HeapNumber::kExponentShift)); |
| + __ add(r6, |
| + r6, |
| + Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); |
| + |
| + __ cmp(r6, Operand(kBinary32MaxExponent)); |
| + __ and_(r3, r3, Operand(HeapNumber::kSignMask), LeaveCC, gt); |
| + __ orr(r3, r3, Operand(kBinary32ExponentMask), LeaveCC, gt); |
| + __ b(gt, &done); |
| + |
| + __ cmp(r6, Operand(kBinary32MinExponent)); |
| + __ and_(r3, r3, Operand(HeapNumber::kSignMask), LeaveCC, lt); |
| + __ b(lt, &done); |
| + |
| + __ and_(r7, r3, Operand(HeapNumber::kSignMask)); |
| + __ and_(r3, r3, Operand(HeapNumber::kMantissaMask)); |
| + __ orr(r7, r7, Operand(r3, LSL, kMantissaInHiWordShift)); |
| + __ orr(r7, r7, Operand(r4, LSR, kMantissaInLoWordShift)); |
| + __ orr(r3, r7, Operand(r6, LSL, kBinary32ExponentShift)); |
| + |
| + __ bind(&done); |
| + __ str(r3, MemOperand(r2, r1, LSL, 2)); |
| + __ Ret(); |
| + |
| + __ bind(&nan_or_infinity_or_zero); |
| + __ and_(r7, r3, Operand(HeapNumber::kSignMask)); |
| + __ and_(r3, r3, Operand(HeapNumber::kMantissaMask)); |
| + __ orr(r6, r6, r7); |
| + __ orr(r6, r6, Operand(r3, LSL, kMantissaInHiWordShift)); |
| + __ orr(r3, r6, Operand(r4, LSR, kMantissaInLoWordShift)); |
| + __ b(&done); |
| + } else { |
| + bool is_signed_type = IsElementTypeSigned(array_type); |
| + int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; |
| + int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; |
| + |
| + Label done, sign; |
| + |
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs |
| + // and infinities. All these should be converted to 0. |
| + __ mov(r5, Operand(HeapNumber::kExponentMask)); |
| + __ and_(r6, r3, Operand(r5), SetCC); |
| + __ mov(r3, Operand(0), LeaveCC, eq); |
| + __ b(eq, &done); |
| + |
| + __ teq(r6, Operand(r5)); |
| + __ mov(r3, Operand(0), LeaveCC, eq); |
| + __ b(eq, &done); |
| + |
| + // Unbias exponent. |
| + __ mov(r6, Operand(r6, LSR, HeapNumber::kExponentShift)); |
| + __ sub(r6, r6, Operand(HeapNumber::kExponentBias), SetCC); |
| + // If exponent is negative than result is 0. |
| + __ mov(r3, Operand(0), LeaveCC, mi); |
| + __ b(mi, &done); |
| + |
| + // If exponent is too big than result is minimal value |
| + __ cmp(r6, Operand(meaningfull_bits - 1)); |
| + __ mov(r3, Operand(min_value), LeaveCC, ge); |
| + __ b(ge, &done); |
| + |
| + __ and_(r5, r3, Operand(HeapNumber::kSignMask), SetCC); |
| + __ and_(r3, r3, Operand(HeapNumber::kMantissaMask)); |
| + __ orr(r3, r3, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); |
| + |
| + __ rsb(r6, r6, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); |
| + __ mov(r3, Operand(r3, LSR, r6), LeaveCC, pl); |
| + __ b(pl, &sign); |
| + |
| + __ rsb(r6, r6, Operand(0)); |
| + __ mov(r3, Operand(r3, LSL, r6)); |
| + __ rsb(r6, r6, Operand(meaningfull_bits)); |
| + __ orr(r3, r3, Operand(r4, LSR, r6)); |
| + |
| + __ bind(&sign); |
| + __ teq(r5, Operand(0)); |
| + __ rsb(r3, r3, Operand(0), LeaveCC, ne); |
| + |
| + __ bind(&done); |
| + switch (array_type) { |
| + case kExternalByteArray: |
| + case kExternalUnsignedByteArray: |
| + __ strb(r3, MemOperand(r2, r1, LSL, 0)); |
| + break; |
| + case kExternalShortArray: |
| + case kExternalUnsignedShortArray: |
| + __ strh(r3, MemOperand(r2, r1, LSL, 1)); |
| + break; |
| + case kExternalIntArray: |
| + case kExternalUnsignedIntArray: |
| + __ str(r3, MemOperand(r2, r1, LSL, 2)); |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + break; |
| + } |
| + } |
| + } |
| + |
| + // Slow case: call runtime. |
| + __ bind(&slow); |
| + GenerateRuntimeSetProperty(masm); |
| } |