| OLD | NEW |
| (Empty) |
| 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | |
| 2 | |
| 3 #include <stdlib.h> | |
| 4 | |
| 5 #include "v8.h" | |
| 6 | |
| 7 #include "platform.h" | |
| 8 #include "cctest.h" | |
| 9 #include "diy_fp.h" | |
| 10 #include "double.h" | |
| 11 | |
| 12 | |
| 13 using namespace v8::internal; | |
| 14 | |
| 15 | |
| 16 TEST(Uint64Conversions) { | |
| 17 // Start by checking the byte-order. | |
| 18 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); | |
| 19 CHECK_EQ(3512700564088504e-318, Double(ordered).value()); | |
| 20 | |
| 21 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 22 CHECK_EQ(5e-324, Double(min_double64).value()); | |
| 23 | |
| 24 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); | |
| 25 CHECK_EQ(1.7976931348623157e308, Double(max_double64).value()); | |
| 26 } | |
| 27 | |
| 28 TEST(AsDiyFp) { | |
| 29 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); | |
| 30 DiyFp diy_fp = Double(ordered).AsDiyFp(); | |
| 31 CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); | |
| 32 // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. | |
| 33 CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT | |
| 34 | |
| 35 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 36 diy_fp = Double(min_double64).AsDiyFp(); | |
| 37 CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); | |
| 38 // This is a denormal; so no hidden bit. | |
| 39 CHECK(1 == diy_fp.f()); // NOLINT | |
| 40 | |
| 41 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); | |
| 42 diy_fp = Double(max_double64).AsDiyFp(); | |
| 43 CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); | |
| 44 CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT | |
| 45 } | |
| 46 | |
| 47 | |
| 48 TEST(AsNormalizedDiyFp) { | |
| 49 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); | |
| 50 DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); | |
| 51 CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); | |
| 52 CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == | |
| 53 diy_fp.f()); // NOLINT | |
| 54 | |
| 55 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 56 diy_fp = Double(min_double64).AsNormalizedDiyFp(); | |
| 57 CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); | |
| 58 // This is a denormal; so no hidden bit. | |
| 59 CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT | |
| 60 | |
| 61 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); | |
| 62 diy_fp = Double(max_double64).AsNormalizedDiyFp(); | |
| 63 CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); | |
| 64 CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == | |
| 65 diy_fp.f()); // NOLINT | |
| 66 } | |
| 67 | |
| 68 | |
| 69 TEST(IsDenormal) { | |
| 70 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 71 CHECK(Double(min_double64).IsDenormal()); | |
| 72 uint64_t bits = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); | |
| 73 CHECK(Double(bits).IsDenormal()); | |
| 74 bits = V8_2PART_UINT64_C(0x00100000, 00000000); | |
| 75 CHECK(!Double(bits).IsDenormal()); | |
| 76 } | |
| 77 | |
| 78 | |
| 79 TEST(IsSpecial) { | |
| 80 CHECK(Double(V8_INFINITY).IsSpecial()); | |
| 81 CHECK(Double(-V8_INFINITY).IsSpecial()); | |
| 82 CHECK(Double(OS::nan_value()).IsSpecial()); | |
| 83 uint64_t bits = V8_2PART_UINT64_C(0xFFF12345, 00000000); | |
| 84 CHECK(Double(bits).IsSpecial()); | |
| 85 // Denormals are not special: | |
| 86 CHECK(!Double(5e-324).IsSpecial()); | |
| 87 CHECK(!Double(-5e-324).IsSpecial()); | |
| 88 // And some random numbers: | |
| 89 CHECK(!Double(0.0).IsSpecial()); | |
| 90 CHECK(!Double(-0.0).IsSpecial()); | |
| 91 CHECK(!Double(1.0).IsSpecial()); | |
| 92 CHECK(!Double(-1.0).IsSpecial()); | |
| 93 CHECK(!Double(1000000.0).IsSpecial()); | |
| 94 CHECK(!Double(-1000000.0).IsSpecial()); | |
| 95 CHECK(!Double(1e23).IsSpecial()); | |
| 96 CHECK(!Double(-1e23).IsSpecial()); | |
| 97 CHECK(!Double(1.7976931348623157e308).IsSpecial()); | |
| 98 CHECK(!Double(-1.7976931348623157e308).IsSpecial()); | |
| 99 } | |
| 100 | |
| 101 | |
| 102 TEST(IsInfinite) { | |
| 103 CHECK(Double(V8_INFINITY).IsInfinite()); | |
| 104 CHECK(Double(-V8_INFINITY).IsInfinite()); | |
| 105 CHECK(!Double(OS::nan_value()).IsInfinite()); | |
| 106 CHECK(!Double(0.0).IsInfinite()); | |
| 107 CHECK(!Double(-0.0).IsInfinite()); | |
| 108 CHECK(!Double(1.0).IsInfinite()); | |
| 109 CHECK(!Double(-1.0).IsInfinite()); | |
| 110 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 111 CHECK(!Double(min_double64).IsInfinite()); | |
| 112 } | |
| 113 | |
| 114 | |
| 115 TEST(IsNan) { | |
| 116 CHECK(Double(OS::nan_value()).IsNan()); | |
| 117 uint64_t other_nan = V8_2PART_UINT64_C(0xFFFFFFFF, 00000001); | |
| 118 CHECK(Double(other_nan).IsNan()); | |
| 119 CHECK(!Double(V8_INFINITY).IsNan()); | |
| 120 CHECK(!Double(-V8_INFINITY).IsNan()); | |
| 121 CHECK(!Double(0.0).IsNan()); | |
| 122 CHECK(!Double(-0.0).IsNan()); | |
| 123 CHECK(!Double(1.0).IsNan()); | |
| 124 CHECK(!Double(-1.0).IsNan()); | |
| 125 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 126 CHECK(!Double(min_double64).IsNan()); | |
| 127 } | |
| 128 | |
| 129 | |
| 130 TEST(Sign) { | |
| 131 CHECK_EQ(1, Double(1.0).Sign()); | |
| 132 CHECK_EQ(1, Double(V8_INFINITY).Sign()); | |
| 133 CHECK_EQ(-1, Double(-V8_INFINITY).Sign()); | |
| 134 CHECK_EQ(1, Double(0.0).Sign()); | |
| 135 CHECK_EQ(-1, Double(-0.0).Sign()); | |
| 136 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 137 CHECK_EQ(1, Double(min_double64).Sign()); | |
| 138 } | |
| 139 | |
| 140 | |
| 141 TEST(NormalizedBoundaries) { | |
| 142 DiyFp boundary_plus; | |
| 143 DiyFp boundary_minus; | |
| 144 DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp(); | |
| 145 Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |
| 146 CHECK_EQ(diy_fp.e(), boundary_minus.e()); | |
| 147 CHECK_EQ(diy_fp.e(), boundary_plus.e()); | |
| 148 // 1.5 does not have a significand of the form 2^p (for some p). | |
| 149 // Therefore its boundaries are at the same distance. | |
| 150 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); | |
| 151 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT | |
| 152 | |
| 153 diy_fp = Double(1.0).AsNormalizedDiyFp(); | |
| 154 Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |
| 155 CHECK_EQ(diy_fp.e(), boundary_minus.e()); | |
| 156 CHECK_EQ(diy_fp.e(), boundary_plus.e()); | |
| 157 // 1.0 does have a significand of the form 2^p (for some p). | |
| 158 // Therefore its lower boundary is twice as close as the upper boundary. | |
| 159 CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f()); | |
| 160 CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT | |
| 161 CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT | |
| 162 | |
| 163 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); | |
| 164 diy_fp = Double(min_double64).AsNormalizedDiyFp(); | |
| 165 Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |
| 166 CHECK_EQ(diy_fp.e(), boundary_minus.e()); | |
| 167 CHECK_EQ(diy_fp.e(), boundary_plus.e()); | |
| 168 // min-value does not have a significand of the form 2^p (for some p). | |
| 169 // Therefore its boundaries are at the same distance. | |
| 170 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); | |
| 171 // Denormals have their boundaries much closer. | |
| 172 CHECK((static_cast<uint64_t>(1) << 62) == | |
| 173 diy_fp.f() - boundary_minus.f()); // NOLINT | |
| 174 | |
| 175 uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000); | |
| 176 diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); | |
| 177 Double(smallest_normal64).NormalizedBoundaries(&boundary_minus, | |
| 178 &boundary_plus); | |
| 179 CHECK_EQ(diy_fp.e(), boundary_minus.e()); | |
| 180 CHECK_EQ(diy_fp.e(), boundary_plus.e()); | |
| 181 // Even though the significand is of the form 2^p (for some p), its boundaries | |
| 182 // are at the same distance. (This is the only exception). | |
| 183 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); | |
| 184 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT | |
| 185 | |
| 186 uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); | |
| 187 diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); | |
| 188 Double(largest_denormal64).NormalizedBoundaries(&boundary_minus, | |
| 189 &boundary_plus); | |
| 190 CHECK_EQ(diy_fp.e(), boundary_minus.e()); | |
| 191 CHECK_EQ(diy_fp.e(), boundary_plus.e()); | |
| 192 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); | |
| 193 CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT | |
| 194 | |
| 195 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); | |
| 196 diy_fp = Double(max_double64).AsNormalizedDiyFp(); | |
| 197 Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |
| 198 CHECK_EQ(diy_fp.e(), boundary_minus.e()); | |
| 199 CHECK_EQ(diy_fp.e(), boundary_plus.e()); | |
| 200 // max-value does not have a significand of the form 2^p (for some p). | |
| 201 // Therefore its boundaries are at the same distance. | |
| 202 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); | |
| 203 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT | |
| 204 } | |
| OLD | NEW |