Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(539)

Side by Side Diff: src/grisu3.cc

Issue 973001: Version 2.1.4.1... (Closed) Base URL: http://v8.googlecode.com/svn/trunk/
Patch Set: Created 10 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/grisu3.h ('k') | src/powers_ten.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "grisu3.h"
31
32 #include "cached_powers.h"
33 #include "diy_fp.h"
34 #include "double.h"
35
36 namespace v8 {
37 namespace internal {
38
39 template <int alpha = -60, int gamma = -32>
40 class Grisu3 {
41 public:
42 // Provides a decimal representation of v.
43 // Returns true if it succeeds, otherwise the result can not be trusted.
44 // There will be *length digits inside the buffer (not null-terminated).
45 // If the function returns true then
46 // v == (double) (buffer * 10^decimal_exponent).
47 // The digits in the buffer are the shortest representation possible: no
48 // 0.099999999999 instead of 0.1.
49 // The last digit will be closest to the actual v. That is, even if several
50 // digits might correctly yield 'v' when read again, the closest will be
51 // computed.
52 static bool grisu3(double v,
53 char* buffer, int* length, int* decimal_exponent);
54
55 private:
56 // Rounds the buffer according to the rest.
57 // If there is too much imprecision to round then false is returned.
58 // Similarily false is returned when the buffer is not within Delta.
59 static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta,
60 uint64_t rest, uint64_t ten_kappa, uint64_t ulp);
61 // Dispatches to the a specialized digit-generation routine. The chosen
62 // routine depends on w.e (which in turn depends on alpha and gamma).
63 // Currently there is only one digit-generation routine, but it would be easy
64 // to add others.
65 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high,
66 char* buffer, int* len, int* kappa);
67 // Generates w's digits. The result is the shortest in the interval low-high.
68 // All DiyFp are assumed to be imprecise and this function takes this
69 // imprecision into account. If the function cannot compute the best
70 // representation (due to the imprecision) then false is returned.
71 static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high,
72 char* buffer, int* length, int* kappa);
73 };
74
75
76 template<int alpha, int gamma>
77 bool Grisu3<alpha, gamma>::grisu3(double v,
78 char* buffer,
79 int* length,
80 int* decimal_exponent) {
81 DiyFp w = Double(v).AsNormalizedDiyFp();
82 // boundary_minus and boundary_plus are the boundaries between v and its
83 // neighbors. Any number strictly between boundary_minus and boundary_plus
84 // will round to v when read as double.
85 // Grisu3 will never output representations that lie exactly on a boundary.
86 DiyFp boundary_minus, boundary_plus;
87 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
88 ASSERT(boundary_plus.e() == w.e());
89 DiyFp ten_mk; // Cached power of ten: 10^-k
90 int mk; // -k
91 GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk);
92 ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize &&
93 gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize);
94 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
95 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
96
97 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
98 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
99 // off by a small amount.
100 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
101 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
102 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
103 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
104 ASSERT(scaled_w.e() ==
105 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
106 // In theory it would be possible to avoid some recomputations by computing
107 // the difference between w and boundary_minus/plus (a power of 2) and to
108 // compute scaled_boundary_minus/plus by subtracting/adding from
109 // scaled_w. However the code becomes much less readable and the speed
110 // enhancements are not terriffic.
111 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
112 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
113
114 // DigitGen will generate the digits of scaled_w. Therefore we have
115 // v == (double) (scaled_w * 10^-mk).
116 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
117 // integer than it will be updated. For instance if scaled_w == 1.23 then
118 // the buffer will be filled with "123" und the decimal_exponent will be
119 // decreased by 2.
120 int kappa;
121 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
122 buffer, length, &kappa);
123 *decimal_exponent = -mk + kappa;
124 return result;
125 }
126
127 // Generates the digits of input number w.
128 // w is a floating-point number (DiyFp), consisting of a significand and an
129 // exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63
130 // and gamma <= 3.
131 // Returns false if it fails, in which case the generated digits in the buffer
132 // should not be used.
133 // Preconditions:
134 // * low, w and high are correct up to 1 ulp (unit in the last place). That
135 // is, their error must be less that a unit of their last digits.
136 // * low.e() == w.e() == high.e()
137 // * low < w < high, and taking into account their error: low~ <= high~
138 // * alpha <= w.e() <= gamma
139 // Postconditions: returns false if procedure fails.
140 // otherwise:
141 // * buffer is not null-terminated, but len contains the number of digits.
142 // * buffer contains the shortest possible decimal digit-sequence
143 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
144 // correct values of low and high (without their error).
145 // * if more than one decimal representation gives the minimal number of
146 // decimal digits then the one closest to W (where W is the correct value
147 // of w) is chosen.
148 // Remark: this procedure takes into account the imprecision of its input
149 // numbers. If the precision is not enough to guarantee all the postconditions
150 // then false is returned. This usually happens rarely (~0.5%).
151 template<int alpha, int gamma>
152 bool Grisu3<alpha, gamma>::DigitGen(DiyFp low,
153 DiyFp w,
154 DiyFp high,
155 char* buffer,
156 int* len,
157 int* kappa) {
158 ASSERT(low.e() == w.e() && w.e() == high.e());
159 ASSERT(low.f() + 1 <= high.f() - 1);
160 ASSERT(alpha <= w.e() && w.e() <= gamma);
161 // The following tests use alpha and gamma to avoid unnecessary dynamic tests.
162 if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32
163 (alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region.
164 -60 <= w.e() && w.e() <= -32)) {
165 return DigitGen_m60_m32(low, w, high, buffer, len, kappa);
166 } else {
167 // A simple adaption of the special case -60/-32 would allow greater ranges
168 // of alpha/gamma and thus reduce the number of precomputed cached powers of
169 // ten.
170 UNIMPLEMENTED();
171 return false;
172 }
173 }
174
175 static const uint32_t kTen4 = 10000;
176 static const uint32_t kTen5 = 100000;
177 static const uint32_t kTen6 = 1000000;
178 static const uint32_t kTen7 = 10000000;
179 static const uint32_t kTen8 = 100000000;
180 static const uint32_t kTen9 = 1000000000;
181
182 // Returns the biggest power of ten that is <= than the given number. We
183 // furthermore receive the maximum number of bits 'number' has.
184 // If number_bits == 0 then 0^-1 is returned
185 // The number of bits must be <= 32.
186 static void BiggestPowerTen(uint32_t number,
187 int number_bits,
188 uint32_t* power,
189 int* exponent) {
190 switch (number_bits) {
191 case 32:
192 case 31:
193 case 30:
194 if (kTen9 <= number) {
195 *power = kTen9;
196 *exponent = 9;
197 break;
198 } // else fallthrough
199 case 29:
200 case 28:
201 case 27:
202 if (kTen8 <= number) {
203 *power = kTen8;
204 *exponent = 8;
205 break;
206 } // else fallthrough
207 case 26:
208 case 25:
209 case 24:
210 if (kTen7 <= number) {
211 *power = kTen7;
212 *exponent = 7;
213 break;
214 } // else fallthrough
215 case 23:
216 case 22:
217 case 21:
218 case 20:
219 if (kTen6 <= number) {
220 *power = kTen6;
221 *exponent = 6;
222 break;
223 } // else fallthrough
224 case 19:
225 case 18:
226 case 17:
227 if (kTen5 <= number) {
228 *power = kTen5;
229 *exponent = 5;
230 break;
231 } // else fallthrough
232 case 16:
233 case 15:
234 case 14:
235 if (kTen4 <= number) {
236 *power = kTen4;
237 *exponent = 4;
238 break;
239 } // else fallthrough
240 case 13:
241 case 12:
242 case 11:
243 case 10:
244 if (1000 <= number) {
245 *power = 1000;
246 *exponent = 3;
247 break;
248 } // else fallthrough
249 case 9:
250 case 8:
251 case 7:
252 if (100 <= number) {
253 *power = 100;
254 *exponent = 2;
255 break;
256 } // else fallthrough
257 case 6:
258 case 5:
259 case 4:
260 if (10 <= number) {
261 *power = 10;
262 *exponent = 1;
263 break;
264 } // else fallthrough
265 case 3:
266 case 2:
267 case 1:
268 if (1 <= number) {
269 *power = 1;
270 *exponent = 0;
271 break;
272 } // else fallthrough
273 case 0:
274 *power = 0;
275 *exponent = -1;
276 break;
277 default:
278 // Following assignments are here to silence compiler warnings.
279 *power = 0;
280 *exponent = 0;
281 UNREACHABLE();
282 }
283 }
284
285
286 // Same comments as for DigitGen but with additional precondition:
287 // -60 <= w.e() <= -32
288 //
289 // Say, for the sake of example, that
290 // w.e() == -48, and w.f() == 0x1234567890abcdef
291 // w's value can be computed by w.f() * 2^w.e()
292 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
293 // -> w's integral part is 0x1234
294 // w's fractional part is therefore 0x567890abcdef.
295 // Printing w's integral part is easy (simply print 0x1234 in decimal).
296 // In order to print its fraction we repeatedly multiply the fraction by 10 and
297 // get each digit. Example the first digit after the comma would be computed by
298 // (0x567890abcdef * 10) >> 48. -> 3
299 // The whole thing becomes slightly more complicated because we want to stop
300 // once we have enough digits. That is, once the digits inside the buffer
301 // represent 'w' we can stop. Everything inside the interval low - high
302 // represents w. However we have to pay attention to low, high and w's
303 // imprecision.
304 template<int alpha, int gamma>
305 bool Grisu3<alpha, gamma>::DigitGen_m60_m32(DiyFp low,
306 DiyFp w,
307 DiyFp high,
308 char* buffer,
309 int* length,
310 int* kappa) {
311 // low, w and high are imprecise, but by less than one ulp (unit in the last
312 // place).
313 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
314 // the new numbers are outside of the interval we want the final
315 // representation to lie in.
316 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
317 // numbers that are certain to lie in the interval. We will use this fact
318 // later on.
319 // We will now start by generating the digits within the uncertain
320 // interval. Later we will weed out representations that lie outside the safe
321 // interval and thus _might_ lie outside the correct interval.
322 uint64_t unit = 1;
323 DiyFp too_low = DiyFp(low.f() - unit, low.e());
324 DiyFp too_high = DiyFp(high.f() + unit, high.e());
325 // too_low and too_high are guaranteed to lie outside the interval we want the
326 // generated number in.
327 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
328 // We now cut the input number into two parts: the integral digits and the
329 // fractionals. We will not write any decimal separator though, but adapt
330 // kappa instead.
331 // Reminder: we are currently computing the digits (stored inside the buffer)
332 // such that: too_low < buffer * 10^kappa < too_high
333 // We use too_high for the digit_generation and stop as soon as possible.
334 // If we stop early we effectively round down.
335 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
336 // Division by one is a shift.
337 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
338 // Modulo by one is an and.
339 uint64_t fractionals = too_high.f() & (one.f() - 1);
340 uint32_t divider;
341 int divider_exponent;
342 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
343 &divider, &divider_exponent);
344 *kappa = divider_exponent + 1;
345 *length = 0;
346 // Loop invariant: buffer = too_high / 10^kappa (integer division)
347 // The invariant holds for the first iteration: kappa has been initialized
348 // with the divider exponent + 1. And the divider is the biggest power of ten
349 // that is smaller than integrals.
350 while (*kappa > 0) {
351 int digit = integrals / divider;
352 buffer[*length] = '0' + digit;
353 (*length)++;
354 integrals %= divider;
355 (*kappa)--;
356 // Note that kappa now equals the exponent of the divider and that the
357 // invariant thus holds again.
358 uint64_t rest =
359 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
360 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
361 // Reminder: unsafe_interval.e() == one.e()
362 if (rest < unsafe_interval.f()) {
363 // Rounding down (by not emitting the remaining digits) yields a number
364 // that lies within the unsafe interval.
365 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
366 unsafe_interval.f(), rest,
367 static_cast<uint64_t>(divider) << -one.e(), unit);
368 }
369 divider /= 10;
370 }
371
372 // The integrals have been generated. We are at the point of the decimal
373 // separator. In the following loop we simply multiply the remaining digits by
374 // 10 and divide by one. We just need to pay attention to multiply associated
375 // data (like the interval or 'unit'), too.
376 // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
377 // increase its (imaginary) exponent. At the same time we decrease the
378 // divider's (one's) exponent and shift its significand.
379 // Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
380 // fractionals.f *= 10;
381 // fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
382 // one.f >>= 1; one.e++; // value remains unchanged.
383 // and we have again fractionals.e == one.e which allows us to divide
384 // fractionals.f() by one.f()
385 // We simply combine the *= 10 and the >>= 1.
386 while (true) {
387 fractionals *= 5;
388 unit *= 5;
389 unsafe_interval.set_f(unsafe_interval.f() * 5);
390 unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
391 one.set_f(one.f() >> 1);
392 one.set_e(one.e() + 1);
393 // Integer division by one.
394 int digit = static_cast<int>(fractionals >> -one.e());
395 buffer[*length] = '0' + digit;
396 (*length)++;
397 fractionals &= one.f() - 1; // Modulo by one.
398 (*kappa)--;
399 if (fractionals < unsafe_interval.f()) {
400 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
401 unsafe_interval.f(), fractionals, one.f(), unit);
402 }
403 }
404 }
405
406
407 // Rounds the given generated digits in the buffer and weeds out generated
408 // digits that are not in the safe interval, or where we cannot find a rounded
409 // representation.
410 // Input: * buffer containing the digits of too_high / 10^kappa
411 // * the buffer's length
412 // * distance_too_high_w == (too_high - w).f() * unit
413 // * unsafe_interval == (too_high - too_low).f() * unit
414 // * rest = (too_high - buffer * 10^kappa).f() * unit
415 // * ten_kappa = 10^kappa * unit
416 // * unit = the common multiplier
417 // Output: returns true on success.
418 // Modifies the generated digits in the buffer to approach (round towards) w.
419 template<int alpha, int gamma>
420 bool Grisu3<alpha, gamma>::RoundWeed(char* buffer,
421 int length,
422 uint64_t distance_too_high_w,
423 uint64_t unsafe_interval,
424 uint64_t rest,
425 uint64_t ten_kappa,
426 uint64_t unit) {
427 uint64_t small_distance = distance_too_high_w - unit;
428 uint64_t big_distance = distance_too_high_w + unit;
429 // Let w- = too_high - big_distance, and
430 // w+ = too_high - small_distance.
431 // Note: w- < w < w+
432 //
433 // The real w (* unit) must lie somewhere inside the interval
434 // ]w-; w+[ (often written as "(w-; w+)")
435
436 // Basically the buffer currently contains a number in the unsafe interval
437 // ]too_low; too_high[ with too_low < w < too_high
438 //
439 // By generating the digits of too_high we got the biggest last digit.
440 // In the case that w+ < buffer < too_high we try to decrement the buffer.
441 // This way the buffer approaches (rounds towards) w.
442 // There are 3 conditions that stop the decrementation process:
443 // 1) the buffer is already below w+
444 // 2) decrementing the buffer would make it leave the unsafe interval
445 // 3) decrementing the buffer would yield a number below w+ and farther away
446 // than the current number. In other words:
447 // (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+
448 // Instead of using the buffer directly we use its distance to too_high.
449 // Conceptually rest ~= too_high - buffer
450 while (rest < small_distance && // Negated condition 1
451 unsafe_interval - rest >= ten_kappa && // Negated condition 2
452 (rest + ten_kappa < small_distance || // buffer{-1} > w+
453 small_distance - rest >= rest + ten_kappa - small_distance)) {
454 buffer[length - 1]--;
455 rest += ten_kappa;
456 }
457
458 // We have approached w+ as much as possible. We now test if approaching w-
459 // would require changing the buffer. If yes, then we have two possible
460 // representations close to w, but we cannot decide which one is closer.
461 if (rest < big_distance &&
462 unsafe_interval - rest >= ten_kappa &&
463 (rest + ten_kappa < big_distance ||
464 big_distance - rest > rest + ten_kappa - big_distance)) {
465 return false;
466 }
467
468 // Weeding test.
469 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
470 // Since too_low = too_high - unsafe_interval this is equivalent too
471 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
472 // Conceptually we have: rest ~= too_high - buffer
473 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
474 }
475
476
477 bool grisu3(double v, char* buffer, int* sign, int* length, int* point) {
478 ASSERT(v != 0);
479 ASSERT(!Double(v).IsSpecial());
480
481 if (v < 0) {
482 v = -v;
483 *sign = 1;
484 } else {
485 *sign = 0;
486 }
487 int decimal_exponent;
488 bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent);
489 *point = *length + decimal_exponent;
490 buffer[*length] = '\0';
491 return result;
492 }
493
494 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/grisu3.h ('k') | src/powers_ten.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698