Index: openssl/crypto/bn/bn_x931p.c |
=================================================================== |
--- openssl/crypto/bn/bn_x931p.c (revision 105093) |
+++ openssl/crypto/bn/bn_x931p.c (working copy) |
@@ -1,272 +0,0 @@ |
-/* bn_x931p.c */ |
-/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
- * project 2005. |
- */ |
-/* ==================================================================== |
- * Copyright (c) 2005 The OpenSSL Project. All rights reserved. |
- * |
- * Redistribution and use in source and binary forms, with or without |
- * modification, are permitted provided that the following conditions |
- * are met: |
- * |
- * 1. Redistributions of source code must retain the above copyright |
- * notice, this list of conditions and the following disclaimer. |
- * |
- * 2. Redistributions in binary form must reproduce the above copyright |
- * notice, this list of conditions and the following disclaimer in |
- * the documentation and/or other materials provided with the |
- * distribution. |
- * |
- * 3. All advertising materials mentioning features or use of this |
- * software must display the following acknowledgment: |
- * "This product includes software developed by the OpenSSL Project |
- * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
- * |
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
- * endorse or promote products derived from this software without |
- * prior written permission. For written permission, please contact |
- * licensing@OpenSSL.org. |
- * |
- * 5. Products derived from this software may not be called "OpenSSL" |
- * nor may "OpenSSL" appear in their names without prior written |
- * permission of the OpenSSL Project. |
- * |
- * 6. Redistributions of any form whatsoever must retain the following |
- * acknowledgment: |
- * "This product includes software developed by the OpenSSL Project |
- * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
- * |
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
- * OF THE POSSIBILITY OF SUCH DAMAGE. |
- * ==================================================================== |
- * |
- * This product includes cryptographic software written by Eric Young |
- * (eay@cryptsoft.com). This product includes software written by Tim |
- * Hudson (tjh@cryptsoft.com). |
- * |
- */ |
- |
-#include <stdio.h> |
-#include <openssl/bn.h> |
- |
-/* X9.31 routines for prime derivation */ |
- |
-/* X9.31 prime derivation. This is used to generate the primes pi |
- * (p1, p2, q1, q2) from a parameter Xpi by checking successive odd |
- * integers. |
- */ |
- |
-static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, |
- BN_GENCB *cb) |
- { |
- int i = 0; |
- if (!BN_copy(pi, Xpi)) |
- return 0; |
- if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) |
- return 0; |
- for(;;) |
- { |
- i++; |
- BN_GENCB_call(cb, 0, i); |
- /* NB 27 MR is specificed in X9.31 */ |
- if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb)) |
- break; |
- if (!BN_add_word(pi, 2)) |
- return 0; |
- } |
- BN_GENCB_call(cb, 2, i); |
- return 1; |
- } |
- |
-/* This is the main X9.31 prime derivation function. From parameters |
- * Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are |
- * not NULL they will be returned too: this is needed for testing. |
- */ |
- |
-int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
- const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, |
- const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) |
- { |
- int ret = 0; |
- |
- BIGNUM *t, *p1p2, *pm1; |
- |
- /* Only even e supported */ |
- if (!BN_is_odd(e)) |
- return 0; |
- |
- BN_CTX_start(ctx); |
- if (!p1) |
- p1 = BN_CTX_get(ctx); |
- |
- if (!p2) |
- p2 = BN_CTX_get(ctx); |
- |
- t = BN_CTX_get(ctx); |
- |
- p1p2 = BN_CTX_get(ctx); |
- |
- pm1 = BN_CTX_get(ctx); |
- |
- if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) |
- goto err; |
- |
- if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) |
- goto err; |
- |
- if (!BN_mul(p1p2, p1, p2, ctx)) |
- goto err; |
- |
- /* First set p to value of Rp */ |
- |
- if (!BN_mod_inverse(p, p2, p1, ctx)) |
- goto err; |
- |
- if (!BN_mul(p, p, p2, ctx)) |
- goto err; |
- |
- if (!BN_mod_inverse(t, p1, p2, ctx)) |
- goto err; |
- |
- if (!BN_mul(t, t, p1, ctx)) |
- goto err; |
- |
- if (!BN_sub(p, p, t)) |
- goto err; |
- |
- if (p->neg && !BN_add(p, p, p1p2)) |
- goto err; |
- |
- /* p now equals Rp */ |
- |
- if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) |
- goto err; |
- |
- if (!BN_add(p, p, Xp)) |
- goto err; |
- |
- /* p now equals Yp0 */ |
- |
- for (;;) |
- { |
- int i = 1; |
- BN_GENCB_call(cb, 0, i++); |
- if (!BN_copy(pm1, p)) |
- goto err; |
- if (!BN_sub_word(pm1, 1)) |
- goto err; |
- if (!BN_gcd(t, pm1, e, ctx)) |
- goto err; |
- if (BN_is_one(t) |
- /* X9.31 specifies 8 MR and 1 Lucas test or any prime test |
- * offering similar or better guarantees 50 MR is considerably |
- * better. |
- */ |
- && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb)) |
- break; |
- if (!BN_add(p, p, p1p2)) |
- goto err; |
- } |
- |
- BN_GENCB_call(cb, 3, 0); |
- |
- ret = 1; |
- |
- err: |
- |
- BN_CTX_end(ctx); |
- |
- return ret; |
- } |
- |
-/* Generate pair of paramters Xp, Xq for X9.31 prime generation. |
- * Note: nbits paramter is sum of number of bits in both. |
- */ |
- |
-int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) |
- { |
- BIGNUM *t; |
- int i; |
- /* Number of bits for each prime is of the form |
- * 512+128s for s = 0, 1, ... |
- */ |
- if ((nbits < 1024) || (nbits & 0xff)) |
- return 0; |
- nbits >>= 1; |
- /* The random value Xp must be between sqrt(2) * 2^(nbits-1) and |
- * 2^nbits - 1. By setting the top two bits we ensure that the lower |
- * bound is exceeded. |
- */ |
- if (!BN_rand(Xp, nbits, 1, 0)) |
- return 0; |
- |
- BN_CTX_start(ctx); |
- t = BN_CTX_get(ctx); |
- |
- for (i = 0; i < 1000; i++) |
- { |
- if (!BN_rand(Xq, nbits, 1, 0)) |
- return 0; |
- /* Check that |Xp - Xq| > 2^(nbits - 100) */ |
- BN_sub(t, Xp, Xq); |
- if (BN_num_bits(t) > (nbits - 100)) |
- break; |
- } |
- |
- BN_CTX_end(ctx); |
- |
- if (i < 1000) |
- return 1; |
- |
- return 0; |
- |
- } |
- |
-/* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 |
- * and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL |
- * the relevant parameter will be stored in it. |
- * |
- * Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq |
- * are generated using the previous function and supplied as input. |
- */ |
- |
-int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
- BIGNUM *Xp1, BIGNUM *Xp2, |
- const BIGNUM *Xp, |
- const BIGNUM *e, BN_CTX *ctx, |
- BN_GENCB *cb) |
- { |
- int ret = 0; |
- |
- BN_CTX_start(ctx); |
- if (!Xp1) |
- Xp1 = BN_CTX_get(ctx); |
- if (!Xp2) |
- Xp2 = BN_CTX_get(ctx); |
- |
- if (!BN_rand(Xp1, 101, 0, 0)) |
- goto error; |
- if (!BN_rand(Xp2, 101, 0, 0)) |
- goto error; |
- if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) |
- goto error; |
- |
- ret = 1; |
- |
- error: |
- BN_CTX_end(ctx); |
- |
- return ret; |
- |
- } |
- |